Title of Invention

A MOBILE HANDSET FOR MANAGING A SLOT CYCLE INDEX AND A BASE STATION

Abstract A slot cycle index in a mobile wireless network (375) is managed by a mobile handset (280) and a base station (330). The mobile handset (280) determines (204, 229) that a mobile handset trigger event has occurred, and evaluates (206, 232) the mobile handset trigger event. Next the mobile handset (280) determines (209, 234) that a request for a slot cycle index change should occur based on the evaluation of the mobile handset trigger event. The mobile handset (280) requests (212, 240) the slot cycle index change from a base station (330) of the mobile wireless network in response to the evaluation of the mobile handset trigger event and the determination that the request should occur. The base station (330) receives (106) the request and negotiates (109) the slot cycle index based upon the mobile handset trigger event and a current trigger event of the base station. The base station (330) sends (113) the negotiated different slot cycle index to the mobile handset (280).
Full Text FIELD OF THE INVENTION
The present invention relates to a mobile handset for managing a slot cycle index and a
base station and generally to communications devices, and more particularly to mobile hand held
communications networks.
BACKGROUND
Many people are familiar with mobile handsets. Mobile handsets are typically small
electronic devices that communicate with a base station to place mobile calls. Many mobile
handsets also perform other features in addition to placing mobile calls. For example, some
mobile handsets are capable of transmitting data in addition to voice.
A popular feature on many mobile handsets is push-to-talk. With push-to-talk a mobile
handset user is able to push a single button to complete a call to a specific mobile handset, or
some small number of mobile handsets. The mobile handset acts like a "walkie-talkie."
However, generally, instead of communicating directly to another "walkie-talkie" a mobile
handset with push-to-talk typically communicates through a base station to another mobile
handset using a single button push to initiate the connection. Additionally, like a "walkie-talkie"
when using a mobile handset with push-to-talk, after a user pushes the button they are able to
speak without having to wait for the other mobile handset to ring and the other user to answer.
However, some delay between pushing the button and connecting to the other mobile
handset may exist. It would be advantageous to try to lower that delay as much as possible.
Additionally, while this delay may typically be more noticeable to a user using push-to-talk, or
other single button push services, the delay may exist with other mobile handset services
including, but not limited to mobile telephone calls and mobile data calls. It would also be
advantageous to try to lower the delay as much as possible when using any other
communications services that exhibit a delay when communicating with a base station or other
transceiver.
One cause of delay when beginning a mobile call, including push-to-talk, and data calls is
related to how often a mobile communicates with a base station. Many current mobile handsets
are designed to communicate with a base station at specific time intervals. These time intervals



are the only time that the mobile handset can begin a mobile call. The longer the delay between
intervals, the longer it is likely to take to set up a mobile call. It will be understood by those of
skill in the art that the delay will be variable and somewhat random. Depending on when a user
initiates a call relative to the next slot cycle. Slot cycle is the time when the mobile handset
communicates with the base station. If the user attempts a call close to the next slot cycle, the
delay may be relatively short, however, if the user attempts a call just after a slot cycle, the delay
may be relatively long.
As stated above one aspect to consider regarding mobile handsets is how often and when
the mobile handset should communicate with the base station. Typically, the more often the
mobile handset communicates with the base station the faster the mobile handset will be able to
respond when the person using the mobile handset attempts to make a call. For example, if the
mobile handset communicates with the base station every second, when a user attempts to make
a call it will only be one second, at most before the mobile handset is able to communicate with
the base station and start the process of placing the call. However, if the mobile handset only
communicates with the base station every two seconds, then it could be as long as two seconds
before the process of placing the call begins.
So, to speed up placing a mobile call, the mobile handset should communicate with the
base station as often as possible. However, communicating with the base station as often as
possible has many drawbacks. Transmitting to the base station typically takes power. On a
battery-operated device, this can be a critical consideration. Additionally, in many cases the
more often a mobile handset communicates with a base station, the fewer mobile handsets that
are able to use the base station. This is due to the fact that the base station typically has a limited
number of transceivers to communicate with mobile stations. For this reason, each mobile
station is given a time when it can communicate with the base station. Multiple mobile handsets
are able to communicate with the base station by time-sharing. The more often a mobile handset
communicates with the base station, the fewer other mobile handsets can communicate with the
base station. For these reasons, and possibly others, the delay between communications between
mobile handsets and base stations is not typically made arbitrarily short.
Referring to FIG. 12 more details of communication between mobile handsets and base
stations will be discussed. The diagram 700 includes a graph 704. The graph 704 shows when a


mobile handset 724 communicates with a base station 722. The communication is shown as
electromagnetic signals 720. Communications occur at 707, 709, and 712. It should be noted
that this is only one possible example. The time between communications between base station
and mobile handset may not always the same.
Typically the slot cycle index is initially negotiated between the base station and the
mobile handset, by the manufacturer. The number of clock cycles is known as slot cycle index.
Slot cycle index is not a linear. Slot cycle index 0 indicates that communication occurs every
cycle. Slot cycle index 1 indicates that a communication occurs every cycle. Referring back to
FIG. 12 a slot cycle index 3 indicates that a communication occurs every four cycle. Slot cycle
index above slot cycle index 3 are also possible. Slot cycle index timing can be summarized as
follows, where x is the slot cycle index:
TIME BETWEEN COMMUNICATION = 1.28 x (2n)
For example, for slot cycle index 0 a communication occurs every 1.28 seconds, slot
cycle index 1 is a communication every 2.56 seconds, and for slot cycle 2 a communication
occurs every 5.12 seconds. Other slot cycle indexes are possible. Additionally, "negative" slot
cycles are possible. In one possible implementation of "negative" slot cycles the number "n" in
the equation above is a negative number. The use of "negative" slot cycles allows
communication to occur more often than every 1.28 seconds.
SUMMARY
Many people use mobile handsets. As many users may have noticed, sometimes it can
take a while to complete a mobile call. One thing that may affect is known as slot cycle index.
The slot cycle index is the amount of time that the mobile handset must wait before
communicating with the base station. The higher the slot cycle index the longer the mobile
handset must wait before communicating with the base station. The lower the slot cycle index
the shorter the delay. However shorter slot cycle priorities limit the number of mobile handsets
that can communicate with a base station. Additionally, shorter slot cycle index typically
increase the amount of battery power used by the mobile handset, commonly lowering standby
and talk time.


The slot cycle index is currently negotiated by a mobile handset and a base station.
However, if the slot cycle index could be selected dynamically a mobile handset that operates
more efficiently for the user would result. Talk time could be maximized when the battery, or
other mobile power source is low, while connect time for a mobile call could be minimized when
the battery is near fully charged or at times when the user is likely to make a mobile call.
Additionally, location could be used to determine the likelihood that the user will make a mobile
call. However, current network usage would typically need to be considered when determining
if the slot cycle index should be changed. Mobile handset users could also charged for quicker
response times, or mobile handset users on more expensive plans could be given typically faster
response times. Many different things can be considered in determining when to adjust slot
cycle index. More examples will be given below.
Dynamically adjusting slot cycle index allows a mobile handset to, in some cases, operate
more efficiently. In some cases the mobile handset may exhibit faster response time due to
lower slot cycle index, while in other cases the mobile handset may use less battery power due to
the higher slot cycle index. In addition, the service provider will be able to dynamically change
slot cycle index to allow more users access to a base station.
A method and mobile station for enabling a preferred slot cycle is disclosed in WO
03/053093.
DETAILED DESCRIPTION
Several methods of dynamically changing slot cycle index are possible. Referring now to
FIG. 1 a flowchart 100 that illustrates one possible example will be discussed. The flowchart
100 shows one example of a method of dynamically changing slot cycle index. The flowchart
100 begins at 103. In step 106 a request from a mobile handset to operate at a higher slot cycle
index is received. The mobile handset may send a request to operate in a higher slot cycle index
for several reasons. Typically, the occurrence of a trigger event will cause the mobile handset to
send the request. Trigger events at the mobile handset can include the battery power available at
the mobile handset, the time of day, or feature availability at the mobile handset. More details
regarding trigger events will be discussed with respect to FIG. 3. Additionally, trigger events
that are generally related to specific devices, such as the mobile handset or the base station, as
well as groups of devices such as the network will be discussed with respect to FIG. 10.


It is determined if the current system loading will allow an increase in slot cycle index for
the mobile handset in step 109. If the current system loading will allow, the mobile handset is
set at a higher slot cycle index in step 113. As can be seen in this example, typically, the base
station and the mobile station negotiate to determine if the mobile handset should operate in a
higher slot cycle index.
The flowchart 100 is one possible example of a method of dynamically changing slot
cycle index. Other examples are possible. For example, a request may come from a base station
instead of a mobile handset. In this example, the base station sends a request to the mobile
handset to operate at a higher slot cycle index. For this example, as discussed with respect to
FIG. 1 above, typically, the base station and the mobile handset negotiate to determine if the
mobile handset slot cycle index should be changed. Additionally, slot cycle index may be
increased, as shown, decreased, or kept the same based on different trigger events.
Several examples of trigger events will be discussed below with respect to FIG. 3 below.
FIG. 3 includes discussions of trigger events that may increase or decrease slot cycle index. In
some cases different trigger events may be considered at the same time to determine if slot cycle
index should be changed. The term trigger event is used throughout to describe an event that
causes the method to change slot cycle index. However, in some cases the term trigger state may
be better. For example, if several factors are considered at one time, it is the state of each factor
that determines the outcome. Additionally, it may be the change of a single factor that causes the
determination to occur. Alternately, several states changing could cause a determination to
occur. In this application, the term trigger event will be used to describe a state, or change in
state that causes a request to operate at a different slot cycle index to be transmitted. In FIG. 2
an example of a specific mobile handset user will be discussed.
Some advantages include the ability to conserve battery power when the battery is low by
raising slot cycle index. However, in some cases it may be determined that slot cycle index
should be increased even though the battery is low. Additionally, system loading can typically,
in some cases, be lowered if necessary during times users are using up network capacity.


Referring now to FIG. 2 an example will be discussed with respect to a diagram 125.
The diagram 125 includes a sports stadium 127, an office building 130, and a road 131.
Additionally, the diagram 125 includes a car 133 and a house 135. In the example of FIG. 2 a
mobile handset user, Mary, begins her day at the house 135. When at home, Mary does not tend
to user her mobile handset. However, during her drive to work Mary tends to make many calls
using her mobile handset. Mary's mobile handset requests a higher slot cycle index during times
of day that the mobile handset is typically used.
Typically, on her way to work Mary's mobile handset is set at a higher slot cycle index.
When Mary arrives at work in her building 130 she continues to use her mobile handset
throughout the day. The mobile handset typically operates in a higher slot cycle index. This
enables Mary to complete calls more quickly typically. However, Mary's building is close to the
sports stadium 127. On days that sports events occur at the stadium 127 many people normally
attend, and typically carry mobile handsets. The large number of people at the stadium 127 put a
large load on the base station 140 that is near the stadium 127. When the loading at the base
station 140 is high, Mary's mobile handset is not allowed to operate at a higher slot cycle index.
The base station 140 is able to communicate with more mobile handsets when the slot cycle
index is decreased.
It should be pointed out that the discussion of FIG. 2 is only one possible
example. Dynamically modifying slot cycle index could occur for a variety of reasons.
Additionally, not allowing slot cycle index to be changed could happen for a variety of reasons.
Slot cycle index can be increased when a trigger event occurs, as will be discussed with respect
to FIG. 3 or slot cycle index can be decreased when a trigger event occurs as discussed with
respect to FIG. 4.
Referring now to FIG. 3, a flowchart 200 will be discussed. The flowchart 200 begins at
step 202. At step 204 it is determined that a trigger event has occurred. The trigger event is
evaluated in step 206 and a determination is made to request a higher priority slot cycle in step
209. The request for a higher priority slot cycle is made in step 212. In the flowchart 200 of
FIG. 3 a trigger event occurs that causes a request for a higher slot cycle index. However, a
trigger event can also occur that would cause a request for a lower slot cycle index, as will be
discussed with respect to FIG. 4.


Many events can be considered trigger events. Several examples will be discussed
below, however, other examples are possible. One example of a trigger event is battery power.
Operating a mobile handset in a high slot cycle index state usually increases the amount of
battery power consumed for a given period of time. High battery power may be a trigger event
to operate in a higher slot cycle index. Conversely, low battery power may be a trigger event to
operate in a lower slot cycle index.
Another example of a trigger event is time of day. If the current time of day is one that a
mobile handset user tends to make many calls, or one that the service providers expect many
calls to be made, a request to operate in a higher slot cycle index may occur. Again, as with the
battery power example, the converse is also true. If it is a time of day when it is unlikely that a
call will occur, this may be a trigger event to operate in a lower slot cycle index.
A third example of possible trigger events is system loading. Higher slot cycle
index places increased demands on system resources. When system loading is low, slot cycle
index may typically be increased without placing a burden on the base station that the based
station is unable to meet. However, when system loading is high, one possible way to decrease
these demands is to lower the slot cycle index on some mobile handsets. It is important to note
that these are only examples.
The examples discussed above and other examples discussed below will be factors
considered when deciding to increase or decrease slot cycle index. In some cases several
different trigger events will be considered before an increase or a decrease of slot cycle index is
made. For example, if battery power is low, the time of day is one that a call is likely to occur,
and the system loading would allow for an increase slot cycle index, the slot cycle index may be
decreased to save battery power, even though two other factors would allow for an increase in
slot cycle index.
Another trigger event is location. The mobile handset may be in a location where the
user has made one or more, possibly many, mobile calls in the past. In this case it may be
advantageous to increase the slot cycle index of the mobile handset. However, typically, other
trigger events will be considered. For example, as discussed with respect to FIG. 2 when Mary


is at work but a sporting event is occurring near by, even though she usually makes many calls
using her mobile handset, it may not be possible to increase the slot cycle index of her mobile
handset because system loading is to large.
Location may effect the decision to increase or decrease slot cycle index in another way.
Location tends to effect the amount of transmit power needed to communicate with a base
station. In locations where transmit power is high it may be advantageous to decrease slot cycle
index. In locations where transmit power is low, it may be advantageous to increase slot cycle
index. As with examples discussed above, transmit power can be considered in conjunction with
other factors.
In another example, battery power may be high, while system loading is low and time of
day is one that a call is likely to occur, however, the mobile handset may be located at a location
where a large amount of transmit power is needed to communicate with the base station. In that
case it may be advantageous to operate in a lower slot cycle index.
In some cases mobile handset users may pay for higher performance service. For
example, users may be more to have higher slot cycle index. In some cases, higher slot cycle
index may be included on higher priced plans as part of a package of services provided.
In some cases it may be likely that when a call occurs another call may occur soon after.
The fact that a call has recently occurred may be used as a trigger event to increase slot cycle
index. One case where several calls in rapid succession tend to be likely is one button push
services, such as push-to-talk.
Additionally, in some cases a feature may exist that requires higher slot cycle index. Or,
in some cases the carrier or the mobile handset may desires higher slot cycle performance.
Feature availability may be a trigger event. When a feature is available, for example, due to
mobile handset proximity to a base station that supports the feature, the availability of the feature
may trigger an increase, or decrease in slot cycle index, depending on the requirements of the
feature. As with other trigger events, several trigger events can be combined to determine if slot
cycle index should be increased or decreased.


As was discussed above, with respect to FIG. 3, a trigger event may trigger an increase in
slot cycle index, while another trigger event may cause a decrease in slot cycle index. As shown
in FIG. 4, a trigger event may cause a request for a lower slot cycle. FIG. 4 is a flowchart 225.
The flowchart 225 begins at step 227. At step 229 it is determined that a trigger event has
occurred. In step 232 the trigger event is evaluated and it is determined that triggers a lower slot
cycle has occurred. In step 234 it is determined that a request for a lower slot cycle should
occur. A lower priority slot cycle is requested at step 240. Summarizing FIGS. 3 and 4, a
trigger event occurs and depending on the type of trigger event a request for a lower or higher
slot cycle occurs. In some cases a combination of trigger events or current states may be
considered when deciding to request a higher or lower slot cycle. Additionally, trigger events or
states may occur in a mobile handset, at a base station, or they may be inherent in the service that
a user has purchased. For examples, see FIG. 10 below. The combination of trigger events
discussed above could occur in a combination of the mobile handset, and base station and could
also be based on the service purchase. Advantages may include the ability to increase
performance of a mobile handset during periods of time or in locations where a mobile handset
user is likely to make a mobile call.
It will be clear to those of skill in the art that the converse is also true. The lack of some
trigger events may cause slot cycle index to be increased.
Referring now to FIG. 5, a flowchart 250 will be discussed. The flowchart 250 is similar
to the flowchart 200 of FIG. 3. The flowchart 250 includes the addition of several possible
trigger events, listed at step 255. Beginning at 252, the flowchart 250 determines that a trigger
event has occurred at step 255. Step 255 is the same or similar to step 205 of FIG. 3. Possible
trigger events include, but are not limited to: available battery power, time of day, location,
transmit power needed, system loading, priority, occurrence of a call, and feature availability.
As stated above, several trigger events can be considered when determining if slot cycle index
should be increased, decreased, or kept the same. Additionally, each trigger event may be given
a different weight when determining slot cycle index. At step 260 a request for a slot cycle index
change occurs. Step 260 of FIG. 5 is the same or similar to a combination of 212 of FIG. 3 and
step 240 of FIG. 4.


Referring back to step 255, low battery power would typically be considered a trigger
event for a lower priority slot cycle because higher priority slot cycles typically consume more
battery power. The converse is also true. A high battery power would typically be considered a
trigger event for a higher priority slot cycle. It should be noted that this is only one example. It
will be understood by those of skill in the art that "low" battery power and "high" battery power
are not precisely defined here and may vary widely from one specific implementation to another.
In some cases battery power may be considered with other trigger events. Additionally,
in some examples, battery power may not be considered at all. Specific trigger events used in
any particular application can be customized depending on the needs of that particular
application. Some trigger events will be discussed further with respect to FIG. 10. Advantages
may include the ability to change slot cycle index to conserve battery power when battery power
is low.
When placing a call, especially a push to talk call, it may be likely that several calls will
be placed in rapid succession. Generally increasing slot cycle index when a call has recently
been placed will tend to have the advantage of increasing the ability of the mobile handset to
place calls rapidly.
Referring now to FIG. 6, a mobile handset 280 will be discussed. The mobile handset
280 includes an antenna 284. The antenna 284 is a transducer for coupling radio frequency
signals to a transceiver 282. The transceiver 282 includes a transmitter and a receiver for
sending and receiving radio frequency signals. The transceiver 282 is coupled to a processor
295. The processor 295 is used to perform processing function necessary for the mobile handset.
It will be understood by those of skill in the art that the processor could be a single processor or
multiple processors. Additionally, the processor could be a microprocessor, a microcontroller, or
multiple micorprocessors or microcontrolers, or similar devices. The processor could be a digital
signal processor or multiple digital signal processors. The processor could be a combination of
different types of processors, including, but not limited to microprocessors, microcontrollers, and
digital signal processors. The processor could also be stand alone digital logic, programmable
logic, such as field programmable gate arrays, complex programmable logic devices, or other
forms of programmable logic. The processor could be any circuit capable of performing the


' steps included in the claims. The processor 295 is coupled to a memory 293. The memory 293
is used to store information used by the processor 293.
A mobile power source in the form of a battery, 298 is coupled to the processor to
provide power to the processor. It will be clear to those of skill in the art that the battery 298
may provide power to other circuits in the mobile handset. Additionally, the battery 298 may be
other types of mobile power sources, for example, the battery 298 may actually be a fuel cell, or
other mobile power source. Additionally, the mobile handset is enclosed by a case 288. In many
cases lowering the slot cycle index will tend to conserve battery power at the mobile handset.
Advantages may also include the ability to increase a mobile handsets performance when placing
a push-to-talk call. In some cases the push-to-talk call may connect more quickly.
Referring now to FIG. 7, a base station 330 will be discussed. The base station 330
includes an antenna 332. The antenna couples radio frequency signals to a transceiver 337. The
transceiver 337 is coupled to a processor 349. Additionally, the processor 349 typically
communicates with a terrestrial communications network. The processor 349 is coupled to a
memory 343. The base station 330 is enclosed by a case 334. Allowing the base station to
dynamically change the slot cycle index used by a mobile station will tend to have the advantage
of allowing the base station to manage system loading. When system loading is high, slot cycle
index may be decreased. Decreased slot cycle index decreases how often mobile handsets
communicate with the base station.
Referring now to FIG. 8 a diagram 375 will be discussed. The diagram 375 includes a
mobile handset 280. The mobile handset 280 is the same or similar to the mobile handset 280 of
FIG. 6. Additionally, the diagram 375 of FIG. 8 includes a base station 330. The base station
330 is the same or similar to the base station 330 of FIG. 6. The mobile handset 280 and the
base station 330 transmit electromagnetic signals to allow information to be communicated
between the two devices. It will be clear to those of skill in the art that the base station may
communicate with multiple mobile handsets, including the mobile handset 280. In some cases
not all mobile handsets will have dynamically adjustable slot cycle index. In other cases, it is
possible that all mobile handsets will have adjustable slot cycle index. Additionally, it is
important to note that typically the base station 330 and the mobile handset 280 will negotiate to
determine slot cycle index setting. Many different ways to negotiate slot cycle index setting will


be apparent to those of skill in the art. For example, the multiple trigger events, as discussed
above, can be combined. Different trigger events can have different "weights" associated with
them when trying determine what course of action to take.
Additionally, in some cases it may be advantageous to have some trigger events cause
slot cycle index to change independent of any other trigger event. For example, when the battery
is low, it may be advantageous to always lower slot cycle index regardless of the other trigger
events. Similarly, when system loading is high, it may be advantageous to always lower slot
cycle index. However, it is important to note that these are only possible examples. In other
cases these examples may not apply. In some cases slot cycle index may be increased or kept the
same when the battery is low or system loading is high.
In another example, in some cases it may be advantageous to allow one device to dictate
slot cycle index to another. For example, perhaps it would be advantageous to not allow a
mobile handset to refuse a request to lower slot cycle index. In this example, assume that system
loading is high. A base station that is communicating with a mobile station sends a request, or in
this case, perhaps it can be considered a command, to operate in a lower slot cycle index. In this
example, the mobile handset is required to operate in the lower slot cycle index. It again should
be stressed that these are only examples. Other examples are possible. It will be clear to those
of skill in the art that specific trigger events, specific "weightings" for trigger events, specific
combinations of trigger events, and specific ways to negotiate dynamic slot cycle index can be
determined based on the needs of a particular implementation. Many different possibilities will
be clear to those of skill in the art. For brevity, only a few examples are shown here.
Advantages may include the ability to lower power used to transmit between the mobile handset
280 and the base station 330. This may be especially important when the battery on the mobile
handset 280 is low.
Referring now to FIG. 9, a diagram 400 will be discussed. The diagram 400 includes a
graph of a clock signal 402. The clock signal 402 is a reference for timing of transmissions
between a base station 330 and a mobile handset 280. For example, the base station 330 and the
mobile handset 280 of FIG. 8. A graph 404 of a dynamic slot cycle is also shown on the diagram
400. The graph includes a period of time when the handset 280 operates in slot cycle 1 406.


c
After a trigger event 412 the mobile handset 280 operates in slot cycle 0 for a period of time.
Another trigger event occurs at 419. The trigger event 419 is a trigger event that causes a
decrease in slot cycle index. After 419 the mobile handset returns to slot cycle 1. FIG. 9 is only
one possible example, other examples are possible. Changes in slot cycle can occur other than
just changing from slot cycle 0 to slot cycle 1. For example mobile handset could change from
slot cycle 2 to slot cycle 4. Slot cycle could be changed by multiple slot cycles in a single
change, for example, as stated above, from slot cycle 2 to slot cycle 4.
As stated above changes in slot cycle could be based a combination of trigger events. For
example, the trigger events could be combined in the form of a function. Additionally, the
combination of trigger events could be weighted differently. Some trigger events could be
considered more important than others. The trigger events could be combined in the form of a
function. For example, slot cycle change could be a function of battery power available, system
loading, and location.
In one example battery power could be considered more important than the other two
trigger events. In this example battery power could be given more weight in a function the
determines if a trigger event should occur.
Additionally, these trigger events could be continuously monitored. In another example
the trigger events can be monitored continually. In yet another example, the trigger events could
be monitored only when one or more trigger events change. It will be clear to those of skill in
the art that this is only an example, other examples, using other trigger events, or other
combinations of trigger events are possible. Advantages include the ability to change slot cycle
based on the conditions during a specific time period.
Referring now to FIG. 10 a diagram 475 is shown. The diagram 475 generally shows the
relationship between a network 480, a base station 482, a mobile handset 485, and services 489.
On the diagram under base station 482 location, system load, and feature availability are listed.
These trigger events are typically associated with the base station 482, however, other groupings
are possible. For example, feature availability is listed under both base station 482 and handset
485. Additionally, if the handset could determine system loading, then system loading could be
listed under handset 485. However, handsets do not typically have access to system loading


i
' information, so system loading information , so system loading has not been included under
handset 485. The diagram is meant to be general and to show typical groups of trigger events
and what devices tend to monitor for those trigger events. But, as can be seen above, the lists are
not exhaustive.
The section for handset 485 includes a list of trigger events such as power, time of day,
and feature availability. As stated above, the list is intended to be an example. The list is not
intended to be exhaustive. Other trigger events are possible. Additionally, trigger events could
occur related to headings such as base station 482, handset 485, and service 489 in ways not
shown on FIG. 10. For example, if a base station 482 is able to determine battery power
available then power could be listed under base station 482 above. However, since typically, the
base station 482 does not know the battery power available to a mobile handset 485, power is not
listed under base station 482.
As stated above, FIG. 10 also includes service 489. Service 489 includes priority service.
In some cases a customer may pay extra for faster call completion typically brought about by
higher slot cycle index. In other cases the service may be a part of other prepackaged services.
Advantages may include the increased revenue due to the ability to charge some customers for
typically faster call completion. However, in some cases the service may be included with
specific calling plans.
Referring now to FIG. 11 a diagram 550 is shown. The diagram 550 is similar to the
diagram 400 of FIG. 9. However, the diagram 550 shows several possible slot cycle priorities
559, 562, 568, 571 and indicates that a mobile handset can switch between the different
priorities. Using the diagram 550, the different slot cycle priorities 559, 562, 568, 571 can easily
be compared. It can be seen from the diagram 550 that the higher the slot cycle index, the more
often the mobile station communicates with the base station. It should be noted that higher slot
cycle index is indicated by a lower slot cycle number. For example slot cycle 0 is a higher slot
cycle index than slot cycle 1. The ability to dynamically change between slot cycle priorities has
many advantages, as discussed above. Dynamically changing slot cycle index typically allows a
mobile handset to operate more efficiently and in some cases adapt to the current state of the
handset, the network, or the service purchased.



Many examples are discussed above. However, these are only examples. Other
examples are possible. Additionally, many advantages are discussed above. However, these are
only possible advantages. Advantages may vary from one specific implementation to the next.
Additionally, some advantages may be an important aspect of one implementation while
unimportant or possibly not included in another. Embodiments should only be limited by the
claims.


WE CLAIM:
1. A mobile handset (280) for managing a slot cycle index comprising:
a memory (239) coupled to a processor (295) and configured to store data used by the
processor(295);
a transceiver (282) coupled to the processor (295) and configured to send and receive
radio frequency signals;
an antenna (284) coupled to the transceiver (282);
a mobile power source (298) configured to provide power to components of the mobile
handset (280); and
characterized by
the processor (295) configured to perform the following steps:
determining (204, 229) that a mobile handset trigger event inducing a slot cycle
index change from the current slot cycle index has occurred,
evaluating (206, 232) the mobile handset trigger event,
determining (209, 234) that a request should occur based on the evaluation of the
mobile handset trigger event,
sending (212, 240) a request to a base station of a network to change the current
slot cycle index in the mobile handset; and
receiving a negotiated different slot cycle index from a base station in response to
the trigger event, wherein the negotiated different slot cycle is based upon
the mobile handset trigger event and a network base station trigger event-
2. The mobile handset (280) as claimed in claim 1, wherein the mobile handset trigger event
is determining that the mobile power source is sufficiently charged to complete at least one
mobile call.
3. The mobile handset (280) as claimed in claim 1, wherein the mobile handset trigger event
is determining that the current time of day is a predetermined time of day.
4. The mobile handset (280) as claimed in claim 1, wherein the mobile handset trigger event
is determining that the current location is a predetermined location.

5. The mobile handset (280) as claimed in claim 1, wherein the mobile handset trigger event
is a function of multiple trigger events.
6. The mobile handset (280) as claimed in claim 1, wherein the mobile handset trigger event
is a change in a connection of the mobile handset to an external power source.
7. A base station (330) for managing a slot cycle index of a mobile handset (280)
comprising:
a memory (343) coupled to a processor (349);
a transceiver (337) coupled to the processor (349) and configured to send and receive
radio frequency signals; and
an antenna (332) coupled the transceiver (337);
characterized by
the processor (349) performing the following steps:
receiving (106) a request from the mobile handset (280) for a slot cycle index
change;
determining that a trigger event inducing a slot cycle index change has occurred at
a mobile handset based on the received request;
negotiating (109) a different slot cycle index based on the mobile handset request
and base station trigger events; and
sending (113) the negotiated different slot cycle index to the mobile handset.
8. The base station (330) as claimed in claim 7, wherein the current trigger event of the base
station is at least one of base station location, base station system loading, and base station
feature availability and base station transmit power.
9. The base station (330) as claimed in claim 7, wherein the processor (349) determines that
the mobile handset trigger event has occurred by determining that the mobile handset has
subscribed to a higher level of service.
10. A method of managing a slot cycle index in a mobile wireless network (375) comprising
the steps of:


(a.) a mobile handset (280) determining (204, 229) a mobile handset trigger event has
occurred;
(b.) the mobile handset (280) evaluating (206, 232) the mobile handset trigger event;
(c.) the mobile handset (280) determining (209, 234) that a request for a slot cycle
index change should occur based on the evaluation of the mobile handset trigger event;
(d.) the mobile handset (280) requesting (212, 240) the slot cycle index change from a
base station (330) of the mobile wireless network in response to the evaluation of the mobile
handset trigger event and the determination that the request should occur;
characterized by
(e.) the base station (330) receiving (106) the request and negotiating (109) the slot cycle
index based upon the mobile handset trigger event and a current trigger event of the base station;
and
(f.) sending (113) the negotiated different slot cycle index to the mobile handset (280).
11. The method as claimed in claim 10 wherein the mobile handset trigger event is at least
one of reaching a predetermined level of mobile power source power, reaching a predetermined
time of day, and reaching a predetermined location.
12. The method as claimed in claim 10, wherein the current trigger event of the base station
(330) is a function of services available to the mobile handset.
13. The method as claimed in claim 10, wherein the mobile handset trigger event is a
function of mobile power source power, system loading and time of day.
14. The method as claimed in claim 10, wherein the current trigger event of the base station
(330) is reaching a predetermined system loading at the network.
15. The method as claimed in claim 10, wherein the current trigger event of the base station
(330) is the mobile handset having a predetermined priority for slot cycle^Indtex setting.


ABSTRACT

A MOBILE HANDSET FOR MANAGING A SLOT
CYCLE INDEX AND A BASE STATION
A slot cycle index in a mobile wireless network (375) is managed by a mobile handset
(280) and a base station (330). The mobile handset (280) determines (204, 229) that a mobile
handset trigger event has occurred, and evaluates (206, 232) the mobile handset trigger event.
Next the mobile handset (280) determines (209, 234) that a request for a slot cycle index change
should occur based on the evaluation of the mobile handset trigger event. The mobile handset
(280) requests (212, 240) the slot cycle index change from a base station (330) of the mobile
wireless network in response to the evaluation of the mobile handset trigger event and the
determination that the request should occur. The base station (330) receives (106) the request
and negotiates (109) the slot cycle index based upon the mobile handset trigger event and a
current trigger event of the base station. The base station (330) sends (113) the negotiated
different slot cycle index to the mobile handset (280).

Documents:

02971-kolnp-2006 abstract.pdf

02971-kolnp-2006 claims.pdf

02971-kolnp-2006 correspondenc others.pdf

02971-kolnp-2006 description(complete).pdf

02971-kolnp-2006 drawings.pdf

02971-kolnp-2006 form1.pdf

02971-kolnp-2006 form3.pdf

02971-kolnp-2006 form5.pdf

02971-kolnp-2006 international publication.pdf

02971-kolnp-2006 international search authorityreport.pdf

02971-kolnp-2006 priority document.pdf

02971-kolnp-2006-correspondence others-1.1.pdf

02971-kolnp-2006-form-3-1.1.pdf

02971-kolnp-2006-gpa.pdf

02971-kolnp-2006-priority document-1.1.pdf

2971-KOLNP-2006-(17-05-2012)-ABSTRACT.pdf

2971-KOLNP-2006-(17-05-2012)-AMANDED CLAIMS.pdf

2971-KOLNP-2006-(17-05-2012)-AMANDED PAGES OF SPECIFICATION.pdf

2971-KOLNP-2006-(17-05-2012)-DESCRIPTION (COMPLETE).pdf

2971-KOLNP-2006-(17-05-2012)-DRAWINGS.pdf

2971-KOLNP-2006-(17-05-2012)-EXAMINATION REPORT REPLY RECEIVED.pdf

2971-KOLNP-2006-(17-05-2012)-FORM-1.pdf

2971-KOLNP-2006-(17-05-2012)-FORM-2.pdf

2971-KOLNP-2006-(17-05-2012)-FORM-3.pdf

2971-KOLNP-2006-(17-05-2012)-OTHERS.pdf

2971-KOLNP-2006-(17-05-2012)-PA-CERTIFIED COPIES.pdf

2971-KOLNP-2006-(17-05-2012)-PETITION UNDER RULE 137.pdf

2971-KOLNP-2006-CORRESPONDENCE.pdf

2971-KOLNP-2006-EXAMINATION REPORT.pdf

2971-KOLNP-2006-FORM 18-1.1.pdf

2971-kolnp-2006-form 18.pdf

2971-KOLNP-2006-FORM 3.pdf

2971-KOLNP-2006-FORM 5.pdf

2971-KOLNP-2006-GPA.pdf

2971-KOLNP-2006-GRANTED-ABSTRACT.pdf

2971-KOLNP-2006-GRANTED-CLAIMS.pdf

2971-KOLNP-2006-GRANTED-DESCRIPTION (COMPLETE).pdf

2971-KOLNP-2006-GRANTED-DRAWINGS.pdf

2971-KOLNP-2006-GRANTED-FORM 1.pdf

2971-KOLNP-2006-GRANTED-FORM 2.pdf

2971-KOLNP-2006-GRANTED-SPECIFICATION.pdf

2971-KOLNP-2006-OTHERS.pdf

2971-KOLNP-2006-PA.pdf

2971-KOLNP-2006-REPLY TO EXAMINATION REPORT.pdf

abstract-02971-kolnp-2006.jpg


Patent Number 253955
Indian Patent Application Number 2971/KOLNP/2006
PG Journal Number 36/2012
Publication Date 07-Sep-2012
Grant Date 06-Sep-2012
Date of Filing 13-Oct-2006
Name of Patentee KYOCERA WIRELESS CORP.
Applicant Address 10300,CAMPUS POINT DRIVE, SAN DIEGO,CALIFORNIA,92121, U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 TIMMS,DON 5335,JAMES TOWN ROAD, SAN DIEGO,CA 92117, U.S.A.
PCT International Classification Number H04Q7/32; H04Q7/32
PCT International Application Number PCT/US2005/013177
PCT International Filing date 2005-04-18
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/829,786 2004-04-22 U.S.A.