Title of Invention

PROCESS FOR THE ALCOHOLYSIS OF ACID OILS OF VEGETABLE OR ANIMAL ORIGIN

Abstract A process that employs a heterogeneous catalyst comprising a zinc aluminate mixed oxide and having the following formula: ZnAl204, xZnO, yAl203 in which x and y each represent a number in the range 0 to 2, and in which the zinc aluminate is more particularly of the spinel type, makes it possible, by means of CI to C5 monoalcohols, to: • transesterify vegetable or animal oils having a natural free acidity, such as unrefined degummed rapeseed, soya, sunflower oils or exotic oils of the African oil, palm nut oil or coconut oil type, which are naturally rich in fatty acids; • and simultaneously esterify their free acidity; so as to use phospholipid free and/or degummed uiu*efmed acid oil with an acid number in the range 0.5 to 20, for example 1 to 15 and preferably 2 to 12, to produce esters, for example methyl esters, for use as fuels.
Full Text

The present invention relates to the alcoholysis of acid oils of vegetable or animal origin.
More particularly, it pertains to a process consisting of using a starting oil of vegetable or animal origin having a free fatty acidity, expressed by its acid number (AN), transesterifying it with a CI to C6 monoalcohol, simultaneously esterifying the free acidity using a CI to C5 mono- alcohol to produce esters of CI to C6 monoalcohols and C6 to C26 fatty acids.
In the present invention, the acid number (AN) is in the range 0.5 to 20, for example 1 to 15 and preferably 2 to 12.
The AN is expressed as the number of mg of KOH necessary to neutralize Ig of product. The acidity of an oil or fatty substance can also be expressed as the weight % of fatty acid. It is generally the fatty acid which is in the majority in the oil which is taken into account; for example, for rapeseed oil, the acidity is expressed as the % by weight of oleic acid.
In contrast to processes for esterifying vegetable oils using homogeneous basic catalysis, it has surprisingly been discovered that by using, for example, a fatty substance having an acid number in the range 0.5 to 20, for example 1 to 15 and more particularly 2 to 12, esterification of the fatty acids can be carried out simultaneously with transesterification of the oil by methanol using a fixed bed heterogeneous catalyst under certain conditions. This reaction can encompass higher monoalcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, isobutanol, 1-pentanol or hexanol-1.
This catalytic process uses two reaction steps and can simultaneously transform triglycerides and fatty acids to methyl esters, for example in the context of the production of esters for fuel use.

It is also possible to use the catalytic properties of said system to transesterify the monoalcohol esters obtained by heavy alcohols such as 2-ethylhexanol or by polyols such as 1,2-propylene glycol, 1,3-propylene glycol, glycerol, neopentyl glycol, trimethylol-propane, pentaerythritol, etc. These conditions employ atmospheric pressure to encourage the monoalcohol to leave the reaction mediimi, substantially displacing the reaction equilibrium.
Under conventional processes for producing esters using basic catalysis (hydroxides or alkaline alcoholates), the acid number of the oils used is usually less than 1. For values of more than 1, homogeneous basic catalysis can be unacceptable, as the quantity of catalyst to be used then becomes directly proportional to the acid number of the oil used. This leads to the formation of a large quantity of soaps, further reducing the overall yield of the operation, not to mention the difficult and expensive steps for eliminating the soaps produced.
As an example, to carry out methanolysis of a neutralized vegetable or animal oil with an acid number of 0.5 or less, the quantity of sodium methylate required to obtain optimum conversion to methyl esters is of the order of 70 moles of sodium equivalent/tonne of oil employed. In the case of an oil with an AN of 10, the quantity of alcoholate to be used would be increased by 180 moles of sodium equivalent and would represent a supplemental quantity of soaps of the order of 55 kg/tonne or oil. In addition to the extra cost of catalyst, eliminating such a quantity of soap is difficult and expensive, causing a reduction in yield of the order of 5.6 weight %.
For this reason, it is vital to refine the oil to reduce the free acidity either by chemical treatment or by a physical treatment depending on the initial acidity of the oil employed.

The present invention concerns the use of all unrefined vegetable oils free of their phospholipids or gums, recovered oils such as those used for frying, and animal fats with an acid number (AN) in the range 0.5 to 20.
Examples of conventional refining processes that can be cited are neutralizing distillation applicable to dense oils such as African oil, palm nut oil and coconut oil, these containing little or no phospholipids; they consist of entrainment in steam under high vacuum for example at a temperature of 235°C.
For other types of oils such as soya, rapeseed, sunflower, com, peanut, cotton, shea, crambe, safflower, castor etc., chemical refining is carried out after a degumming step consisting of rendering the phospholipids insoluble by hydration.
Those hydrated phospholipids can be eliminated
- separately prior to the neutralization step, for example in the case of soya where those products (the phospholipids), rich in lecithin, are upgraded in the food industry for use as emulsif)dng agents, or at the same time as the soaps after the neutralization step using soda lye.
Separating the soaps resulting from the neutralization step using a soda lye solution is usually carried out by centrifuging. The sodium soaps obtained are also termed "soapstocks" or neutraUzation paste. They represent the vast majority of the losses of fatty materials in oil refining. The degree of impregnation of oil in the soapstocks varies from 15% to 100%, and can be expressed as the neutralization coefficient, which in that case is in the range 1.15 to 2.
This loss of fatty material is proportional to the acid number of the oil and can be as high as 2%) to 4% by weight of the oil employed for the usual European oils, such as rapeseed oil or sunflower oil.

That fraction constituting the soapstocks is upgraded to a small extent into an acid oil obtained following a neutralization step using a strong acid, termed soapstock breaking.
Some "biodiesel" production processes which use acid oils such as African oil include a preliminary step which consists of esterifying the free fatty acids with a CI to C5 monoalcohol in the presence of a catalyst usually with a highly acidic nature, such as sulphuric acid (United States patent US-A-2 383 601) or hydrochloric acid, or a sulphonic acid which may be soluble or supported in the form of recyclable ion exchange resins (Frenchpatent FR-Bl-2 577 938).
The reduction in acidity allows the subsequent step to be carried out, which consists of transesterification by basic catalysis (alkaU alcoholate) of all of the oil.
Such processes, which usually employ methanol, require fairly long residence times and large quantities of alcohol. Said excess alcohol is necessary to displace the equilibrium by eliminating the water formed during the esterification reaction. It involves physical entrainment of the water, as the methanol/water mixture does not form an azeotrope. The recovered methanol/water mixture must in that case be rectified to recycle the large excess of alcohol.
A further solution envisaged using strongly acidic oils, in the particular case of palm oils which can have ANs of more than 30, is to reduce the palmitic acidity by carrying out a step for glycerolysis of free fatty acids, which consists of esterification of the free fatty acids with a small quantity of glycerol, by using the same catalyst as that described in the invention. That process is particularly suitable for the production of fuel esters, as described in the AppUcant's US-A-5 908 946 which also describes the mode of preparing the catalyst and the catalysis conditions.

Thus, the aim of the invention is to replace certain treatments associated with stages in refining vegetable oil, which normally reduce their acid number to low values, usually to less than 1, which involves using, in the process of the invention, a non deacidified vegetable oil having a final acid number which is preferably in the range 0.5 to 20, for example 1 to 15 and preferably 2 to 12, which derives from pressure and/or extraction treatment and which has undergone a degumming step to obtain a residual phosphorous content of less than 10 ppm, followed by a drying step to obtain a residual water content of less than 500 ppm.
The invention provides a process for the alcoholysis of acid oils of vegetable or animal origin which, with CI to C5 mono alcohols, can transesterify vegetable or animal oils with a natural free acidity and simultaneously esterify their free acidity, characterized in that it comprises two catalysis steps in two reactors functioning with a heterogeneous fixed bed catalyst.
More particularly, the process of the invention can be characterized in that it comprises:
• a catalytic reaction step a) in which an aliquot quantity of oil and monoalcohol are simultaneously introduced into a first reactor, pre-heated to a temperature in the range 180°C to 210°C and at an operating pressure in the range 40 to 60 bars (4 to 6 MPa);
• a step b) in which the reaction mixture leaving the said catalysis reactor undergoes complete or partial evaporation of the excess monoalcohol, encouraging separation of the glycerol formed, which is recovered;
• a step c) in which the ester mixture is introduced into a second reactor with the addition of the equivalent by weight of monoalcohol;

• a step d) in which the mixture from step c) undergoes complete evaporation of the excess monoalcohol, then the residual glycerol formed is eliminated.
Preferably in the process of the invention, the two reactors are substantially identical in size and step c) is carried out under the catalysis conditions of the first catalysis step a).
Thus the process of the invention consists of working in two catalysis steps in two reactors of substantially identical sizes and which function with a heterogeneous fixed bed catalyst.
The heterogeneous catalyst generally comprises a zinc aluminate and has the following formula:
ZnAl204, xZnO, yA^Oa in which x and y are in the range 0 to 2, the zinc aluminate more particularly having a spinel type structure.
Using two metering pumps, an aliquot of oil and monoalcohol are introduced into the first reactor, which is pre-heated to a temperature in the range 180°C to 210°C and at an operating pressure in the range 40 to 60 bars (4 to 6 MPa). At the outlet from the first catalysis, the reaction mixture undergoes complete or partial evaporation of the excess methanol, encouraging separation of the glycerol formed, which is recovered after a static decanting step.
This intermediate step for eliminating the glycerol can displace the reaction equilibrium to obtain, in the second reactor, maximum conversion to methyl esters.
To this end, the ester mixture obtained is introduced into a second reactor with addition of the equivalent weight of methanol. The catalysis conditions are identical to those recommended for the first catalysis step.

At the end of said second step, the mixture undergoes complete evaporation of the excess methanol, then the residual glycerol formed is eliminated.
The finished product, which is characterized by a mixture of fatty acid esters, satisfies current specifications regarding diesel engine fuel both as regards the methyl ester contents and the value of the final acid number.
The following non-limiting examples are given by way of illustration alone.
EXAMPLE 1
Methanol transesterification of a semi-refined rapeseed oil was carried out in a continuous reactor in the presence of a heterogeneous catalyst used in a fixed bed (the semi-refined rapeseed oil had not undergone the decolorization and deodorizing steps necessary for producing a food quality oil).
This consisted of passing, into a mono-tube reactor containing 70 ml of catalyst based on zinc aluminate extrudates, a 50/50 by weight mixture of oil and methanol introduced separately via two metering pumps. The corresponding volumes were 35 ml of oil and 40 ml of methanol/hour, corresponding to a residence time for the oil/methanol mixture on the catalyst of about 56 minutes.
The temperature was kept at 200°C and the pressure stabilized between 50 and 60 bars (between 5 and 6 MPa).
After operating for 4 to 5 hours to obtain stabilized conversion, analysis of the reaction mixture by GPC (gel permeation chromatography) allowed the composition of the mixture, principally constituted by methyl esters, unconverted triglycerides, diglycerides, monoglycerides and free or partially esterified sterols, to be quantified.

The process was run for at least 72 hours to recover a sufficient quantity of products, namely about 2.5 Utres of ester mixture, which would supply the same reactor to simulate a second catalysis step necessary to obtain better conversion to methyl esters.
All of the mixture recovered after 72 hours operation was evaporated completely in a rotary evaporator to eliminate the excess methanol, then it was freed of the glycerol formed during transesterification by static decanting at 50°C.
The mixture constituted by about 94.7% pure methyl esters was then re-introduced into the reactor with an equivalent quantity of methanol by weight, i.e. 50/50, under the same operating conditions, namely: a temperature of 200°C and a pressure between 50 and 60 bars (between 5 and 6 MPa), and with respective flow rates of esters and methanol of 35 ml and 40 ml/hour.
The reaction mixture was completely evaporated then after decanting, the glycerol formed was separated and the ester mixture obtained was analyzed by GPC. The results are shown in Table 1.

EXAMPLE 2
The operating procedure was that described in Example 1, however the nature of -the rapeseed oil used differed by its acid number, which in this case was 11.

This oil was reconstituted from a weighed mixture of distilled oleic acid and semi-refined rapeseed oil, identical to that used in Example 1.
Three kilograms of said oil were produced as follows: a mixture of 165 g of distilled oleic acid and 2835 g of semi-refined rapeseed oil. The acid number of this mixture was determined using French standard NF ISO 660 and gave an AN of 11.
Two catalysis steps were carried out under the conditions given for Example 1.
The results are shown in Table 2.

The water produced during the esterification reaction was primarily trapped in the glycerin phase. This water was also a catalysis inhibitor, as can be adjudged from Example 3.
EXAMPLE 3
A series of tests (5 tests) concerning the first catalysis step was carried out, varying the water content of the feed and using the operating procedure described in Example 1.
The semi-refined rapeseed oil had a maximum acid number AN of 0.5 and a water content of 400 ppm of water. The methanol contained the following quantities of water in succession: 500, 1500, 3000 and 6000 ppm.
Each test lasted 48 hours to guarantee good conversion stability. A reversal was carried out at the end of the test using dry methanol (500 ppm water).

The oil-methanol mixture was 50/50 by weight; thus, the different water contents in the feed were 450, 950, 1750 and 3250 ppm for the 4 tests respectively.

It can be seen that the variation in the conversion to methyl esters was inversely proportional to the water content of the feed (oil + methanol).
Water acts as an inhibitor, but this action is labile as on retuming (test 5) to the initial operating conditions (test 1) with 450 ppm of water in the feed, an identical methyl ester conversion was regained.
The esterification reaction generates water, and thus the water content of the feed will increase and become critical for conversion to methyl esters. Thus, operating conditions close to those of Example 3, which depend on the acid number of the oil employed, are rapidly obtained.
Analyzing the results of Table 2 concerning Example 1, in which a mixture with an acid number of 1.6 is obtained at the end of the first catalysis from an oil with an acid number of 11, the quantity of water generated corresponding to esterification of one

equivalent of fatty acid can be calculated. In this case, of the order of 3000 ppm of water is calculated as being formed in the reaction mixture.
Comparing this result with those of Example 3 (Table 3), it can be seen that this is close to the conversion values obtained by adding equivalent quantities of water (Table 3-test 4).
This approach to the process of the invention fixes its limits and the skilled person can define a maximum acidity so as not to penalize the composition of the mixture of fatty acid esters resulting from the 2 catalysis steps.
To exceed these limits, multiplication of the catalysis steps would be a possible solution provided that operating costs remained competitive compared with operating conditions for reducing the acidity of acid oils as cited above with the example of esterification by methanol employing homogeneous catalysis via mineral sulphuric or hydrochloric type acids.






CLAIMS
A process for the alcoholysis of acid oils of vegetable or animal origin which, with CI to C5 mono alcohols, can transesterify vegetable or animal oils with a natural free acidity and simultaneously esterify their free acidity, characterized in that it comprises two catalysis steps in two reactors fixnctioning with a heterogeneous fixed bed catalyst. A process according to claim 1, characterized in that it comprises:
• a catalytic reaction step a) in which an aliquot quantity of oil and the monoalcohol are simultaneously introduced into said first reactor, preheated to a temperature in the range 180°C to 210°C and at an operating pressure in the range 4 to 6 MPa;
• a step b) in which the reaction mixture leaving the first catalysis reactor undergoes complete or partial evaporation of the excess mono-, encouraging separation of the glycerol formed, which is recovered;
• a step c) in which the ester mixture is introduced into the second reactor with addition of the equivalent by weight of monoalcohol;
• a step d) in which the mixture from step c) undergoes complete evaporation of the excess monoalcohol, then the residual glycerol formed is eliminated.
A process according to claim 1 or claim 2, characterized in that the catalyst used in steps a) and c) comprises a zinc aluminate mixed oxide and with formula ZnAl204, xZnO, yAl203, in which x and y each represent a number in the range 0 to 2.
A process according to claim 3, characterized in that the zinc aluminate of the catalyst is of the spinel type.

A process according to claims 1 to 4, characterized in that the two reactors are
substantially identical in size and step c) is carried out under the catalysis
conditions of the first catalysis step a).
A process according to one of claims 1 to 5, characterized in that the starting oil
is selected fi'om unrefined, naturally fatty acid-rich degummed rapeseed, soya
and sunflower oil.
A process according to one of claims 1 to 6, characterized in that the starting oil
is selected fi-om naturally fatty acid-rich exotic Afiican palm, palm nut oil and
coconut oil.
A process according to one of claims 1 to 7, characterized in that an unrefined
acid oil freed of its phospholipids and/or gums and with an acid number
between 0.5 and 20 is used.
A process according to claim 8, characterized in that the acid number is
between 1 and 15.
A process according to claim 8, characterized in that the acid number is
between 2 and 12.
A process according to claim 9 or claim 10, characterized in that the oil results
fi'om pressure and/or extraction and has undergone a degumming step to obtain
a residual phosphorous content of less than 10 ppm followed by a drying step to
obtain a residual water content of less than 500 ppm.
A process according to one of claims 1 to 11, characterized in that the mono
alcohol is methanol.

13. A process for the alcoholysis of acid oils of vegetable or animal origin substantially as herein described with reference to the accompanying drawings.


Documents:

232-CHE-2004 AMENDED PAGES OF SPECIFICATION 30-03-2012.pdf

232-CHE-2004 AMENDED CLAIMS 30-03-2012.pdf

232-CHE-2004 CORRESPONDENCE OTHERS 26-07-2011.pdf

232-CHE-2004 FORM-3 30-03-2012.pdf

232-CHE-2004 OTHER PATENT DOCUMENT 30-03-2012.pdf

232-CHE-2004 EXAMINATION REPORT REPLY RECEIVED 30-03-2012.pdf

232-CHE-2004 POWER OF ATTORNEY 30-03-2012.pdf

232-che-2004-abstract.pdf

232-che-2004-claims.pdf

232-che-2004-correspondnece-others.pdf

232-che-2004-description(complete).pdf

232-che-2004-form 1.pdf

232-che-2004-form 26.pdf

232-che-2004-form 3.pdf

232-che-2004-form 5.pdf

3268-CHENP-2006 FORM-1 30-03-2012.pdf

3268-CHENP-2006 FORM-3 30-03-2012.pdf


Patent Number 252736
Indian Patent Application Number 232/CHE/2004
PG Journal Number 22/2012
Publication Date 01-Jun-2012
Grant Date 29-May-2012
Date of Filing 16-Mar-2004
Name of Patentee INSTITUT FRANCAIS DU PETROLE
Applicant Address 1&4 AVENUE DE BOIS-PREAU, 92852 RUEIL MALMAISON CEDEX, FRANCE.
Inventors:
# Inventor's Name Inventor's Address
1 HILLION GERARD 10 PLACE DU CASSAN, 95220 HERBLAY, FRANCE.
2 LE PENNEC DOMINIQUE 16 RUE DU CLOS DES BOURGOGNES, 78910, ORGERUS, FRANCE.
PCT International Classification Number C07C67/03
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 03/03.575 2003-03-17 France