Title of Invention

METHOD AND DEVICE FOR BATTERIES

Abstract Method for treatment, in the form of regeneration, of an accumulator (160) having at least one cell, preferably lead batteries, in which a varying direct current from a power source (130) is applied in intermittent current supply periods, which are interrupted by pauses of substantially less current, preferably current free, the direct current being suf-ficient to generate gas in the accumulator. During the treatment process, process data is registered, which process data is used in order to control the treatment process.
Full Text

METHOD AND DEVICE FOR BATTERIES
TECHNICAL FIELD
The present invention relates to a method and device for treatment in the form of regeneration, of accumulators having at least one cell, preferably lead batteries, in which a varying direct current from a charging unit, is applied in intermittent current supply periods which are interrupted by pauses of substantially less current, preferably current free pauses, the direct current being sufficient to generate gas in the accumulator,
THE TECHNICAL STANDPOINT
In a charged lead accumulator, i.e. a lead battery, the active substance in the positive electrodes consists of lead superoxide, Pb02, and of porous metallic lead in the negative electrodes. When the battery is discharged, these active substances are converted to lead sulphate, PbSO4 sulphate ions being taken from the electrolyte, which include sulphuric acid. In principle the process is the reversed at charging. Conventionally, when being recharged by a continuous direct current, lead accumulators have, however, a limited ability of being recharged. The reason for this is not completely investigated, but it is supposed that influence is made by factors such as the products of discharge having a limited solubility in the electrolyte, it being considered that diffusion of the divalent-lead ions constitutes the limiting factor both at discharging and recharging. Furthermore, lead sulphate is a very poor conductor of electricity. All these circumstances often result in problems in connection with the charging of lead batteries, which i.a, risks being destroyed by inactive layers of lead sulphate which hinders the charging or decreases the capacity, and which eventually makes the battery useless. In addition, there are problems in the form of different densities before and after the charging, which leads to the formation of sludge and to a decreased strength.
In WO 94/28610, there is presented a solution to the above problems in connection with the charging of accumulators, especially lead batteries. According to this document, lead batteries may thus be charged by high current levels with a very good result and without a noticeable increase in temperature, when a direct current is being applied on the battery in intermittent current supply periods, interrupted by pauses in which no current is supplied, which periods are between about 0.5 seconds and about 10 seconds.
However, the technique described in WO 94/28610 is not adapted to all kind of batteries to be recharged. Neither is it possible to control the charging process in a sufficiently satisfactory manner.

In WO00/77911 there is known method for treatment of accumulators having at least one cell, preferably lead batteries, in which a varying direct current from a charging unit is applied m intermittent current supply periods, which are interrupted by current free pauses? the direct current being sufficient to generate gas in the accumulator, wherein said treatment constitutes a regeneration process, wherein said current supply periods have a length of between 0.01 and 0.5 seconds, a current level during said current supply periods amounting to between 80 and 1000 A, said pauses have a length of 1-20 seconds, and wherein process data, for at least one cell in the accumulator, is registered during the treatment process, which process data is used in order to control the treatment process. The method described in this specification does eliminate the major prob-lem/s mentioned above, but still suffers from some drawbacks.
SHORT DESCRIPTION OF THE INVENTION
One object of the present invention is to offer a method for treatment, in the form of regeneration, of accumulators, the treatment process being controlled, in terms of current supply period, pauses and current strength, based on given input data. This is achieved by the following steps:
a) measuring the available capacity of the accumulator to be treated by means of a capacity test,
b) adapting the parameters of said treatment in accordance with the result hi step a),
c) using a first set of starting parameters if said capacity is above 80% ,
using a second stt of parameters if said capacity is below 60% and using a further criteria to chose between said first and second starting parameters if said capacity isbetween 60%-80%.
d) adapt the amount of current during pulse in order to achieve more than 2,5 volt per
cell, but less than 3 volt per cell, in the peak of the pulse, which are different from nor
mal way of controlling battery voltage, at open circuit voltage, in between the pulses.
A basic object of the method and device according to the invention, is to achieve a regeneration of batteries which is non destructive to a battery, and convert crystal's of "hard lead sulphate" back to active material. The treatment process should moreover be adaptable and controllable for every single battery without causing mechanical damage.
Other objects of the invention will become apparent during description of the preferred embodiment below.

BRIEF DESCRIPTION OF THE FIGURE
In the following, a device according to the invention, for the performance of the method according to the invention, will be described, while referring to Fig. 1, which is a block diagram of a preferred embodiment.
DETAILED DESCRIPTION OF THE INVENTION
In Fig. 1 there is shown a block diagram of a preferred embodiment of a machine 100
according to the invention. The machine 100 comprises a preferably a contactor 105, for
in supply of power, to supply a power source 130 within the machine 100. The voltage
source 130 in turn feeds the transformer 140, which in turn feeds a number of thyristors
120.
In the preferred embodiment there are three pairs of double- thyristors 120, i.e. in total six thyristors forming two sets, one set including three thyristors in parallel to control one phase each on the positive side of the sinus curve and one set including three thyristors in parallel to control one phase each on the negative side of die sinus curve respectively. It is evident for the skilled person that one set would suffice, but in such an embodiment the machine would merely be able to supply half of the power compared to using two sets. As indicated by 121 the thyristors 120 are connected to an accumulator 160 to supply a desired voltage and current to the accumulator.
The thyristors 120 are controlled by a control unit 110. In a preferred embodiment the control unit 110 comprises a PC, 112 (with conventional equipment, e.g. screen, mouse, hard drive, keyboard, etc.) and trigger card device 117. As indicated the thyristors 120 are controlled by control signals 118 from the trigger card 117. The trigger card 117 is in turn controlled by the PC 112 (sometimes the PC may control an intermediate control card which in ton is controls the trigger card 117)»As shown in the figure, there is arranged in AC/DC converter 107 to supply the electronics within the control unit 110 with power. Furthermore there is shown that the machine 100 includes a temperature surveillance unit 200 and a voltage surveillance circuit 180.
Furthermore the machine 100 preferably includes a capacity testing unit 150, comprising a thyristors/s 152 and a variable resistor 155.
The control unit 110 controls the thyristors 120 to open and close a feed path 121 for electrical energy, supplied by the power source 130 (which in turn preferably is supphed by the common electricity supply network). The desired voltage and current for the

process is controlled by the control unit 110 via the trigger card 117, by controlling the phase angle and the opening time when trigging the thyristors 120 in collaboration with the transformer 140. Moreover also the current is rectified by the thyristors 120. Thereafter, the rectified current is supplied to the battery 160, as a treatment by means of a tuned electrical energy, by continuously having feed back 191 for the supplied current from the current transducer 190, feed back 181 for achieved voltage from the voltage surveillance circuit 180 and feed back 201 for temperature from the temperature surveillance unit 200. According to the preferred embodiment the process is controlled during the whole process time, and adjustments of parameters are automatically set depending on the way battery is responding to the process.
The battery is preferably charged from a discharged state. This discharge of the battery is preferably performed by a discharging unit 150 mounted within the machine 100. By connecting 151 the discharging 150 to the battery 160 (which then should be for the charge) controlled total discharge of the battery 160 may be achieved. During this process information 153 is supplied to the control unit 110, to control the actual capacity/condition of the battery that is to be charged.
Thereafter the .battery 160 is connected to the power feed 121 and also to the surveillance devices 180, 200. The control unit 110 is thereafter provided with a number of starting parameters for the process that is adapted to the result of the capacity test.
If, for instance for a 48-V battery (e.g. originally 560 Ah), the capacity test has shown that the remaining capacity/condition of the battery is above 80% of the original/starting capacity, the following starting parameters may be set in the PC 112 in a preferred embodiment, a current supply level of 350 ampere, a current supply period of 180 ms, and a pause of 2 seconds. Thereafter the process is started, and the PC 112 controlling the trigger card 117 to control the thyristors 120 to supply the set parameters to the battery. During the process the surveillance units 180, 190, 200 will continuously feed information to the control unit 110. The current transducer 190 will give feed back 191 to the control unit 110 in connection with each supply period/pulse the exact amount of current within the pulse. In accordance with the invention the voltage within at least most of the cells of the battery 160 should reach at least 2,5 V during the pulse. If that feedback signal 191 identifies that the voltage in most of the cells of the battery 160 does not reach 2,5 volt, the control unit 110 will change the settings to increase the current level in a subsequent supply period, e.g. by 10 ampere. This control loop will continue until the measured voltage level reaches 2,5 volt, and under the condition that the tern-

perature surveillance unit 200 has not provided input to the control unit 110 that the temperature is above a treasure level. If the temperature surveillance device 200 would signalise that the preset temperature level has been reached, without reaching the desired level of voltage, the control unit 110 will also increase the period of pause between two supply periods, in order not to let the battery reach a critical level of temperature. The control unit 110 also monitors that the voltage level within each one of the cells in the battery does not exceed 3 volt, since otherwise this may cause damages to the battery. Directly after termination of a supply period, the voltage surveillance 180 will give a feedback signal 181 to the control unit 110. Hence, if the feedback signal 181 signalises that the threshold level of 3 volts is approaching, the control unit 110 will change the time of the supply period to be shorter, an&'or lower the current level for a subsequent supply period. If voltage of the cell/s rises to high, to fast, the regeneration may be terminated and the discharge unit 150 may be used in order to reduce specific gravity and voltage, before regeneration is continued as usual again.
If instead the capacity test has shown that the remaining capacity/condition of the battery is less than 60%, the following starting parameters maybe chosen, a current supply level of 250 ampere, a current supply period of 180 ms, and a pause of 3 seconds.
The process will be preformed in basically exactly the same manner.
However, the treatment process is preferably performed in anumber of cycles, e.g. 5-15 cycles, each cycle includes a regeneration part and a charging part, e.g. 6-9 hours regeneration and 1 hour charging. The regeneration part, for a battery 160 where the remaining capacity/condition of the is above 80% (Le. when using said first set of starting parameters) is set to be longer (e.g. 9 hours) than for a battery 160 where the remaining capacity/condition is less than 60% (e.g. 6 hours). The charging part may be set to be substantially the same independent of the capacity/condition of the battery 160, e.g. 0,5 -2 hours. Preferably the current level during charging is less than half of the current level during regeneration, e.g. 40- 70 A. Moreover a variable current supply during charging, has shown to be beneficial, i.e. to alternate the current level during charging, e.g. to randomly change the level, e.g. every 10:th - 30:th second, for example to start with 60 A for 20 seconds, then 35 A 20 seconds, then 55 A 20 seconds, then 40 A 20 seconds, etc.

As mentioned the regeneration part when using the first set of parameters will be longer compared to using the second set of parameters. In other words a battery 160 having a good remaining capacity/condition may be regenerated "tougher" than a battery 160 having a poor remaining capacity/condition. This leads to a quicker improvement of a battery 160 having a good remaining capacity/condition, which in turn leads to less cycles being necessary. For instance, for a battery 160 where the remaining capacity/condition of the is above 80% 5 cycles (of 9+1 hours) may be sufficient (totally 50 hours), whereas 10 cycles (6+1 hours= totally 70 hours) may be necessary for a battery 160 where the remaining capacity/condition of the is less 60%.
The control unit 110 may register process data;, which e.g. by means of the temperature and conductivity surveillance 200 and the voltage surveillance circuit 180. The control unit 110 may also make use of general data for the specific battery, for the control, as well as older process data and general data, which axe available to the control unit, e.g. via a network connection or locally stored data.
The invention is not limited by the above described embodiments, but may be varied within the scope of the claims. As its evident for the skilled man the different units of the machine 100 must not be stored within one and the same vessels/housin.2. For in-stance, as is evident for the skilled person in the art the discharging unit 115 may be a separate unit, as also the control unit 110 and/or the surveillance units 180,200, to be used separate in a connecting network or as modular units that may or may not be assembled. It is evident to the skilled person that the different connections between different units of the machine 100 may be designed in many different ways, e.g. as is know per se, that digital information signals may be transmitted wireless as or by wire or by optical means. Furthermore the skilled person realises that many variations from what have been described in the examples given, maybe made without departing from the concept according to the invention, e.g. to use it in relation to one phase current (then merely one thyristor or one double-pair being needed), to use different sets of starting parameters, etc. Moreover it is evident for the skilled person that the process may be further supplemented by adding a conductivity surveillance unit, which preferably may be integrated within circuit 180. This may be achieve I by super posing a small current to the battery 160, that gives feed back to the control unit of the actual conductivity of the battery, which in turn may be used to better optimise the treatment. Furthermore it is foreseen that each cell may be surveyed, not limited to treatment process, by measuring e.g. conductivity, voltage, temperature and specific gravity, e.g. by means of wire less sensor umts within each one of the cells. It is evident that such an arrangement would

provide for even better surveillance during a treatment according to the invention and also for improved surveillance during use of the battery.










received by the International Bureau on 02 March 2006 (02.03.06)
1. Method for treatment of accumulators having at least one cell, preferably lead batteries, in which a varying direct current from a power unit (120) is applied in intermittent current supply periods, which are interrupted by pauses of substantially less ctorent, preferably current free, the direct current being sufficient to generate gas in the accumulator (160),
wherein said treatment constitutes a regeneration process, wherein said current supply periods have a length of between 0.01 and 1.5 seconds, a current level during said current supply periods amounting to between 80 and 1000 A5 said pauses have a length of 1-20 seconds, and wherein process data, for at least one cell in the accumulator (160), is registered during the treatment process, which process data is used in order to control the treatment process, in the following steps:
a) measuring the available capacity of the accumulator to be treated by means of
a capacity test,
b) adapting the parameters of said treatment in accordance with the result in step
a),
characterisedin step:
c) using a first set of starting parameters if said capacity is above 80% , using a
second set of parameters if said capacity is below 60% and using a further crite
ria to chose between said first and second starting parameters if said capacity is
between 60%-80%.
2. Method according to claim l,characterisedinthe length of said pauses
in said first set of starting parameters are shorter than in said second set of start
ing parameters.
3. Method according to claim 1 or 2, characterised in that the treatment
process is performed in a number of cycles, preferably 1-30, each cycle consist
ing of a regeneration part of 1-12 hours, wherein said regeneration part when us
ing said first set of starting parameters is longer than when using said second set
of starting parameters.
4. Method according to any of the preceding claims, characterised in that
what is controlled during the treatment process is a length of said current supply
periods, which may be between 0.01 and 0.5 seconds, preferably at least 0.1 sec
onds, even more preferred at least 0.15 seconds and 0.4 seconds at the most.


Documents:

1481-CHENP-2007 AMENDED PAGES OF SPECIFICATION 01-03-2012.pdf

1481-CHENP-2007 AMENDED CLAIMS 01-03-2012.pdf

1481-CHENP-2007 CORRESPONDENCE OTHERS 15-09-2011.pdf

1481-CHENP-2007 EXAMINATION REPORT REPLY RECEIVED 01-03-2012.pdf

1481-CHENP-2007 FORM-3 01-03-2012.pdf

1481-CHENP-2007 POWER OF ATTORNEY 01-03-2012.pdf

1481-chenp-2007-abstract.pdf

1481-chenp-2007-claims.pdf

1481-chenp-2007-correspondnece-others.pdf

1481-chenp-2007-description(complete).pdf

1481-chenp-2007-drawings.pdf

1481-chenp-2007-form 1.pdf

1481-chenp-2007-form 3.pdf

1481-chenp-2007-form 5.pdf

1481-chenp-2007-pct.pdf


Patent Number 251774
Indian Patent Application Number 1481/CHENP/2007
PG Journal Number 14/2012
Publication Date 06-Apr-2012
Grant Date 30-Mar-2012
Date of Filing 12-Apr-2007
Name of Patentee BENGT ARRESTAD FASTIGHETS AKTIEBOLAG
Applicant Address ALVGATAN 11 SE-652 25 KARLSTAD SWEDEN
Inventors:
# Inventor's Name Inventor's Address
1 ANDERSSON, Björn Rackstad, Spanska Villan, S-671 92 ARVIKA SWEDEN
PCT International Classification Number H02J 7/00
PCT International Application Number PCT/SE05/01459
PCT International Filing date 2005-10-04
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 2004/02657 2004-10-12 Turkey