Title of Invention

SCRUBBER FOR THE CLEANING OF GASES CONTAINING SEVERAL SCRUBBER STAGES

Abstract A scrubber for the cleaning of gases containing several scrubber stages (1-4), where the scrubber stages are arranged in a scrubber tower with the different stages at different levels above each other in the scrubber tower. At least one of the scrubber stages (2-4) above the lowest scrubber stage (1) comprises, according to the invention, a ring-shaped tank (10, 15, 20) arranged inside the scrubber tower, which ring shaped tank (10, 15, 20) is arranged surrounding a central channel (9, 14, 19) through which the gas that is to be cleaned can pass upwards.
Full Text Scrubber
The present invention relates to a scrubber for cleaning gases, in particular to a scrubber in the form of a tower containing several scrubbing stages.
Scrubbers are common in the context of cleaning gases, and they are used for, among other applications, cleaning exhaust gases, fumes and other process gases in, for example, the chemical industry. The scrubber is used to clean the gases from contaminants that should not be released into the atmos­phere.
A scrubber is normally designed as a vertical cylinder, in which a process fluid circulates, normally in. a counterflow direction to the gas that is to be cleaned. The process fluid, such as water with or without additives, is pumped around and injected into the scrubber through a nozzle system in the upper part of the scrubber. The gas that is to be cleaned is introduced at the bottom of the scrubber, and is subsequently allowed to rise, in order to leave the scrubber at its top. The process fluid and the gas are in this way brought into contact with each other, whereby certain compo­nents that are present in the gas, such as, for example, HC1, SO2 and HF, are absorbed in the process fluid. The gas is in this way cleaned from contaminants.
In order to improve the contact between the process fluid and the gas that is to be cleaned, what is known as column pack­ing may be installed in the scrubber. The column packing may be manufactured from plastic or a metallic or ceramic mate­rial, and it may be designed with various geometrical forms in order to offer a greater or lesser contact area between the gas and the fluid.
A scrubber can, as has been mentioned above, be built in sev­eral individual stages, where each stage has its own pump circulation circuit and its own nozzle system. The stages are in this case separated by special separation layers that col­lect the process fluid and lead it onwards to a pump tank from which process fluid can, in turn, be led onwards to the pump circulation system. The pump tank must be able to accom­modate a volume of fluid that is sufficiently large such that it can offer satisfactory function of the pump system during normal operation, and, most importantly, during start-up and shut-down sequences when all fluid is to be collected in the tank.
In a scrubber that has only one stage, the lower part of the scrubber, the bottom part, acts as pump tank. In scrubber systems with two or more stages, a separate tank volume is required for each stage of the scrubber, such that the fluids from the various stages are not mixed with each other. The traditional manner of constructing this has been to have an external tank located at a lower level than the scrubber stage.
With scrubber systems having several stages and with the scrubbers placed in a tower, the solutions described above with the tanks lead to extensive pipe-laying, for both the supply and withdrawal lines for each scrubber. Since towers with several scrubber stages can be very high, severe demands are placed on the pumps that are to circulate the process fluid, such that they can pump fluid to the height that is required for large volumes. Furthermore, the fluid content of the pipes becomes very large, and the tanks must be dimen­sioned such that they can accommodate all the fluid when the flow is stopped for one reason or another.
It is therefore a purpose of the present invention to achieve a scrubber, in particular a scrubber tower with several scrubber stages, in which the problems described above with the laying of pipes and tanks can be solved in a more effi­cient manner.
The purpose of the invention described above is achieved with a scrubber containing several scrubber stages, where the scrubber stages are arranged in a scrubber tower with the different stages at different levels over each other in the scrubber tower, and where, according to the invention, at least one of the scrubber stages above the lowest stage com­prises a ring-shaped tank arranged inside the scrubber tower, which ring-shaped tank is arranged surrounding a central channel through which the gas that is to be cleaned can rise.
It is appropriate that all scrubber stages above the first stage are provided with such ring-shaped tanks.
The invention will now be described in more detail in the form of a non-limiting embodiment, shown in the attached drawings, where Fig. 1 shows a sketch of the principle of how a scrubber tower according to the invention may be designed, Fig. 2 shows a schematic perspective view of a flow-collection trough to be used between the different stages in a scrubber tower, Fig. 3 shows schematically the location of a circulation pump according to a first design, Fig. 4 shows schematically the location of a circulation pump according to a second design, and Fig. 5 shows schematically the location of a circulation pump according to a third design.
Thus, Fig. 1 shows schematically a scrubber tower, comprising four scrubber stages 1, 2, 3 and 4. The scrubber tower is
surrounded by a cylindrical outer cover 5, and demonstrates at the bottom an inlet 6 for the gas that is to be cleaned. In the lowest scrubber stage 1 a collection tank 7 is formed inside the tower for the fluid that is used for cleaning the incoming gas in the lowest scrubber stage 1. This fluid can, with the aid of pipes and a circulation pump not shown in the drawing, be fed from the collection tank up to nozzle beams 8 in the upper part of the scrubber stage 1, and there sprayed out to meet the upward flowing gas.
A narrowed section is located inside the scrubber tower 1 above the lowest scrubber stage, as is shown in the drawing, forming a channel 9 in the centre of the tower in order to allow the gas to flow onwards and upwards to the next scrub­ber stage 2. A ring-shaped space is formed between the chan­nel 9 and the outer surface 5 of the tower in which a ring-shaped tank 10 can be located, for the reception of scrubber fluid from the second scrubber stage. A separation trough 11, shown in detail in Fig. 2, is arranged uppermost in the chan­nel 9, with which scrubber fluid arriving from above can be collected and led out to the ring-shaped tank 10 that sur­rounds the separation trough 11. Gas that arrives from below through the channel 9 from the scrubber stage 1 can, however, pass through the separation trough 11 and continue its up­wards flow. A connection 12 from the ring-shaped tank 10 is also arranged, to which a circulation pump and a pipe, not shown in the drawing, can be connected in order to pump the fluid that has been collected in the ring-shaped tank 10 up to nozzle beams 13 arranged in the upper part of the second scrubber stage 2, there to be sprayed out and to meet the gas flowing upwards in the second scrubber stage 2.
The third and the fourth stages 3 and 4 of the scrubber are, in an equivalent manner, designed with narrower sections in-
side the scrubber tower, forming channels 14 and 19 in the centre of the tower in order to allow the gas to flow onwards and upwards to the next stages 3 and 4 of the scrubber. Ring-shaped spaces are formed between the channels 14 and 19 and the outer surface 5 of the tower in which further ring-shaped tanks 15 and 20 can be located, for the reception of scrubber fluid from the third and fourth stages of the scrubber. Sepa­ration troughs 16 and 21 are arranged uppermost in the chan­nels 14 and 19, with which scrubber fluid coming from above can be collected and led out to the ring-shaped tanks 15 and 20 that surround the separation troughs 16 and 21. Gas that arrives from underneath through the channels 14 and 19 from the scrubber stages 2 and 3 can, however, pass through the separation troughs 16 and 21 and continue on its upward flow. Connections 17 and 22 are also arranged from the ring-shaped tanks 15 and 20, to each of which a circulation pump and a pipe, see Figures 3-5, can be connected to pump the fluid that has been collected in the ring-shaped tanks 15 and 20 up to spray beams 18 and 23 arranged in the upper part of the third stage 3 of the scrubber and the fourth stage 4 of the scrubber, there to be sprayed out and meet the upwards flow­ing gas in these third and fourth scrubber stages 3, 4.
The scrubber tower is terminated above the fourth scrubber stage 4 with an outlet 24 for the gas that has been cleaned in the scrubber tower.
It is clear that the scrubber tower can comprise fewer than or more than the four scrubber stages that have been shown in the present embodiment. It should also be pointed out that only those parts of the scrubber tower that are of signifi­cance for the invention have been shown on the drawings and explained in this text.
Fig. 2 shows, as has been described above, a separation trough 11, 16, 21 used in the scrubber according to the in­vention. Such separation troughs 11, 16, 21, are thus used between the different stages of the scrubber to separate scrubber fluid and lead it to the relevant tank 10, 15, 20 for recirculation. The separation troughs comprise a number of obliquely placed laminae 25, along which the fluid can run down into trough channels 26. Each lamina 25 is provided with an associated trough channel 26. The trough channels 26 are open at both ends, and extend somewhat more than the complete diameter of the channels 9, 14, 19, such that fluid that has entered the trough channels 26 can be led out to the relevant tank 10, 15, 20. A space is formed between each pair of lami­nae 25 and each trough channel through which gas can pass up­wards from underneath. . This space, however, is covered by the neighbouring lamina, such that no fluid, or essentially no fluid, from above can pass downwards through the separation trough 11, 16, 21.
Fig. 3 shows a first embodiment of a method of arranging a circulation pump 27 at, for example, the tank 10 in order to circulate the scrubber fluid that has been collected in the tank 10 back to the spray beams 13. A pump tank 28 is con­nected outside of the outer surface 5 of the scrubber tower in this embodiment, which pump tank is connected directly to the tank 10 inside of the outer cover through the connection 12. The circulation pump 27 can be any suitable pump that can feed sufficient quantities of scrubber fluid through a feed pipe 29 up to the spray beams 13.
According to one preferred embodiment, the feed pipe 29 is located inside of the outer cover 5 of the scrubber tower.
By arranging, as is shown in Fig. 3, a separate pump tank 28 outside of the outer cover 5, and with the circulation pump 27 also arranged outside of the outer cover 5, these parts are made easy to access for service and maintenance, while the length of the feed pipe 29 can be limited to the height of the relevant scrubber stage, stage 2 in the example illus­trated. It is clear that such a location of the circulation pump and the pump tank is possible for any of the scrubber stages in a scrubber tower, and it is obvious that the length of the feed pipe can be limited to the height of the relevant scrubber stage in this manner. The circulation pump may also have a lower feed capacity than that required if the pump is always placed on the ground.
Fig. 4 shows a second embodiment of the manner in which a circulation pump 30 can be arranged at, for example, the tank 15 in order to recirculate the scrubber fluid that has been collected in the tank 15 to the spray beams 18. In this em­bodiment, a carrier 31, such as a floor mounted on a frame, for example, is arranged outside of the outer cover 5 of the scrubber tower, which carrier supports the circulation pump 30 at the same height as the tank 15. The circulation pump 30 is connected through an inlet pipe 32 and the connection 17 to the tank 15 inside the outer cover. The circulation pump 30 can be any suitable pump that can feed sufficient quanti­ties of scrubber fluid through a feed pipe 33 up to the spray beams 18.
By arranging the circulation pump 30 supported outside of the outer cover 5, as is shown in Fig. 4, connected to the tank 15 inside of the outer cover, the pump is made easy to access for service and maintenance, while the length of the feed pipe 33 can be limited to the height of the relevant scrubber stage, stage 3 in the example illustrated. It is clear that
such a location of the circulation pump is possible for any of the scrubber stages in a scrubber tower, and it is obvious that the length of the feed pipe can be limited to the height of the relevant scrubber stage in this manner. The circula­tion pump may also have a lower feed capacity than that re­quired if the pump is always placed on the ground.
Fig. 5 shows a third embodiment of the manner in which a circulation pump 34 can be arranged, for example, in connec­tion with the tank 15 in order to recirculate the scrubber fluid that has been collected in the tank 15 to the spray beams 18. In this design, a carrier 35, such as a floor mounted on a frame, for example, is arranged outside of the outer cover 5 of the scrubber tower, which carrier supports the circulation pump 34 at ground level. The circulation pump 34 is connected through an inlet pipe 36 and the connection 17 to the tank 15 inside the outer cover. The circulation pump 34 can be any suitable pump that can feed sufficient quantities of scrubber fluid through a feed pipe 37 up to the spray beams 18.
According to one preferred embodiment, the feed pipe 37 is located inside the outer cover 5 of the scrubber tower. This can also be the case for the inlet pipe 36.
The design according to Fig. 5 provides ready access to the circulation pump 34 for service and maintenance, but it natu­rally leads to the laying of longer pipes than the first two embodiments.
The scrubber designs according to the present invention can be used for all types of scrubber that comprise two or more stages arranged above each other, independently of the field of application of the scrubber.
The scrubber according to the invention can comprise in known manner column packing of the type that has been described in the introduction, in order to offer a larger or smaller con­tact area between the gas and the fluid.
The pipes and the feed pipes that have been shown on the drawings as having been laid outside of the outer surface 5 of the scrubber can advantageously be laid inside of this cover, in order to avoid the risk of freezing during a long period of non-operation, and to make possible factory assem­bly.







We claim:
1. A scrubber for the cleaning of gases containing several scrubber stages (1-4), where the scrubber stages are arranged in a scrubber tower with the different stages at different levels above each other in the scrubber tower, characterized in that all scrubber stages (2-4) above the lowest scrubber stage (1) comprises a ring-shaped tank (10, 15, 20) arranged inside the scrubber tower, which ring-shaped tank (10, 15, 20) is arranged surrounding a central channel (9, 14, 19) through which the gas that is to be cleaned can pass upwards, and that at the bottom of each stage of the scrubber (2-4) above the lowest scrubber stage (1) a separation trough (11, 16, 21) is arranged separating the scrubber fluid from the upwards flowing gas, and leading the scrubber fluid to the ring-shaped tank (10, 15, 20), the separation trough (11, 16, 21) comprising obliquely placed laminae (25) leading scrubber fluid that arrives from above to trough channels (26) arranged under the laminae, which channels lead the scrubber fluid onwards to the ring-shaped tanks, and that at each stage (1-4) of the scrubber a circulation pump (27, 30, 34) is arranged to feed through feed pipes (29, 33, 37) fluid present in the tank from the tank (7, 10, 15, 20) at the bottom of the scrubber stage to spray beams (8, 13, 18, 23) arranged at the upper part of the scrubber stage (1-4) for distribution over the cross-section of the scrubber in a direction against the upwards gas flow.
2. The scrubber as claimed in claim 1, wherein the circulation pump (27, 30) is arranged connected to the ring-shaped tank and located at essentially the same level as the tank.
3. The scrubber as claimed in claim 2, wherein the circulation pump (30) is arranged outside of the ring-shaped tank (15) and outside of the scrubber tower, and connected by means of an inlet pipe (32) to a connection (17) on the tank (15).
4. The scrubber as claimed in claim 2, wherein a pump tank (28) is arranged outside of the ring-shaped tank (10) and outside of the scrubber tower directly connected to the tank (10) through a connection (12), and that the circulation pump (27) is arranged in or connected to the pump tank (28).


5. The scrubber as claimed in claim 1, wherein the circulation pump (34) is
arranged on the ground outside of the ring-shaped tank (15) and outside of the
scrubber tower, and connected by means of an inlet pipe (36) to a connector (17) on
the tank (15)
6. The scrubber as claimed in any one of claims 1 to 5, wherein the feed pipe (29, 37) for feeding the scrubber fluid to the nozzle beams (8, 13, 18, 23) is located inside the outer surface (5) of the scrubber tower.

Documents:

4053-delnp-2006-Abstract-(05-05-2011).pdf

4053-DELNP-2006-Abstract-(06-09-2011).pdf

4053-delnp-2006-abstract.pdf

4053-delnp-2006-Claims-(05-05-2011).pdf

4053-DELNP-2006-Claims-(06-09-2011).pdf

4053-delnp-2006-claims.pdf

4053-delnp-2006-Correspondence Others-(05-05-2011).pdf

4053-DELNP-2006-Correspondence Others-(06-09-2011).pdf

4053-delnp-2006-Correspondence-Others-(06-05-2011).pdf

4053-delnp-2006-correspondence-others-1.pdf

4053-delnp-2006-correspondence-others.pdf

4053-delnp-2006-description (complete).pdf

4053-delnp-2006-drawings.pdf

4053-delnp-2006-Form-1-(05-05-2011).pdf

4053-delnp-2006-form-1.pdf

4053-delnp-2006-form-18.pdf

4053-delnp-2006-Form-2-(05-05-2011).pdf

4053-DELNP-2006-Form-2-(06-09-2011).pdf

4053-delnp-2006-form-2.pdf

4053-delnp-2006-Form-3-(05-05-2011).pdf

4053-DELNP-2006-Form-3-(06-09-2011).pdf

4053-delnp-2006-form-3.pdf

4053-delnp-2006-form-5.pdf

4053-DELNP-2006-GPA-(06-09-2011).pdf

4053-delnp-2006-gpa.pdf

4053-delnp-2006-pct-304.pdf

4053-delnp-2006-Petition 137-(06-05-2011).pdf

4053-delnp-2006-Petition-137-(05-05-2011).pdf


Patent Number 250602
Indian Patent Application Number 4053/DELNP/2006
PG Journal Number 03/2012
Publication Date 20-Jan-2012
Grant Date 12-Jan-2012
Date of Filing 14-Jul-2006
Name of Patentee GOTAVERKEN MILJO AB
Applicant Address P.O. BOX 8876, S-40272 GOTEBORG, SWEDEN
Inventors:
# Inventor's Name Inventor's Address
1 HAGG, ULF SKOGSVAGEN 69, S-43538 MOLNLYCKE, SWEDEN
2 GUSTAFSSON, LENNART SMEDVAGEN 14, S-44361 STENKULLEN, SWEDEN
PCT International Classification Number B01D 53/18
PCT International Application Number PCT/SE2005/000207
PCT International Filing date 2005-02-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0400397-6 2004-02-20 Sweden