Title of Invention

METHOD AND SYSTEM FOR VERIFYING CHECK IMAGES

Abstract In one embodiment, example software is operable to determine a first hash value for an electronic check image, with the check image operable to generate an image replacement document. The hash value is associated with the electronic check image. The electronic check image and the associated hash value is communicated to a recipient for processing.
Full Text FORM 2
THE PATENTS ACT, 1970
(39 of 1970) &
The Patents Rules, 2003
COMPLETE SPECIFICATION
(See section 10, rule 13)
METHOD AND SYSTEM FOR VERIFYING CHECK IMAGES"
VECTORSGI, INC. of 15301 Dallas Parkway, Suite 400, Addison, Texas 75001, USA
The following specification particularly describes the invention and the manner in which it is to be performed.

WO 2006/055364

PCT/US2005/040556

METHOD AND SYSTEM FOR VERIFYING CHECK
IMAGES
TECHNICAL FIELD
This invention relates to check processing and, mere specifically, to a
5 method and system for verifying electronic check images.
BACKGROUND
Currently, the bank of first deposit receives a physical check from the point-of-sale (or point-of purchase), processes the check using any suitable technique, and then communicates the physical check to the recipient (or payor) bank for storage or
10 forwarding to the appropriate account holder. For example, the checks are typically sorted according to payor bank, bundled together, and physically shipped to the receiving bank. This physical handling of checks and other commercial paper transactions requires large amount of labor, costs, and storage space and is subject to various threats. But the Check Clearing for the 21st Century Act, commonly
15 referred to as "Check 21," federally mandates that recipient banks must now accept electronic images of checks from other banks, thereby reducing costs and physical threats and increasing efficiency. Each electronic image may then be printed to generate an image replacement document, which is the legal equivalent of a physical check.
20 SUMMARY
This disclosure provides a system and method for communicating secure electronic check images. In one embodiment, for example, software is operable to determine a first hash value for an electronic check image, with the check image operable to generate an image replacement document. The hash value is associated
25 with the electronic check image. The electronic check image and the associated hash value is communicated to a recipient for processing. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. One or more embodiments of the invention may include several important technical advantages. For example, the disclosure may describe a
30 more secure financial network for communicating legal representations of checks.
2

WO 2006/055364

PCT/US2005/040556

In another example, the disclosure may allow a bank to process an IRD with more assured sense of validity. Of course, various embodiments of the invention may have none, some or all of these advantages. Other features, objects, and advantages of the invention will be apparent from the description and drawings, as well as from
5 the claims.
DESCRIPTION OF DRAWINGS
FIGURE 1 illustrates a system for communicating secure electronic check images in accordance with one embodiment of the present disclosure;
FIGURES 2A-B illustrate one embodiment of an electronic check image in 10 the form of an image replacement document; and
FIGURES 3A-B are flowcharts illustrating example methods for processing secure electronic check images in accordance with one embodiment of the present disclosure.
DETAILED DESCRIPTION
15 FIGURE 1 illustrates a system 100 for communicating and processing secure
electronic check images 114 in accordance with one embodiment of the present disclosure. Generally, system 100 includes at least a portion of any financial or banking system operable to process commercial paper transactions (such as checking), generate at least one electronic check image 114 associated with an
20 image replacement document (IRD) for at least a particular one of the transactions, and securely process, share, or communicate these electronic check images 114. For example, system 100 may receive a physical check at a receiving entity 102, capture an electronic image 114 and check data 115 (such as a Magnetic Ink Character Recognition (MICR) code or a MICR line) from the check at a first financial
25 institution 104, generate a hash value from at least a portion of electronic check image 114, and associate the hash value with electronic check image 114 and check data 115. This hash value and the associated electronic check image 114 are then communicated to a second financial institution 104b. In another example, receiving entity 102 may capture the electronic check image 114 and check 115 for
30 communication to one of the financial institutions 104. Therefore, electronic communications (including electronic images 114 operable to generate IRDs and a
3

WO 2006/655364

PCT/US2005/040556

check data 115) may be secured, authenticated, or otherwise verified through hash values within system 100.- It will be understood that various components of system 100 may use or implement any suitable hashing technique or algorithm, such as MD-5 or proprietary, to determine the hash value (or other similar identifier) based
5 on at least a portion (including all) of electronic check image 114. In certain embodiments, the components may utilize the same hashing technique or algorithm or, alternatively, may communicate an identifier of the utilized technique or algorithm to other components, thereby allowing the other components to appropriately process the hashed image 114.
10 System 100 is typically (but not necessarily) distributed into at least one
receiving entity (or point-of-sale) 102 and two or more financial institutions 106, illustrated as first and second financial institutions 106a and 106b. Often, system 100 is electronically inter-coupled, thereby allowing efficient communications among the various components. But system 100 may be a standalone processing
15 environment, such as system 100 consisting of one financial institution 104 with a plurality of interconnected offices, or any other suitable banking environment operable to dynamically generate hash values for securing electronic communications without departing from the scope of this disclosure. The term "dynamically," as used herein, generally means that certain processing is
20 determined, at least in part, at run-time based on one or more variables. The term "automatically," as used herein, generally means that the appropriate processing is substantially performed by at least part of system 100. It should be understood that "automatically" further contemplates any suitable user or manager interaction with system 100 without departing from the scope of this disclosure.
25 Receiving entity 102 is any recipient or payee of the checking or other
commercial paper transaction.. Receiving entity 102 may be a store, an online vendor, a telephony system, or others. Receiving entity 102 may also represent a teller at one of the financial institutions 104 without departing from the scope of the disclosure. In the illustrated embodiment, receiving entity 102 includes a cash
30 register 103 for receiving and storing physical checks 112. Of course, receiving entity 102 may include other additional or alternative components for processing transactions. For example, receiving entity 102 may include a scanner and/or a computer for processing an example check or electronic payment. While not
4

WO 2006/055364

PCT/US2005/040556

illustrated, the point-of-sale computer may also include or execute a portion or a copy of check processing engine 130 (illustrated in servers 106a and 106b) for performing or implementing hashing or other check processing without departing from the scope of the disclosure. Receiving entity 102 may also be operable to
5 generate an Automated Clearing House (ACH) transaction based on the checking transaction for quickly processing the transaction with financial institutions 104. Regardless, at any appropriate time and using any suitable automatic or manual technique, receiving entity 102 communicates the checks to a first financial institution 104 for subsequent processing.
10 Financial institution 104 is any agent, third-party resource, clearing house,
branch, processing center, or central office of a financial institution. Indeed, while illustrated as two banks, first financial institution 106a and second financial institution 106b respectively, any number cf banks and/or other institutions may be included in system 100 without departing from the scope of this disclosure.
15 Moreover, two or more financial institutions 106 may represent two or more routing/transit numbers associated with one institution, hi other words, each financial institution 104 may have the same, similar, or distinct components from illustrated financial institutions 104. Returning to the illustrated embodiment, each financial institution 104 includes server 106, printer 110, and scanner 128. Printer
20 110 is any device operable to generate a hard copy from an electronic image. For example, financial institution 104 may include a plurality of checks or other commercial paper transactions in electronic form, which may then printed as image replacement documents (IRDs) using printer 110. These IRDs may then be considered a legal copy of the associated check. Scanner 128 is any suitable device
25 operable to capture or otherwise obtain information from the received physical transactions, such as the checks from receiving entity 102. For example, scanner 128 may be a scanner, a sorter, or any other similar device (or combination thereof) including a digital camera for recording or generating electronic images 114 of the checks and a MICR reader for capturing check data 115 from the checks. The
30 example digital camera may record an electronic check image 114 of the front and back of each check in black and white, grayscale, and/or color. As used herein, electronic check image 114 may be a digital image or file of the check including the front, the back, both, or any suitable portion thereof. This check image 114 may be
5

WO 2006/0*55364

PCT/US2005/040556

in any suitable format including Moving Picture Experts Group (MPEG), Joint Photographic Experts Group (JPEG), Tag Image File Format (TIFF), including any suitable version thereof (such as TIFF 6,0), and others. The MICR reader may capture or generate check data 115 in any appropriate format including E13-B,
5 CMC-7, output from Optical Character Recognition (OCR), as well as others. Check data 115 typically includes MICR line data, which is a plurality of fields including routing/transit field, account field, serial field, and others. But check data 115 may also include, alternatively or in combination, any other readable or identifiable check data including text or other check identification data. In certain
10 embodiments, the first hash value is initially obtained or determined at the initial capture source, whether receiving entity 102 or financial institution 104.
Banking server 106 includes memory 120 and processor 125 and comprises an electronic computing device operable to receive, transmit, process, and store data associated with system 100 and, more specifically, associated financial institution
15 104. For example, server 106 may be any computer or processing device such as, for example, a blade server, general-purpose personal computer (PC), Macintosh, workstation, a mainframe, or any other suitable device. Generally, FIGURE 1 provides merely one example of computers that may be used with the disclosure. For example, although FIGURE 1 illustrates one server 106 that may be used with
20 the disclosure, system 100 can be implemented using computers other than servers, as well as a sever pool. In other words, the present disclosure contemplates computers other than general purpose computers as well as computers without conventional operating systems. As used in this document, the term "computer" is intended to encompass a personal computer, workstation, network computer, or any
25 other suitable processing device. Server 106 may be adapted to execute any operating system including Linux, UNIX, Windows Server, or any other suitable operating system. According to one embodiment, server 106 may also include or be communicably coupled with a web server and/or a secure financial server.
Memory 120 may include any memory or database module and may take the
30 form of volatile or non-volatile memory including, without limitation, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), removable media, or any other suitable local or remote memory component. In the illustrated embodiment, memory 120 includes electronic check images 114, but
6

WO 2006/055364

PCT/US2005/040556

memory 120 may include any appropriate data such as an audit log, account information, administration profiling, check data 115, one or more hash values, and others. For example, memory 120 may store electronic check images 114 in an object-oriented or a relational database, typically including tables defined using SQL
5 statements and interrelated using schemas. In this example, one table may store electronic check images 114 and another table store check data 115. In another example, memory 120 may store electronic check images 114 in one or more comma-separated-value (CSV) files, XML documents, Btrieve files, text files, encrypted files, and others.
10 Server 106 also includes processor 125. Processor 125 executes instructions
and manipulates data to perform the operations of server 106 such as, for example, a central processing unit (CPU), a blade, an application specific integrated circuit (ASIC), or a field-programmable gate array (FPGA). Although FIGURE 1 illustrates a single processor 125 in server 106, multiple processors 125 may be used
15 according to particular needs and reference to processor 125 is meant to include multiple processors 125 where applicable. In the illustrated embodiment, processor 125 executes check processing engine 130, which generates hash values for electronic check images 114 allowing for verification by second financial institution 104b.
20 Check processing engine 130 could include any hardware, software,
firmware, or combination thereof operable to, among other tilings, automatically generate hash values from at least a portion of each electronic check image 11.4. For example, check processing engine 130 may be written or described in any appropriate computer language including C, C++, Java, Visual Basic, assembler, any
25 suitable version of 4GL, and others or any combination thereof. It will be understood that while check processing engine 130 is illustrated in FIGURE 1 as a single multi-tasked module, the features and functionality performed by this engine may be performed by multiple modules such as, for example, an image generation module, a check processing module, and an administration module. Further, while
30 illustrated as internal to server 106, one or more processes associated with check processing engine 130 may be stored, referenced, accessed, or executed remotely (such through receiving entity 102). Moreover, check processing engine 130 may be a child or sub-module of another software module (not illustrated) without departing
7

WO 2006/055364

PCT/US2005/040556

from the scope of this disclosure. In one embodiment, check processing engine 130 may include or be communicably coupled with an administrative workstation or graphical user interface (GUI) 116. For example, the workstation may comprise a computer that includes an input device, such as a keypad, touch screen, mouse, or
5 other device that can accept information, and an output device that conveys information associated with the operation of server 106 or receiving entity 102, including digital data, visual information, or GUI 116. Both the input device and output device may include fixed or removable storage media such as a magnetic computer disk, CD-ROM, or other suitable media to both receive input from and
10 provide output to users through the display, namely GUI 116.
GUI 116 comprises a graphical user interface operable to allow the user of the workstation to interface with at least a portion of system 100 for any suitable purpose. Generally, GUI 116 provides the user of the workstation with an efficient and user-friendly presentation of data provided by or communicated within system
15 100. GUI 116 may comprise a plurality of customizable frames or views having interactive fields, pull-down lists, and buttons operated by the user. In one embodiment, GUI 116 presents reports that includes the various processed check information and associated buttons and receives commands from the user via one of the input devices. In an alternative embodiment, GUI 116 may be hidden or not
20 implemented. Moreover, it should be understood that the term graphical user interface may be used in the singular or in the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Therefore, GUI 116 contemplates any graphical user interface, such as a generic web browser or touch screen, that processes information in system 100 and
25 efficiently presents the results to the user. Server 106 can accept data from the
workstation via the web browser (e.g., Microsoft Internet Explorer-or-Netscape
Navigator) and return the appropriate HTML or XML responses using network 113.
Server 106 may also include interface 117 for communicating with other
computer systems or components, such as other server 106 or receiving entity 102,
30 over network 113 in a client-server or other distributed environment. In certain embodiments, server 106 receives electronic images of checks from internal or external senders through interface 117 for storage in memory 120 and/or processing by processor 125. Generally, interface 117 comprises logic encoded in software
8
WO 2006/055364

PCT/US2005/040556

and/or hardware in a suitable combination and operable to communicate with
network 113. More specifically, interface 117 may comprise software supporting
one or more communications protocols associated with communications network
113 or hardware operable to communicate physical signals.
5 Network 113 facilitates wireless or wireline communication between
computer servers 106 and any other local or remote computer or component, such as all or a portion of a bank posting systems or other intermediate systems. Indeed, while illustrated as two networks, 113a and 113b respectively, network 113 maybe a continuous network without departing from the scope of this disclosure, so long as
10 at least portion of network 113 may facilitate communications between the requisite parties or components. In other words, network 113 encompasses any internal or external network, networks, sub-network, or combination thereof operable to facilitate communications between various computing components in system 100. Network 113 may communicate, for example, Internet Protocol (IP) packets, Frame
15 Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, and other suitable information between network addresses. Network 113 may include one or more local area networks (LANs), radio access networks (RANs), metropolitan area networks (MANs), wide area networks (WANs), all or a portion of the global computer network known as the Internet, and/or any other
20 communication system or systems at one or more locations.
In one aspect of operation receiving entity 102 receives a physical check from a buyer or other payee. After any suitable processing, receiving entity 102 communicates at least this check to first financial institution 104a. For example, receiving entity 102 may collect checks throughout a day or week and communicate
25 these gathered checks to first financial institution 104a in a bundle. Once first financial institution 104a receives the physical checks, it generates an electronic check image 114 for each check using, for example, scanner 128. Often concurrently, first financial institution 104a also captures check data 115 from each check. First financial institution 104a may also sort the electronic images 114 and
30 check data 115 according to recipient bank (illustrated as second financial institution 104b). hi this way, first financial institution 104a may parse out or otherwise collect the electronic data for communication to the appropriate recipient financial institution 104b. First financial institution 104a, using check processing engine 130,
9

WO 2006/655364

PCT/US2005/040556

then generates a hash value for each electronic check image 114 using any portion or all of the respective image 114. This hash value is then associated with the captured check data 115 using any suitable technique. For example, check processing engine 130 may add a pointer from the hash value to check data 115 or may generate a
5 record including all of the MICR fields, for example and the hash value.
First financial institution 104a then sends the appropriate electronic check
images 114 to recipient financial institution 104b for processing. As described
above, these electronic check images 114 are each operable generate an IRD,
thereby reducing or eliminating the need for shipping the physical checks. For
10 example, first financial institution 104 may communicate electronic check images
114 to an office local to recipient financial institution 104a. The local office may
print a plurality of TRDs from the received electronic images 114 and provide the
IRDs to the recipient financial institution 104b. The local office may also perform
hash processing, as described in regard to recipient financial institution 104b below,
15 to verify the authenticity of the IRDs without departing from the scope of the disclosure. Continuing the example, the local office then forwards the electronic check images 114 to the recipient financial institution 104b. In another example, server 106a may communicate electronic check images 114 to recipient financial institution 104b via network 113. However obtained, recipient financial institution
20 104b then determines a second hash value for each electronic check image 114, often using check processing engine 130b. By comparing the received hash value and the determined second hash value, recipient financial institution 104b is able to verify the received electronic check image 114 has not been tampered with or corrupted. For example, if check processing engine 130b determines that the
25 received and the second hash value are identical, then recipient financial institution 104b may process the particular electronic image 114 as authentic. Second financial institution 104b may also receive check data 115 for each of the received transactions from first financial institution 104a. As described above, each check data 115 may include, reference, or otherwise be associated with the determined
30 hash value for the respective electronic check image 1J 4. Based on this hash value, check processing engine 130b may be operable to associate the particular check data
115 with one of the electronic check images 114, thereby allowing more efficient
10

WO 2006/055364

PCT/US2005/040556

processing of the electronic data (such as re-associating image 115 and check data 115).
FIGURES 2A-B illustrate one embodiment of an image replacement document 200 from an example electronic check image 114. At a high level,
5 FIGURE 2A illustrates the front image 200a of a check 202, while FIGURE 2B illustrates the back image 200b of check 202 used by the system of FIGURE 1. In this embodiment, check 202 is illustrated as a portion of an IRD 200, which may be considered a legal representation of transaction 202. Transaction 202 is associated with two MICR codes 204 and 206, each generated or captured at different points
10 during transaction processing. For example, MICR code 204 may be preprinted on the check prior to the actual transaction. In this example, MICR code 204 includes an item type indicator of "1," a routing number or field 5 of "12345," an account number of "12345678," and a check number of "101." In this example, MICR code 204 has been supplemented with the captured amount, "100.00," perhaps at the
15 receiving entity 102 or the financial institution 104 of first deposit. MICR code 206 is substantially similar to MICR code 204, with the difference involving the item type indicator. In MICR code 204, the item type indicator is "1", while MICR code 206 includes an item type indicator of "4." FIGURE 2B illustrates a back portion of IRD 200. This portion of IRD 200 includes various processing, authorization, and
20 deposit data. For example, the back of the check includes the financial institution 104 of first deposit, namely "First National Bank." The back of the check further describes the date of first deposit, item sequence number, and any endorsement, in this case a stamp of "For Deposit Only."
FIGURES 3A-B are flowcharts illustrating example methods 300 and 350
25 for processing secure electronic check images 114 in accordance with one embodiment of the present disclosure. At a high level, methods 300 and 350 include first financial institution 104 generating an electronic image 114 and a hash value for a received physical check, communicating both electronic data items to a second financial institution 104b, thereby allowing second financial institution 104 to verify
30 the electronic check image 114. The following description focuses on the operation of a particular check processing engine 130 in performing these methods. But system 100 contemplates using any appropriate combination and arrangement of logical elements implementing some or all of the described functionality.
11

WO 2006/055364

PCT/US2005/040556

Method 300 begins at step 302, where first financial institution 104a receives a physical check 112 from receiving entity 102. Of course, first bank 104a may also receive physical check 112 from any other appropriate component or institution. Next, first financial institution 104 generates an electronic image 114 based on
5 received check 112 such as, for example, using scanner 128. At step 304, first financial institution 104a captures or otherwise identifies a check data 115 for received check 112. For example, first financial institution 104a may include scanner 128 with a digital camera operable to capture check data 115 from physical check 112. Next, check processing engine 130a determines a hash value for
10 electronic check image 114 at step 308. As described above, check processing engine 130a the utilize or implement any appropriate hashing algorithm, including MD-5, a proprietary technique, or any other suitable technique or instruction. At step 310, check processing engine 130a associates the determined hash value with electronic check image 114. Next, check processing engine 130a associates the hash
15 value with check data 115 at step 312. According to certain embodiments, check processing engine 130a may generate or store a local copy of electronic check image 114, as well as the associated hash value. For example, check processing engine 130a may store the local copy in an audit record or log in memory 120a. In another example, check processing engine 130a may communicate a copy of electronic
20 check image 114 to a data storage repository (not illustrated). At step 316, check processing engine 130a communicates electronic check image 114 and the associated hash value to a recipient financial institution 104b, illustrated in Figure 1, also termed second financial institution 104b. Next, first financial institution 104a may communicate check data 115 and the associated hash value to the recipient
25 financial institution 104b for other processing, as illustrated in more detail in Figure 3B.
Method 350 begins at step 352, where recipient financial institution 104b receives electronic check image 114 and the associated hash value. Next, check processing engine 130b determines a second or new hash value for the received
30 electronic check image 114 at step 354. At step 356, check processing engine 130b compares the first and second hash values to help verify that the electronic check image 114 has not been tampered with or corrupted. Next, at decisional step 358, check processing engine 130b determines whether the first and second hash values
12

WO 2006/055364

PCT/US2005/040556

verify electronic check image 114 such as, for example, by being identical. If the hash values differ, then check processing engine 130b may communicate an error message to the sender, illustrated as first financial institution 104a. check processing engine 130b may also generate an audit record of the error at step 362, or by
5 illustrated processing of this particular electronic check image 114 pounds. If check processing engine 130b determines that the hash values are identical (for example) at decisional step 358, then financial institution 104b may process the verified or authenticated electronic check image 114 using any standard or appropriate processing at step 364. Next, financial institution 104b may generate an image
10 replacement document based on electronic check image 114, using any appropriate technique, such as printing the IRD using printer 110b.
The preceding flowcharts and accompanying descriptions illustrate exemplary method 300 and 350. hi short, system 100 contemplates using any suitable teclmique for performing this and other tasks. Accordingly, many of the
15 steps in this flowchart may take place simultaneously and/or in different orders than as shown. Moreover, system 100 may use methods with additional steps, fewer steps, and/or different steps, so long as the methods remain appropriate.
Although this disclosure has been described in terms of certain embodiments and generally associated methods, alterations, and permutations of these
20 embodiments and methods will be apparent to those skilled in the art. For example, receiving entity 102 may process electronic checks, as well as physical checks and other commercial paper. In another example, both the capture and verification techniques may be used by one organization to ensure or revisit the authenticity of checks that are or were in its care. Accordingly, the above description of example
25 embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the scope of this disclosure.
13

WHAT IS CLAIMED IS:
1. (Amended) A method for communicating electronic check images
comprising:
determining a first hash value based, at least in part, on an electronic check image, the check image operable to generate an image replacement document; bundling the hash value with the electronic check image; and communicating the electronic check image and the associated hash value to a recipient for verification of the electronic check image based, at least in part, on the hash value associated with the electronic image.
2. The method of Claim 1, the hash value comprising a sixteen byte number.
3. (Amended) The method of Claim 1, comprising:
adding the hash value to a magnetic ink character recognition (MICR) code to form a MICR message, the MICR code extracted from the electronic check image; and
communicating the MICR message to the recipient separately from the electronic check image and the associated hash value.
4. (Amended) The method of Claim 3, the recipient associating the received
MICR code and the received electronic check image using the hash value.
5. (Amended) The method of Claim 1, wherein the recipient verifying the electronic check image comprises:
determining a second hash value based, at least in part, on the received electronic check image; and
comparing the received hash value and the second hash value to verify authenticity of the electronic check image.
14

6., (Amended) Software for communicating electronic check images operable to:
determine a first hash value based, at least in part, on an electronic check image, the check image operable to generate an image replacement document;
bundle the hash value with the electronic check image; and
communicate the electronic check image and the associated hash value to a recipient for verification of the electronic check image based, at least in part, on the hash value associated with the electronic image.
7. The software of Claim £, the hash value comprising a sixteen byte number.
8. (Amended) The software of Claim w, operable to:
add the hash value to a magnetic ink character recognition (MICR) code to form a MICR message, the MICR code extracted from the electronic check image; and
communicate the MICR message to the recipient separately from the electronic check image and the associated hash value.
9. (Amended) The software of Claim Q, the recipient associating the received MICR code and the received image replacement document using the hash value.
10. (Amended) The software of Claim 6, wherein the recipient verifying the electronic check image comprises software operable to:
determine a second hash value based, at least in part, on the received electronic check image; and
compare the received hash value and the second hash value to verify authenticity of the electronic check image.
15

11.. (Amended) The software of Claim 6, wherein the software operable to determine the first hash value based, at least in part, on the electronic check image comprises software operable to determine the first hash value for the electronic check image at a capture source, the capture source generating the electronic check image.
12. (Amended) An image capture system for communicating electronic check images comprising:
memory operable to store a plurality of electronic check images, each check image operable to generate an image replacement document; and one or more processors operable to:
determine a hash value based, at least in part, on at least one of the electronic check images;
bundle the hash value with the electronic check image; and communicate the electronic check image and the associated hash value to a recipient for verification of the electronic check image based, at least in part, on the hash value associated with the electronic check image.
13. The image capture system of Claim 1^ the hash value comprising a sixteen byte number.
14.. (Amended) The image capture system of Claim |&,the one or more processors further operable to:
add the hash value to a magnetic ink character recognition (MICR) code to form a MICR message, the MICR code extracted from the electronic check image; and
communicate the MICR message to the recipient separately from the electronic check image and the associated hash value.
15. The image capture system of Claim l4 the recipient operable to associate the received MICR code and the received electronic check image using the hash value.
16

16. The image capture system of Claim \% the recipient verifying the electronic check image comprises the recipient operable to:
determine a second hash value based, at least in part, on the received electronic check image; and
compare the received hash value and the second hash value to verify authenticity of the electronic check image.
17. A method for processing a check using an electronic check image comprising:
receiving an electronic check image, the check image operable to generate an image replacement document;
receiving a hash value for the electronic check image; and
verifying the electronic check image using the hash value.
18. The method of Claim f7 further comprising generating the image replacement document based, at least in part, on the verified electronic check image.


Abstract
METHOD AND SYSTEM FOR VERIFYING CHECK IMAGES
In one embodiment, example software is operable to determine a first hash value for an electronic check image, with the check image operable to generate an image replacement document. The hash value is associated with the electronic check image. The electronic check image and the associated hash value is communicated to a recipient for processing.
1 8

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=nz5oONA6XsvoBvqVq3OGNw==&loc=vsnutRQWHdTHa1EUofPtPQ==


Patent Number 269810
Indian Patent Application Number 798/MUMNP/2007
PG Journal Number 46/2015
Publication Date 13-Nov-2015
Grant Date 06-Nov-2015
Date of Filing 31-May-2007
Name of Patentee VECTORSGI INC.
Applicant Address 15301 DALLAS PARKWAY, SUITE 400, ADDISON, TEXAS.
Inventors:
# Inventor's Name Inventor's Address
1 MALONEY RIAN R. 2533 SCENIC DRIVE, PLANO, TEXAS 75025.
PCT International Classification Number G06K9/00
PCT International Application Number PCT/US2005/040556
PCT International Filing date 2005-11-10
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/993,814 2004-11-19 U.S.A.