Title of Invention

"A METHOD OF OPERATING A NETWORK INFRASTRUCTURE ENTITY, A METHOD IN A MOBILE STATION AND A MOBILE STATION THEREOF"

Abstract The PDCAB packet (300) and the RRA packet (308) are transmitted together on the F-SCCH. For example, 9 RRA bits (305) are appended to the PDCAB field (303), in place of the pad bits (205), thereby allowing both the PDCAB (303) and RRA (311) messages to be protected against errors by a 16-bit CRC (307). In accordance with the embodiments, a receiver is able to distinguish between the varying PDCAB (303) and RRA (305) message formats and transmitting the packets (300) and (308) together is a normal mode of operation in the embodiments. Therefore, in accordance with the embodiments, when the PDCAB packet (300) and RRA packet (308) are transmitted together, the network replaces the N PDCAB pad bits, such as pad bits (205), with the first N bits from the RRA bitmap (311), in order to use the nominal CRC length for both packets (300) and (308).
Full Text METHOD AND APPARATUS FOR REUSING PACKET DATA CONTROL ASSIGNMENT BITS FOR RESOURCE ALLOCATION INDICATIONS
FIELD OF THE DISCLOSURE [0001] The present (fisclosure relates generally to wireless communication networks wherein data communicatiMis and Voice-Over-Intemet-Protocol (VoIP) communications are supported, and more particularly to such netwoiics utilizing Orthogonal Frequency Division Multiplexed (OFDM) radio intones and various methods and apparatuses for allocating resources, such as, but not limited to, time-frequency resources, to mobile stations communicating via ^ch networks.
BACKGROUND
[0002] In flie S"* Generation Partnership Project 2 (GPP2) Ultra Mobile Broadband (UMB) standard, the Forward Shared Control Channel (F-SCCH) can transmit from the Access Network (AN) to the Access Terminal (AT), or mobile station, a 40-bit padcet containing a Packet Data Control Assignment Block (PDCAB) or a 40-bit packet containing a Residual Resource Allocation (RRA) block. The 40-bit design constraint is problematic in that the 12-bit PDCAB requires padding, which creates an inefficiency, and in that the 30-bit RRA block can only be protected by a very short Cyclic Redundancy Check (CRC) string which is less likely to detect channel errors than would be the case if using a longer CRC. Became the F-SCCH sends control information, channel enor detection and correct is of particular concern. [0003] Therefore what is needed is a method and apparatus for better utilizing the bandwidth consumed by transmission of bits, so that a longer CRC may be employed with respect to control channel information.
1

BIUEF DESCRIPTION OF THE DRAWINGS
[0004] FIG. 1 is a block diagram of a wireless communicatioii aetwoik in accordance
with the embodimoits.
[0005] FIG. 2 are bit map diagrams of a control packets of previous communications
networks.
[0006] FIG. 3 are bit map diagrams of the control packets of FIG. 2 m accordance
with lbs embodiments.
[0007] FIG. 4 is a flow chart illustrating operation of a base station in accordance
with the embodimoits.
[0008] FIG. 5 is a flow chart illustrating operation of a mobile station in accordance
with die embodiments.
[0009] FIG. 6 is a flow chart illustrating fiirther details of operation of a mobile
station in accordance with the embodiments.
[0010] FIG. 7 is a high level block diagram ilhistrating the components of a base
station in accordance with the embodiments.
[0011] FIG. 8 is a high level block diagram illustrating the con:q)onait3 of a mobile
station in accordance with the embodiments.

DETAILED DESCMPTION [0012] Turning now to the drawings wherein like numerals rqjresent lite components, FIG. 1 ilhistrates a communications network 100, with various base stations 103, each base station 103 having a corresponding coverage area 107. In general, base station coverage areas may overly and, in general, form an overall network coverage area. The base stations may be referred to by other names such as base transceiver station (BTS), •*Node B", and access node (AN), depending on the technology. A n^work coverage area may comprise a number of base station coverage areas 107, which m^ form a contiguous radio coverage area. However, it is not required to have contiguous radio covo^ge and therefore a netwoik coverage taea. may alternatively be distributed.
[0013] Furthermore, each coverage area may have a number of mobile stations 101. Mobile stations may also be r^ened to as access terminals (ATs), user equipment (UEs), or other t^minology dependmg on the technology. A numba of bases stations 103 will be connected to a base station controller 109 via backhaul connections 111. The base station controller 109 and base stations form a Radio Access Network (RAN). The overall netwoik may comprise any number of base station controllos, each controlling a nunober of base stations. Note that the base station controller 109 may ahematively be implemented as a distributed fimction among tiie base stations 103. Regardless of specific implementations, the base station controller 109, or some other appropriate network entity, such as, but not limited to a base station, conq)rises various modules for packstized communications such as a packet scheduler, packet segmentation and reassembly, etc., and modules for assigning ^jpropriate radio resources to the various mobile stations 101.

{0014] The base stations 103 may communicate with the mobile stations 101 via any number of standard air inter&ces aiid using any number of modulation and coding schemes. For example. Universal Mobile Telecommunications System (UMTS), Evolved UMTS (E-UMTS) Terrestrial Radio Access (E-UTEIA) or CDMA2000™ may be employed. Furtiier, Orthogonal Frequency Division Multiplexing (OFDM) and/or orfliogonal spreading codes such as l^e Walsh codes may be employed for channelization of the air interface. Semi-orthogonal spreading codes may also be utilized to achieve additional channelization over the air inter&ce. Any apprc^riate radio interface may be employed by llie various embodiments. [0015] The radio resources of the communications netwotlc, which may be time-frequency resources as would be the case for communications networks employing OFDM, are assigned to the mobile stations via a bit map. Further, mobile stations may be assigned to groups stich that blocks of rraources are shared among the group. Such bit maps, mobile station grouping and shared resource assignments are described in copending U.S. Pat App. No. 11/460,908 "APPARATUS AND METHOD FOR HANDUNQ CONTROL CHANNEL RECEPTION/DECODING FAEURE IN A WIRELESS VOIP COMMUNICATION SYSTEM," U.S. Pat. App. No. 11/464.179 "APPARATUS AND METHOD FOR AUTOMATIC REPEAT REQUEST WITH REDUCED RESOURCE ALLOCATION OVERHEAD IN A WIRELESS VOIP COMMUNICATION SYSTEM," and U.S. Pat App. No. 11/530,352 "APPARATUS AND METHOD FOR AUTOMATIC REPEAT REQUEST SIGNALLING WITH REDUCED RETRANSMISSION INDICATIONS IN A WIRELESS VOff COMMUNICATION SYSTEM," all three of which are assigned to the same assignee

as the present application, and all three of which are hereby incorporated by reference herein.
I0016J Two bit maps of concem to the various embodiments MB sent to the mobile stations on a control channel, specifically the Forward Shared Control Channel (F-SCCH), and are illustrated in FIG. 2. Thus for bitmap-based assignments, the communication network may assign a mobile station to a particular frequency domain resource, where certain bit positions in the bitmap correspond to a frequency domain resource. The mobile statirai may thus use the bitmap to detmnine which frequency domain resources are currently being used, and determine its own assignment as the original frequency domain resources available minus &ose frequency domain resources that are indicated as currently being used by the bitm^. [0017] Returning to FIG. 2, the Forward Shared Control Channel (F-SCCH) may transmit from the communications network to the mobile station, a 40-bit packet 200 containing a Packet Data Control Assignment Blodc (PDCAB) 203, which refers to segments of the forward link control channel, or a 40-bit packet 208 containing a Residual Resource Allocation (RRA) block 211, which refers to resource or channel nodes from a channel tree. Some of the mobile stations 101 may require only the PDCAB information and some mobile stations may require only the RRA information, although all mobile stations in accordance with the various enbodimenis have the c^ability to receive a PDCAB packet and an RRA packet together. [0018] For purposes of the example illustrated by FIG. 2, the PDCAB 203 is assumed to be a length 12 bitmap corresponding to 12 control segments, and the RRA bitmap 211 is assumed to be a length 30 bitmap corresponding to 30 nodes from a channel tree. Both of these assumed bitmaps are typical values for a 5 MHz system and thus

serve fhe purpose of example in FIG. 2. FIG. 2 therefore depicts how the 40-bit packets 200 and 208 are structured to contain a PDCAB 203 block or an RRA 211 block in current systems for transmission over the F-SCCH. [00191 Both the PDCAB packet 200 and RRA packet 208 have 3 bit headers 201 and 209, respectively. These 3 bit "Ijlock type" headers indicate the type of information that follows in subsequent blocks. Specifically, the PDCAB packet 200 has 12 PDCAB information bits in PDCAB block 203, 9 pad bits 205, and 16 CRC bits 207 to achieve the desired packet length of 40 bits.
[0020] The RRA packet 208 has 30 BRA information bits 211. Thoefoie, because of the 40 bit constraint, a reduced CRC 215 most be used. For tiie exan^le illustrated, 2 pad bits 213 and areducedCRCof5 bits 215 are utilized to achieve the 40 bit packet lengtL It is to be understood that in light of the 40 bit packet length of packet 200 and packet 208, only 2 CRC lengths are permissible, that is, 16 bits or 5 bits. Because the control channel size is fixed, if a block has fewer information tnts than are supported using the nominal CRC, zero bits are added to the information bits to achieve the desired length. If a block has more information bits than would be stq)ported using a nominal CRC. the CRC length is reduced to 5 bits, and, if necessary, zero bits are added to the information bits to achieve the desired length. It is undesirable to reduce the CRC length, since this increases the probability of error. In general, the first packet for PDCAB infomnation will have a CRC length of n-bits, while the second packet for RRA information will have a shorter CRC lengA of (n-x) bits.
[0021] FIG. 3 illustrates the PDCAB packet 300 and the RRA packet 308 and RRA packet 315 in accordance with the embodiments. In FIG. 3, and in accordance with

one embodiment, the packets 300 and 308 are transmitted simultaneously on the F-SCCH. In the example case illustrated by FIG, 3,9 REIA bits 305 are appended to the PDCAB field 303, in place of Ae pad bits 205, thereby allowing both the PDCAB 303 and RRA 311 messages to be protected against errors by a 16-bit CRC 307. Therefore, in accordance with die embodiments, a receiver is able to distingnish between the varying message formats for PDCAB and RRA bitmaps. Furthermore, transmitting the packets 300 and 308 simultaneously is a normal mode of operaticm in accordaiK^e with the embodiments.
[0022] Therefore, in accordance with the embodiments, when ttie PDCAB packet 300 and RRA packet 308 are sinsultaneously transmitted, the communications netwi^k rq)laces the N PDCAB pad bits, such as pad bits 205, with flie first JVbits from an overall RRA bitm^, that is, the combination of RRA bitmaps 305 and 311, in order to use the nominal CRC length for both packets 300 and 308. Thus the RRA bitmap 305 defines the first portion of an overall RRA bitmap which is coiiq)leted by the second portion RRA bitaap 311. More specifically the overall RRA bitmap is divided into the first portion RRA bitm^ 305 and the second portion RRA bitm^ 311, whereby the two portions are sent in the two packets 300 and 308, respectively. [0023] Therefore, in FIG. 3, the first 9 bits of the RRA block 311 replace the pad bits 205, as previously illustrated in FIG. 2, in the PDCAB packet 300, leaving 21 bits for the RRA block 311 in RRA packet 308. The 21 RRA bits 311 fit perfectly in fee nominal F-SCCH packet space of 40 bits, thereby allowing the nominal CRC length of 16 bits 313 to be employed for the RRA packet 308. This increased CRC length for the RRA packet 308 decreases the probability of error, without requiring any additional overhead with respect to the communications network.

[0024J It is therefore to be imdeistood that, also in accordance with the embodiments, if the RRA block 311 has fewer bits than the PDCAB pad bits space, the RRA packet 308 of the F-SCCH does not need to be transmitted because the entire RRA block 311 would fit into the RRA block 305 of the PDCAB packet 300. Therefore, in the embodiments, there may be cases when only the single PDCAB packet 300 is transmitted because the PDCAB packet 300 contains the PDCAB btock 303 and the completed RRA block 305. This may be accomplished in some en^diments, by an appropriate header 301 bit configuration such that the combined PDCAB 303 and RRA 305 blocks are expected by the receiver.
[0025] Fuitho- in accordance with the embodiments, the commumcatioos netwoik need not always simultaneously transmit tiie PDCAB packet 300 and the RRA padcet 308. The two packets may be transmitted sqiarately at different times. Therefore, the F-SCCH transmission discussed above with respect to FIG. 3 may also be applied when the cotomunications network transmits the PDCAB packet 300 and the RRA packet 308 at different times, and where the mobile station buffers the packet and processes them together.
[0026] An alternative or additional packet type for soiding RRA information is packet 315. Packet 315 is RRA information 317 and a shorter CRC blocl^ for example a 7 bit CRC or a 5 bit CRCblodc321. Therefore, packet 315 may serve as a RRA continuation packet for packet 300, packet 308 or a combination of bofli. [0027] In some embodiments the packet 315 may be used to send an RRA bitmap independently from a PDCAB bitmap. In one specific embodiment, packet 315 is used in combination with packet 200, wherein packet 200 contains only PDCAB information and packet 315 contains only RRA information, however packet 315 does

not employ header information and therefore has additional room for CRC bits 321. Note that pad bits 319 may also be utilized in packet 315 depending upon the size of CRC fflnployed.
{0028] It is to be understood that FIG. 2 and FIG. 3 are exenq>laiy only and are based on a hypothetical 5 MHz bandwidth. Therefore, smaller or larger bandwidths may be employed resulting in smaller or larger packet bit lengflis, and remain within flie scope of the various embodiments disclosed herein. It is also to.be understood that, m light of the exemplary nature of FIG. 2 and FIG. 3, a first packet fw PDCAB information will have a CRC length of n-bits, while some packets for RRA information (208.and 3 IS) will have a shorter CRC length of (n-x) bits and that the actual number of CRC bits employed may be depoident i^n various factors such as bandwidth and the quanti^ of information to be transmitted in the PDCAB and/or RRA messages. Thus various CRC bit lengths may be employed in accordance with the various entbodiments herein disclosed.
{0029] FIG. 4 illustrates the q)eration of a base station in accordance with the embodiments and the above description. In 401, a PDCAB packet may be configured to inchide RRA bits in the position that would have been used as pad bits in previous systems. In 403, if the number of RRA bits is small enough, (he information contained in the PDCAB packet may contain complete RRA information and also a 16 bit RRA block. If this is the case, then in 405 the base station will transmit the PDCAB packet having the complete RRA information blodc [0030] If there is additional RRA information to transmit, thm in 407 an RRA packet will be configured having the ronaining RRA bits and also a 16 bit CRC block. In 409, the PDCAB packet and RRA packet will be transmitted together.

[0031] In addition to the operations illustrated by FIG. 4, the commnmcations networic, specifically the base station of the embodiments, will set its transmit power of the PDCAB bitmap blodc to reach mobile stations targeted by fte PDCAB block as well as the RRA block, since the PDCAB packet may contain RRA bits as discussed above.
[0032} FIG. 5 ilhistrates operation of a mobile station in accordance with the embodunents with respect to handling an F-SCCH. In SOI, a mobile station may be assigned to monitor the RRA bitmap of the F-SCCH. If the mobile station detects PDCAB bits in 503, then the packet will also be checked for RRA bits in 507. If RRA bits are contained in the packet, then the mobile station may proceed to decode &e RRA bits in 509 iising the 16 bit CRC block which is also contained in the packet. [0033] If no PDCAB bits are detected in 503 or if no RRA bits are detected in 507, then eitho- the packet of 503 is a RRA packet only and will be decoded using a 5 bit CRC in 505, or, from 507, the RRA packet will follow subsequently to Hbe PDCAB packet of 507 and will be received and decoded in 505.
[0034] For a mobile station assigned to monitor the PDCAB bitmap, it will ignore all bit positions beyond the last PDCAB bitmap position as would previous systems. [0035] FIG. 6 is a flow chart illustrating fiirther details of operation of a mobile station in accordance with the embodiments. After an F-SCCH packet is received m 601, the mobile station may attempt to decode any data blocks contuned therein by assutning that the last bits of the packet define a 16 bit CRC. The data may pass the 16 bit CRC, which indicates to the mobile station that tiie packet is one of the packets illustrated by FIG. 3, that is, a packet 300 having a PDCAB 303 pOTtion and a RRA 305 portion, or a packet 308 having a RRA 311 portion only.

[0036] Therefore, the mobile station may proceed to read the header, which may be header 301 or header 309. to determine the mess^e types contained as in 609. For the two packets, 300 and 308, the mobile station will combme the RRA block 305 with RRA block 311 to complete the RRA message. Returning to FIG. 6, if the 16 bit CRC of 605 fails, then the mobile station may apply a 5 bit CRC in 613, by assuming that the last bits of the packet define a 5 bit CRC as illustrated by packet 315 of FIG. 3. If the 5 bit CRC in 615 is success&l then in 619 the mobile station has obtained the RRA bitmap 317. However, if the 5 bit CRC 615 fails then a decoding feilure has occurred as shown in 617 and no further action is taken until a new packet is received. [0037] It is to be noted that, a packet such as 315 may be utilized to send RRA information subsequent to sending a PDCAB packet 200, or to send a continuation of RRA information bits without the need for a header, which saves 3 bits for information. The CRC determmation allows the mobile station to look for header information only in the event that a 16 bit CRC is successful. Otherwise, if the 5 bit CRC is successful as discussed with respect to FIG. 6, the mobile station may conclude that the packet contains only RRA infornation 317 as illustrated by packet 315 of FIG. 3.
[0038] As was discussed previously with respect to FIG. 1 and FIG. 2, some mobile stations 101 may require only the PDCAB information and some mobile stations may require only the RRA information, however all mobile stations of the various embodiments may receive both a PDCAB packet and an RRA packet together. Therefore, with respect to FIG. 6, block 603 the mobile station may have received a first packet, for example a PDCAB packed and also a second packet, for example a RRA packet. If mobile station only requires RRA information, the mobile station

may, in 603, first decode the second packet by assuming the last bits of the packet define an n-bit length CRC. In the previous examples provided with respect to FIG. 2 and FIG. 3, a 5 Mhz system was assumed and a 16 bit length CRC was assumed given a 40 bit length RRA (or PDCAB) packet length, the packet length being based upon the assumed S Mhz bandwidth.
[0039] Returning to FIG. 6, the mobile station requiring only RRA information may, in 603, first decode the second packet using the n-bit length CRC as discussed above. If the packet passes the CRC and is thus siiccessfully decoded, fben the mobile station may read the packet header which will inform the md}ile station that the packet is a RRA packet
[0040] In this case, the mobile station will expect that the first received packet may be a packet having combined PDCAB and RRA informatioa Therefore, the mobile station will then attempt to decode the fitst packet, by now assuming that the last bits of the first packet also define a CRC of die same length, such as 16 bits per the examples provided, as the CRC length of the RRA padcet. Therefore, if the CRC passes and ibe mobile station therefore successfiiUy decodes the first packet, the mobile station will proceed to read the first packet's header in 607 and then proceed to obtain tiie RRA information, by distinguishing the RRA information from the PDCAB infonnation also contained in the packet as m 609. The mobile station may then combine the first packet RRA information portion with the seccmd packet RRA infonnation portion to obtain the con^>lete RRA message. [0041] FIGs. 7 and 8 are block diagrams that illustrate the primary conqwnents of a base station 103 and mobile station 101, respectively, in accordance with the embodiments. Base station 103 comprises transceiver/s 701 coupled to processors

703. Processors 703 run a F-SCCH module 705 for configuring PDCAB packets and
RRA packets in accordance with the embodiments.
[0042] Mobile station 101 con5)rises user interfeces 801, and ]procrasor/s 807. I
Processor/s 807 run a F-SCCH module 809 for decoding PDCAB packets and RRA
packets in accordance with the embodiments. Mobile station also conq)rises user
interfaces 803, which may be a combination of user interfaces including but not
limited to a keypad, touch screen, voice activated command input, and gyroscc^ic
cursor controls, a gr^hical display 803, which may also have a dedicated processor and/or memory, drivers etc. which are not shown in FIG. 8, and transceiver/s 805.
[0043] It is to be understood that FIGs. 7 and 8 are for ilhistrative purposes only and are for illustrating the main components of a base station and mobile station in accordance with the present disclosure, and are not intended to be a complete schematic diagrams of the various components and connections Aerebetwesa required for a base station or mobile station. Therefore, a base station and/or mobile station may comprise various other components not shown in FIG. 7 and/or FIG. 8 and still be within ibc scope of the present disclosure. [0044] While various embodiments have been illustrated and described, it is to be understood that the invention is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without dq>arting from the spirit and scope of the present invention as defined by the app^ded claims.


WHAT IS CLAIMED IS:
1. A method of operating a netwodc infrastructure entity, the method comprising:
sending together a first packet and a second packet, both packets being equal in bit length, to a group of mobile stations, said first packet containing a first message type, a first portion of a second message type and an n-bit length Cyclic Redundancy Check (CRC) portion, said second packet containing a continuation portion of said second message type and a second n-bit length Cyclic Redundancy Check portion.
2. The method of claim 1, further comprising:
sending said first packet and said second packet on a forward shared control channel (F-SCCH).
3. The method of claim 1, \iiierein said first message type is a packet data control assignment block (PDCAB), and siud second message type is a residual resource allocation (RRA) block.
4. The method of claim 1, wherein said n-bit length CRC portion is a 16 bit length CRC portion.
5. A method in a base transceiver station, said method comprising:
configuring a first packet and a second packet, both packets being equal in bit length, said first packet containing a first message type, a first portion of a second message type and an n-bit length Cyclic Redundancy Check (CRC) portion, said second packet containing a continuation portion of said second message type and a second n-bit length Cyclic Redundancy Check portion; and
sending said first packet and said second packet on a forward shared control channel (F-SCCH).

6. The method of claim S, wherein said first message type is a packet data control assigmnent block (PDCAB), and said second message type is a residua] resource aDocation (BRA) block.
7. The method of claim 5, fiirther comprising:
adding a first message header to said first packet, said first message header indicating that said first packet contains said first message type; and
adding a second message header to said second packet, said second message header indicating diat said second packet contains said contmnation portion of said second message type.

8. A method in a mobile station, the method comprising:
determining that a first received packet contains a first message type and a fiist porticoi of a second message typer,
determining that a second received packet contains a second portion of said second message type; and
combining said first portion and said second portion to complete said second message type.
9. The method of claim 8, wherein the step of determining that a first received padket
contains a first message type and a first portion of a second message type fiirther
comprises:
determining that sud first received packet contains a Pu^ket Data Control Assignment Block (PDCAB), said PDCAB being said first message type; and
determining that said first received packet contains a Residual Resonrce Allocation (RRA) block fust portion, said RSA block first portion bemg said first portion of said second message type.
10. The method ofclaim 8, further comprising:
assuming that a predeteimined number of bits at the end of said second
received packet defines a first n-bit length Cyclic Redundancy Check (CRC)
block;
decoding successfully said second received packet using said first n-bit length CRC block;
reading a header of said second received packet in response to said decoding successfiilly said second received padce^
determining that said second received packet contains said second portion of said second message type via said header;
assuming that a predetermined number of bits at the end of said first received
packet defines a second n-bit length Cyclic Redundancy Check (CRQ block;
decoding successfully said first received packet usmg said second n-bit length CRC block;

reading a header of said first received padcet in response to said decoding successfully said first received packet; and
obtaining said first porticm of said second message fix)m said first packet in response to* said decoding soccessfbUy said first received packet
11. The method of claim 8, wherem the st^ of determming that a first received pack&t contains a first message type and a first portion of a second message type fiirther comprises:
decoding successfiilly sud second received packet to obtain said second portion of said second message type;
determinmg by said decoding successfully of said second received packet tiiat said first received packet contains a Packet Data Control Asslgnmoit Block (PDCAB), said PDCAB being said first message type; and
determinmg by said decodmg successfully that said first rec«ved packet contains a Residuial Resourcis Allocation (RRA) block first portion, said RRA block first portion bemg said first portion of said second message type.

12. The method in a mobile station, the method comprising:
receiving a first packet and a second packet, said first packet and said second packet having an equal bit Idngth;
assuming that a piedetermined number of bits at the end of said second received packet defines a first length Cyclic RedundaiM^ Check (CRC) block;
decoding said second received packet using said first length CRC block, said decoding resulting in a feihire;
assuming that a second predetemuned nmnber of bits at the end of said second received packet defines a second length Cyclic Redundancy Check (CRC) block, said second length CRC block shorter than said first length CRC block; and
decoding successfidly said second received packet using said second length CRC block
13. The method of cldm 12. fiuther comprising:
determining that said second recdved packet contains a message required by said mobile station in response to said decoding successfully said second received packet using said second length CRC block, said message being con^lete; and
discarding said first packet
14. The method of claim 12, fiitfher comprising:
determining that said second lecdved packet contuns a second portion of a message required by said mobile station, in response to said decoding successfully said second received packet using said second length CRC block, said message being incomplete;
assuming that a predetermined number of bits at title end of said first received packet defines a second length Cyclic Redundancy Check (CRC) block, said second length CRC block longer than said first length CRC block;
decoding successfiilly said first received packet using said second length CRC block, to obtain a first portion of said message; and

combining said first portion and said second message to obtain said message required by said mobile station.

15. A mobile station coii^}rismg:
at least one transceiver;
at least one processor coiq)led to said transceiver said processor configured to:
determine that a first received packet contains a first message type and s first portion of a second mess^e type;
determine that a second received packet contains a second portion of said second message type; and
combine said first portion and said second portion to complete said second messa^ type.
16. The mobile stadon of claim 15, wherein said processor is configured to determine
that a first received packet contains a first message type and a first portion of a second
message type by:
determining that said first received packet contams a Packet Data Control Assignment Block (PDCAB), said PDCAB being said first message type; and
determinmg that said received paclcet contains a Residual Resoutx:e Allocation (RRA) blodc first portion, s»d RRA block first portion being said first portion of said second message type.
17. The mobile station of claim 15, wherein said processor is fiirther configured to:
assume that a piedetenmned number of bits at the end of said second received packet defines a first n-bit length Cyclic Redundancy Check (CRC) block;
decode successfiiUy said second received packet using said first n-bit length CRCblodq
read a header of said second received packet in response to said decoding successfiiUy said second received packet;
determine that said second received packet contains said second porticm of said second message type via said header;
assume that a predetermined number of bits at the end of said first received packet defines a second n-bit lengfli Cyclic Redundancy Check (CRC) block;

decode successfolly said first received packet using said second n-bit length CRC bloclq
read a header of said first received packet in response to said decoding successfully said first received padcet; and
obtain said first portion of said second message 6xim said first packet in response to said decoding successfully said first received packet
18. The mobile station of claim 15, wherdn said processor is further configured to: decode successfully said second received packet to obtun said second portion
of said second message type;
determine by said decoding successfiilly of said second received packet ibat
said first received packet contains a Packet Data Control Assignment Block
(PDCAB), said PDCAB being said first message type; and
determine by said decoding successfully that said first received packet
contains a Residual Resource Allocation (RRA) block first portion, said RRA block
first portion being said first portion of said second message type.

19. A mdjfle station conqjrising:
at least one transceiver;
at least one processor coi^led to said transceiver said processor configured to:
receive a first packet and a second p«K:ket, said first packet and said second packet liaving an equal bit leagtli;
assume tiiat a predetenniaed number of bits at &e end of said second received packet defines a first length Cyclic Redundancy CJieck (CRQ block; decode said second received packet using said first length CRC block, said decoding resulting in a &ihue;
assume that a second i»'edetermined number of bits at the end of said second received packet defines a second length Cyclic Redundancy Check (CRC) block, said second length CRC bk>ck shorter than said first lei^ CRC block; and
decode successfiiUy said second received packet using said second lengfli CRC block.
20. The mobile station of claim 19, wherein said processor is further configured to:
determine that said second received packet contains a message required by said mobile station in response to said decoding successfiiUy said second received packet using said second length CRC block, said message being conplete; and
discard said first packet
21. The mobile station of claim 19, wherein said processor is fiirther configured to:
determine that said second received packet contains a second portion of a message required by said mobile station, in response to said decoding successfiiUy said second received packet using said second length CRC block, said mess^e being incomplete;
assume that a predetermined number of bits at the end of said first received packet defines a second length Cyclic Redundancy Check (CRC) block, said second length CRC block longer than said first length CRC block;

decode successfully said first received packet using said second length CRC block, to obtain a first portion of said message^ and
combine said first portion and said seccmd message to obtain said message required by said mobile station.


Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=3lklIbkxZ3zRYQIqT/riAQ==&loc=egcICQiyoj82NGgGrC5ChA==


Patent Number 278165
Indian Patent Application Number 6577/CHENP/2009
PG Journal Number 53/2016
Publication Date 23-Dec-2016
Grant Date 15-Dec-2016
Date of Filing 09-Nov-2009
Name of Patentee MOTOROLA MOBILITY INC
Applicant Address 600 NORTH US HIGHWAY 45 LIBERTYVILLE, IL 60048
Inventors:
# Inventor's Name Inventor's Address
1 MCBEATH, SEAN, M 4829 BRIDLE PATH WAY, KELLER, TEXAS 76248
2 REED, JOHN, D 1101 BRIARCLIFF DRIVE, ARLINGTON, TEXAS 76012
3 BI, HAO 1251 WILLIAM DRIVE, LAKE ZURICH, ILLINOIS, 60047
4 SMITH, JACK , A 3503 HEMMING ROAD, VALLEY VIEW, TEXAS 76272
PCT International Classification Number H04L1/00
PCT International Application Number PCT/US08/066625
PCT International Filing date 2008-06-12
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/763,624 2007-06-15 U.S.A.