Title of Invention

SPINNING PREPARATION MACHINE WITH AUTOLEVELING DRAFTING EQUIPMENT AND MICROWAVE SENDOR

Abstract Various improvements to a spinning preparation machine for measurement of the fibre web thickness or fibre web cross-section of at least one fibre web (2) by means of one or several microwave sensors (3, 30) are disclosed. An improvement is characterised by compressing means (18, 19; 28, 64a, 64b, 65; 70; 52) and particularly mechanical guide elements, which can be arranged before, after and/or in the microwave sensor (3, 30). Arrangement of a transport roller pair after a microwave sensor (3) for example, is also disclosed which can particularly be embodied as a feed roller pair (20) for the subsequent drafting work. Suggestions for calibration of the at least one microwave sensor (3, 30) are also made.
Full Text FORM 2
THE PATENT ACT 1970 {39 of 1970)
&
The Patents Rules, 2003 COMPLETE SPECIFICATION See Section 10, and rule 13)
1. TITLE OF INVENTION
MEANS FOR THE AUTOMATIC THREADING OF SLIVERS IN A MICROWAVE SENSOR..

2. APPLICANT(S)
a) Name : RIETER INGOLSTADT SPINNEREIMASCHINENBAU AG
b) Nationality : GERMANY Company
c) Address : FRIEDRICH-EBERT-STRASSE. 84,
D-85055 INGOLSTADT,
GERMANY,



3.

PREAMBLE TO THE DESCRIPTION

The following specification particularly describes the invention and the manner in which it is to be performed : -

The present invention relates to a spinning preparation machine as well as to a process for the calibration of a spinning preparation machine.
In the spinning industry, first a homogenized fiber sliver and finally, as end product, a twisted yarn is produced, in several process steps, e.g. from cotton. The spinning preparation machines upstream of the yarn production, such as cards, combing machines and drawing frames have in particular the task to even out the sliver mass fluctuations of one or several fiber slivers. For this purpose sliver sensors are installed e.g. on draw frames, and these measure the sliver thickness or sliver mass or their fluctuations, and transmit this information to an autoleveling unit that actuates at least one of the drafting elements of the drawing frame as required. One draw frame operating according to such a regulating principle is e.g. model RSB-D 30 of the RIETER Company. Even with drawing frame not equipped with autoleveling, information concerning the fluctuation of silver thickness is desired in many instances. A suitable sensor at the output of such drawing frames emits e.g. a suitable switch-off signal for the machine and/or a warning signal, if a threshold value of the silver mass or the silver thickness is not reached or exceeded.
To measure the fluctuation of silver thickness, mechanical scanning device are known in particular, and these have been used today in almost all machines of this type. However the dynamics of these mechanical sensors are no longer sufficient with output speeds of more than 1000 m/min and a high requirement profile. Furthermore the strong mechanical compression that is necessary before the mechanical sensor has a negative effect on the drafting ability.
In addition to mechanical scanning of the fluctuation of sliver thickness, other scanning principles have been proposed. Thus e.g. it is known from US 2,942,303 and from DE 44 45 720 Al that the sliver thickness can be measured without contact, by means of penetrating optical radiation. The measuring precision is however strongly subject to
2

environmental influences in that case, e.g. temperature, humidity and pollution. Furthermore the process is susceptible to color as well as to reflection characteristics of the fiber sliver.
With other known, contact-less measuring methods ultrasound waves are used. Capacitive or pneumatic measuring methods are also known. It has also been proposed to use X-rays or gamma rays. All of these processes have however in common that they are sensitive to humidity. Therefore it does not help much that climatic influences such as temperature and relative air humidity can be compensated for as a rule, so that climatic influences can be minimized. The problem of inherent fiber moisture cannot be easily removed thereby. In addition, the fiber moisture can vary by up to 5% in one and the same batch of cotton at constant environmental conditions. Also, the upper layers of cotton in a can presented to a spinning preparation machine absorb more moisture than the lower ones. Furthermore the moisture of the textile fibers varies due to changes in climatic conditions in the spinning mill - e.g. morning as compared to noon and night. The above-mentioned influences in turn exercise a great influence on the measuring results of sliver thickness and thereby on the quality of regulating. Overall, these processes are therefore hardly suitable for high-precision measuring of the fiber sliver thickness.
A relatively new method to measure the sliver thickness is based on the utilization of microwaves. WO 00/12974 describes such a measuring system using microwaves, according to which microwaves were coupled to a resonator through which one or several fiber slivers are conveyed. The attenuation and the resonance frequency shift is then measured based on the presence of the fiber sliver or slivers, and the fluctuations of thickness and possibly the moisture content of the fiber sliver or slivers are derived from the measured values. EP 0 468 023 Bl describes a similar microwave measuring method that can be transferred to the measuring of fiber sliver. The sensors based on microwave resonator technology offer in particular the advantage that the environmental conditions, such as e.g. room temperature and room humidity, are already taken into account so that they need not be compensated for any further.
3

However the sensors as well as the corresponding measuring methods described and shown in the above-mentioned publications are still underdeveloped in many aspects and in need of improvement. The specific adaptation to the problems of measuring fiber slivers in particular requires new solutions.
It is the object of the invention to improve the precision of measuring fiber slivers or a fiber structures by means of microwaves.
This object is attained with a spinning preparation machine according to the independent claims 1, 9,11,15,18, 23, 26, 30, 32 and 33 and with a method according to claims 41 and 42.
According to the first aspect of the invention it is advantageous for precise measuring of the fiber sliver thickness for the fiber sliver material to be compressed so that the distribution of material is as homogenous as possible in the measuring slit of the microwave sensor of which at least one is provided. The compressing means are preferably designed in form of mechanical guiding elements, e.g. in form of round rods against the round surfaces of which the fiber sliver material can glide, or in form of an open or closed funnel. To realize such a compression, two variants are preferred, whereby the degree of compression can preferably be set or adjusted in function of the incoming sliver mass.
In one variant, the compression means are designed so that the compression means are installed directly before and/or after the sensor. The sensor can thus be mounted on the compression means or vice versa.
Alternatively or in addition, at least one guiding element, preferably made of an electrically non-conductive material (e.g. ceramic) can be installed within the sensor. Preferably straight but also wedge-shaped or bow-shaped delimitations are possible.
It is advantageous if a targeted compression of the fiber sliver material leads to automatic cleaning effects of the measuring slit or of the resonator space.
4

As the material is introduced into the measuring slit, it must be ensured that the fiber slivers do not cross each other. For this purpose e.g. rakes can be installed before and/ or after the sensor.
In an advantageous embodiment of the invention a funnel is provided before the (at least one) sensor to compress or guide the fiber sliver(s). Following the (at least one) sensor, one or several rakes can be provided to prevent the fiber slivers from crossing each other.
According to a second aspect of the invention, a pair of draw-off rolls extending over the width of the fiber sliver is installed directly following the (at least one) microwave sensor preceding the draw frame. The longitudinal axes of the rolls extend therefore at a right angle to the direction of fiber sliver movement. Thereby the fiber sliver(s) can be drawn off from the sensor without being compressed substantially in their width.
A pair of draw-off rolls as input roller pair of the drawing frame following the sensor is especially preferred. This pair of draw-off rolls thus assumes the double function of drawing off the (at least one) fiber sliver as well as participation in the drafting.
In another aspect of the invention, the emphasis is on the cleaning of the sensor. Concerning the soiling of the microwave resonator, a distinction is to be made between two types of pollutants. On the one hand they are easily removable pollutants such as e.g. fiber fly, and on the other hand pollutants that are difficult to remove, such as e.g. honeydew and avivage. These two pollutants result in alterations of the characteristic values of the resonator, so that cleaning of the resonator(s) is proposed according to the invention.
The removal of pollutants can be carried out at regular intervals, for example and preferably when the machine is stopped. The suitable cleaning apparatus to clean easily removable or resistant pollutants from the microwave resonator(s) can be triggered by suitable controls, and/ or the need for cleaning can be signaled when predefined limit values, e.g. with respect to characteristic resonator values in the empty state of the
5

resonator are exceeded, or when the thickness of dirt or smeared pollutants is exceeded Cleaning can be manual or by means of a cleaning apparatus, whereby manual cleaning may be absolutely necessary in some cases for the dirt that is difficult to remove.
The more easily removable dirt can be removed preferably by compressed air, whereby one or several air nozzles are directed upon the measuring slit of the resonator.
Control means are preferably available to cause the machine to stop in case o. pollutants that are difficult to remove or cannot be removed. However, for reasons o: productivity, cleaning of the easily removable as well as of the more resistant pollutants, is carried out during can replacement at the draw frame outlet or during the replacement of feed cans, since the machine does not as a rule produce any fiber sliver at such time (except in case of a so-called flying exchange). The control means can be integrated into a central machine computer.
For the cleaning operation, the microwave sensor is designed preferably so as to be extensible, e.g. by means of a motor and a running rail on which the sensor can be moved, whereby the fiber sliver material's position remains preferably unchanged and is fixed in this position by suitably holding means. The sensor is preferably cleaned by means of compressed air or mechanical cleaning means that treat the resonator lining, e.g. ceramic, with care. On a stationary sensor, the dirt must be removed manually or automatically, by means of compressed air, mechanical cleaning means, etc., from the measuring slit. After cleaning with e.g. compressed air, an electronic evaluation unit can be preferably used for example to evaluate the empty state (quality) of the characteristic resonator values, whether dirt still adheres or not, whereby the limit values for resistant material must be taken into account.
The controlling means for the control of sensor cleaning can be integrated into a central machine computer.
In order to minimize the degree of soiling of the resonator, the measuring space is preferably constructed so that an adhesion of impurities is reduced or even prevented.
6

One possibility for this consists preferably in making the inner surface of the sensors in form of dirt-repellent and abrasion proof materials and/or in avoiding sharp edges, especially at the input and output points of the fiber sliver material into the sensor.
A microwave sensor can be positioned at the input of the spinning preparation machine in various ways. On the one hand an installation directly before the draw frame is possible. In this case the pair of input rolls can be installed after the sensor and can be designed in such manner that the input roller pair of the draw frame is used to convey the material through the measuring slit of the sensor (see above). The distance between sensor and input roller pair is advantageously smaller than the median staple length so that uncontrolled fiber movements may be avoided during this conveying process.
In alternative or additional embodiments, a microwave sensor can be installed in the preliminary drafting field of the draw frame, constituted by the input and the central pairs of rolls, and/or in the main drafting field of the draw frame, constituted by central and delivery roller pairs.
In order to position a microwave sensor at the output of the spinning preparation machine, several possibilities exist. Thus e.g. a placement between a fleece nozzle downstream of the draw frame and a calendar roller pair further downstream is possible.
Designing the sensor in form of fleece nozzle insert is also advantageous, whereby the sensor assumes in this case the function of a sliver former. With such a design, the sensor can be given a closed form, e.g. cylindrical in cross-section. Of course other geometric forms are also possible, e.g. a design with elliptical or rectangular cross-section. A threading function is advantageously integrated into the fleece nozzle insert, e.g. in form of air nozzles. Alternatively, the fleece nozzle can be integrated into the microwave sensor.
7

In another preferred embodiment, a microwave sensor is located directly after the output roller pair of the drafting equipment. In this case the sensor can be open, e.g. in form of a fork-shaped slit. The form of the sliver is then changed by a downstream fleece nozzle.
A microwave sensor can also be positioned between calendar roller pair and rotary plate.
The spinning preparation machine is preferably equipped with threading means to thread the fiber sliver material automatically into the (at least one) sensor as new batches are processed or when sliver breakage is being repaired. Such threading means may comprise e.g. one or several air nozzles, so that the fiber sliver material is seized by the air stream produced and is introduced into the sensor. Alternatively or in addition, the threading means can also function mechanically, e.g. by clamping and moving or introducing the fiber sliver(s) into the measuring slit of the resonator.
In addition, the threading means may comprise mechanically acting holding means, e.g. clamps, by means of which the fiber sliver material can be held in a defined position during cleaning operations (see above) after extension of the sensors from a measuring position into a cleaning position. In this manner the material can then be introduced without manual intervention into the measuring slit of the sensor that is returned to its measuring position.
According to one aspect of the invention it was realized that the fiber material might show different evolutions of temperature at the input and output of the draw frame, so that these could falsify the measuring results. It is therefore proposed according to the invention that the spinning preparation machine be provided with a device to continuously measure temperatures, so as to determine the temperatures of the textile fiber material, preferably with at least one temperature sensor (including start/stop phase and in particular cold start) and to thus compensate for the measuring results. According to an advantageous embodiment of the invention this can be realized in the
8

electronic measuring system of the microwave sensor or through external compensation. In this manner, in particular cross-relationships of the measuring results at the input and output can be established, whereby preferably the different sliver speeds at the input and at the output as well as the running time between the two sensors are taken into account, e.g. in a central computer of the machine. Depending on the temperature difference between the material at the input and at the output, a correction should be made (offset correction).
When sensors are used on basis of microwaves, the electrical conductivity of delustering elements and pigments in cotton to be drafted or that has been drafted, is in most cases insignificant. In case of electrically conductive materials, such as e.g. carbon fiber, the same microwave sensor can possibly be used. Also, a second sensor, preferably based on different physical principles, can be used.
If at least two resonators are connected one after the other at a measuring position - i.e. either at the input or at the output - they can be preferably used to constitute a band filter.
According to another aspect of the invention, at least one microwave sensor is provided to measure the fiber sliver thickness at the input, and at least one microwave sensor to measure the fiber sliver thickness at the output, whereby the target sliver thickness of the fiber sliver leaving the machine can be preset, e.g. on a machine display. The machine is designed so that the actual sliver thickness measured by at least one sensor at the input and by at least one sensor at the output are integrated in a central machine by means of an evaluation unit, e.g. a central machine computer, can be correlated with each other and the results can be transmitted to a control unit in order to actuate the drafting elements in accordance with the preset target sliver thickness. The evaluation unit is preferably used to establish a cross-correlation between the actual sliver thickness measured by the (at least one) sensor at the input and the (at least one) sensor at the output. A subsequent plausibility control is advantageous.
9

To calibrate the (at least one) microwave sensor, calibration curves for different materials are preferably used, whereby these curves can be stored in the measuring electronics and/or whereby the curves can be called up from external electronic media, e.g. via the Internet, a compact disk, etc when needed.
For every type of fiber material, e.g. cotton, polyester, viscose, polyacrylic nitrile, etc., at least one calibration curve is preferably established. Several calibration curves can also be adopted advantageously in function of the degree of curling, moisture absorption capacity, level of pretreatment, level of pollution, etc.
When fiber mixtures are involved, e.g. flock or sliver mixtures, new calibration curves must be determined in function of the mixture ratio. These curves can be stored e.g. in an electronic memory or, based on an input of the mixture ratio, can be calculated or determined from the corresponding individual calibration curves. For these mathematical operations e.g. mean calculations, interpolations or regressions are used in particular. Alternatively or in addition, these data for mixture ratios are stored in an electronic memory or can be written into such a memory based on the above calculations. In this manner a data bank of the different mixture combinations is available to the user, and he can poll them for the batch to be drafted currently.
To enter the mixture ratios, the spinning preparation machine is advantageously equipped with a suitably designed input unit as well as with a processing unit to determine the calibration curves based on the entered mixture ratios.
Textile fiber slivers in skein form with defined moisture contents are preferably used as the calibration means. For this conditioned samples are available, in which the fiber moisture is known precisely. Alternatively the entire fiber material is stored under the same environmental conditions. Here part of this fiber material is used as calibration means. It is also possible to combine these two methods.
Alternatively the material to be drafted is weighed under normal production conditions in a defined length, is then dried and weighed again in that state. The moisture is
10

determined by comparing this sliver thickness. The sliver thickness and the calculated moisture content are then put at the disposal of the evaluation unit. It is also possible to process sliver masses instead of sliver thickness. The calibration curve is determined from the weighed sliver thickness and the appertaining characteristic resonator values, i.e. frequency shift A and moisture content M. The essentially linear function "frequency shift protracted against sliver thickness", generally going through the zero point, is in this case measured under normal production conditions by means of the microwave sensor and is associated with the fiber moisture calculated from weighing. Advantageously, at least one second measuring point of the same material with different moisture content is determined. Thereby different moisture contents can be determined in course of production.
In a continued calibration, the microwave output sensor is post-calibrated on the basis of laboratory measurements where e.g. the actual sliver thickness (and/or the sliver moisture) of the drafted fiber sliver is measured (plausibility control). Based on this post-calibration, i.e. on the current characteristic line of the output sensor, the microwave input sensor is post-calibrated advantageously while especially taking into account the different fiber sliver temperatures at the input and output and other influences, e.g. soiling of the sensor. This can be advantageous, for example, when the entering and exiting fiber sliver material has different temperatures that influence the measuring results. The post-calibration is effected preferably automatically, by means of a microprocessor.
For rapid calibration of the microwave sensors, defined textile samples in polymer combinations are preferably poured in with known masses. Alternatively, output polymers of the fiber materials (filament yarns) concerned are used, e.g. melted viscose masses. The samples have preferably different, known moisture contents.
Samples with a relative permittivity nearly identical with that of the fiber sliver material to be processed are advantageously used for the calibration of the (at least one) microwave sensor.
11

Preferably one single evaluation electronic system is used for all the resonators at the draw frame input and/ or draw frame output.
The invention in it's different aspects can be used with cards, draw frames as well as combing machines, with autoleveling as well as non-autoleveling drawing equipment. An application of the invention in a combination of card and downstream draw frame is also advantageous.
Advantageous further developments of the invention are characterized by the characteristics of the sub-claims.
The invention is explained below in its different aspects through the figures.
Fig. 1 schematically shows an autoleveling draw frame with autoleveling components;
Fig. 2 shows an open microwave sensor in perspective;
Fig. 3 shows a top view of the input of a draw frame with a closed microwave sensor; Fig. 4 shows a lateral view of the draw frame input of Fig. 3;
Fig. 5 shows a top view of the input of a draw frame with a closed microwave sensor according to a second embodiment, and
Fig. 6 shows a lateral view of the embodiment of Fig. 5.
Fig. 1 is schematic example of an autoleveling principle on a draw frame 1. At the input of the draw frame 1 the sliver thickness of entering fiber slivers 2 - in this case six fiber slivers 2 - is detected by a microwave sensor 3 functioning on the resonator principle. The microwave sensor 3 is connected to a microwave generator 16 that is actuated by a processor unit (not shown) and introduces microwaves into the resonator of the microwave sensor 3. A funnel 18 serving as a compressing means is installed upstream of the microwave sensor 3 to compress the fiber slivers 2. When they have passed the microwave sensor 3, the fiber slivers 2 are again spread out in order to enter the draw frame la. The measured values of the microwave sensor 3 are converted by an
12

evaluation unit 4 into voltage values representing the sliver thickness fluctuations and these are conveyed to a memory 5 (electrical signals are represented by a double lightning arrow in Fig. 1, while mechanical signals are not given any special marking). The memory 5 transmits the measurement voltage by means of an impulse generator or clock generator 6 with defined time delay to a target value phase 7. The clock generator 6 receives a triggering signal (a so-called "redefined constant scanning length") from an input roller pair 20 serving at the same time to convey the fiber slivers 2 through the microwave sensor 3. Alternatively the impulse generator can be coupled to another pair of rollers, e.g. with a conveying roller pair (not shown) directly after the microwave sensor 3 (as seen in the direction of sliver movement). In such case it is not the input roller pair 20 that is used to convey the fiber slivers 2 through the sensor microwave sensor 3, but the conveyor roller pair.
The target value phase 7 furthermore receives a guide voltage from a conducting tachometer 9 that is a measure for the rotational speed of the lower roller of a delivery roller pair 22 driven by a main motor 8. Following this, a target voltage is calculated in the target value phase 7 and is transmitted to a control unit 10. In the control unit 10 a comparison is made between target value and actual value and is used to impart a specific rotational speed to a variable speed motor 11 that corresponds to the desired change in drafting. In this process the target values of the variable speed motor 11 are transmitted to an actual-value tachometer 12, which then retransmits the corresponding actual voltage to the control unit 10. The variable speed motor 11 drives in a planetary gear 13 driven by the main motor 8, whereby the planetary gear 13 modifies the rotational speeds of the lower roller of the input roller pair 20 and of the lower roller 21 of a lower roller pair 21 so that a homogenization or drafting of the sliver takes place.
The sliver thickness serves as the magnitude for leveling. Based on the movement of the fiber sliver from the microwave sensor 3 to the drafting field consisting of input, central and delivery roller pairs 20, 21, 22 (the roller pairs are shown in the top view) a dead time is calculated. The rotational speed of the variable speed motor 11 as an actuating magnitude is determined by the control unit 10, whereby the actual thickness of the
13

fiber slivers 2, the target value sliver thickness as guiding magnitude and the rotational speeds of the main motor 8 and the variable speed motor 11 are processed. Due to the proportional superimposition of the rotational speeds of the main motor 8 and of the variable speed motor 11, and taking into account the mentioned dead time, the sliver thickness is leveled in the drafting equipment la in the so-called leveling application point.
At the output of the drafting equipment la a resonator of a microwave sensor 30, connected to an additional microwave generator 17, is installed and is connected downstream of the sliver funnel or fleece nozzle 19 shown in the example of the embodiment in form of a compressing means. The signals of the microwave sensor 30 are transmitted to an evaluation unit 31 that emits electrical voltage signals corresponding to the sliver thickness of the drafted fiber sliver 2 and transmits them to the control unit 10. Alternatively or in addition, the results of the microwave sensor 30 serve merely to monitor the sliver and for sliver quality control. Accordingly, these results are preferably displayed on the machine and/or on a central unit in the spinning plant.
Different circuit arrangements are possible, in particular the utilization of a central computer.
The drafted fiber sliver 2 is drawn from the microwave sensor 30 by means of calendar rollers 34 (the distances between microwave sensor 30 and rollers 34 are not to scale) and are deposited by means of a sliver channel located in a rotating rotary plate 35 in a round can 37 standing on a rotating can plate 36. Alternatively the spinning can 36 is in form of a flat can traversing back and forth.
At the drafting equipment input and at the drafting equipment output an apparatus 40 or 41 is installed for the preferably continuous measuring of the fiber sliver temperature (in Fig. 1 in immediate proximity of the corresponding sensor 3 or 30). The measured temperature values or the voltage values characterizing t he temperature are transmitted to the corresponding evaluation unit 4 or 31 which assumes here in
14

addition the function of a compensation unit for temperature compensation of the measured results supplied of the sensors 3 or 30. The results of the evaluation unit 4 or 31 can be correlated e.g. by means of cross correlation. Such a correlation can be effected e.g. in the control unit 10 which must be able to perform the computations necessary for that purpose. Alternatively, separate processor units or one common processor unit can be provided for temperature compensation and, if necessary, also for correlation of the signals coming from the apparatuses 40 and 41.
The two sensors 3, 30 can preferably be cleaned automatically, e.g. by compressed air coming from one or several air nozzles directed on the measuring slit of the corresponding sensor 3, 30. Corresponding controls (not shown) trigger such cleaning, preferably at timely intervals and/or when a limit vale of the characteristic resonator values resonator quality is exceeded and/or when predetermined thicknesses of dirt or smudging film is exceeded. Such air nozzles can also serve as threading means for the automatic threading of the fiber sliver(s) to be measured in the (at least one) sensor 3 or 30.
In an alternative embodiment of the invention that is not shown, the spinning preparation machine can be provided with individual drives, each of which preferably with its own control circuits, whereby a central computer is advantageously used.
Fig. 2 shows an open microwave sensor 2, 30 consisting of a resonator 50 bent into a U-shape in which the opening is a measuring slit 51 through which one or several fiber slivers 2, indicated schematically as arrows, can be conveyed. In the measuring slit 51, on either side of the fiber sliver(s) 2, a round rod 52 is provided, whereby the two round rods 52 together serve as compressing guide elements. The round rods 52 can be displaced on schematically indicated guides 53 at a right angle to the sliver (see double arrow) and can preferably be fixed in their position. In order to introduce the fiber sliver(s) 2 into the measuring slit 51 and between the two round rods 52, one or several air nozzles 54 are provided and are directed essentially in the direction of sliver movement (in Fig. 2 they move towards the viewer) and carry the fiber sliver along
15

thanks to the compressed air (see arrow). Furthermore the double arrow fl indicates that the entire sensor 3, 30 can be moved from a measuring position into a cleaning position and back into the measuring position.
Figs. 3-6 show to further embodiments of a microwave sensor 3 located at the input of the drafting equipment. In the top view of Fig. 2 an input table 15 can be seen, at whose end towards the presentation cans (not shown) a rake arrangement 24 is provided. The rake arrangement 24 consists of nine vertically positioned round rods between which eight fiber slivers 2 are taken from the presentation cans to the microwave sensor 3 (the fiber slivers 2 are indicated by dots in the side view of Fig. 4 when they run under cover). Following the rake arrangement 24 are two parallel driven conveyor rollers 25 on which the four jockey or load rollers 26 aligned with each other are placed. Two of the eight slivers 2 run between each of the jockey rollers 26 and the conveyor rollers 25 beneath it. In case of sliver breakage, an electrical contact is established between the jockey rollers 26 concerned and the conveyer rollers 25 and the breakage is displayed in a manner recognizable to an operator.
A horizontally oriented round rod 27 that may be immobile or rotatable and over which the fiber slivers 2 are conveyed follows in the direction of sliver movement. Furthermore the vertical double arro in Fig. 4 indicates that the round rod 27 can be preferably adjusted vertically. Following the round rod 27 are two vertical guiding elements 28 having a circular cross-section, between which the fiber slivers 2 run. The distance between the two guiding elements 28 is preferably adjustable, as is indicated by the corresponding double arrows in Fig. 3.
The guiding elements 28 are followed in the direction of sliver movement by a second, round rod 29 extending horizontally, which can also be supported so as to be immobile or rotatable, and beneath which the fiber slivers 2 are conveyed. The round rod 29 which, according to Fig. 4, is vertically adjustable (see double arrow) serves for the centered introduction of the fiber slivers 2 into the resonator 60 of the microwave sensor 3. Another two vertical guiding elements 64a with round cross-section are provided
16

between the round rod 29 and t he microwave sensor 3. These are attached at the top to flat rods 62 extending horizontally in the direction of fiber movement that are in turn attached by means of screws located in two corresponding elongated holes 63 to a cover plate 61. The cover plate 61 is mounted on the resonator 60. At the sliver output side of the sensor 3, guiding elements 64b attached in the same manner are provided. The distance between the guiding elements 64a, 64b can be adjusted by displacing the flat rods 62 in the elongated holes 63.
At the input and at the output of the sensor 3 whose connection cables 66 (to a microwave generator and to a signal receiver) are also shown in Fig. 3, horizontally extending rounded edges 65 extending along the fiber sliver width are provided as additional guiding elements (see Fig. 4, represented by broken lines). These guiding elements 65 are thus located in the sensor 3 and are used for steady guidance of the fiber slivers 2 through he resonator 60.
An input roller pair 20 that draws the fiber slivers 2 from the sensor 3 is installed downstream of the guiding elements 64b. This roller pair is advantageously designed as an input roller pair 20 of the downstream drafting equipment la (see Fig 1). Contrary to the mechanically scanning sliver thickness measuring devices that compress the fiber slivers 2 and where the fiber slivers 2 must be spread out again before entering the drafting equipment la, this space consuming spreading out can be dispensed with in this case. The entire machine can thus be much more compact. The input roller pair 20 serves on the one hand to draw the slivers 2 from the sensor 3 and on the other hand as a drafting element. The fiber slivers 2 run essentially parallel to each other through the sensor and continue into the drafting equipment la.
The guiding elements 28, 64a and 64b for the lateral guidance of the fiber slivers 2 can be provided alternatively or in addition to their linear adjustability in the direction at a right angle to the slivers (see Fig. 3) with an eccentric cross-section avoiding sharp circumferential edges (not shown). In order to change the passage width of the fiber
17

slivers 2, these guiding elements 28, 64a, 64b can be rotated around their longitudinal axis and can be stopped in their position.
According to the embodiments shown in the figures 5 and 6, a funnel 70 is provided before the sensor 3, through which the fiber slivers 2 are guided flowing the jockey and conveying rollers 26, 25. The width of the funnel 70 can be advantageously adjusted, preferably its input and/or output width. The embodiment shown in Figs. 5 and 6 is otherwise identical to those of Figs. 3 and 4. The guiding elements 64b at the output of the sensor 3 are to be mentioned because the guiding elements 64a at the input are superfluous because of the funnel 70. If however the output width of the funnel 70 is not adjustable, the presence of guiding elements 64a can be advantageous.
In the figures the entering fiber slivers 2 and the fiber sliver 2 leaving the draw frame la are termed with identical reference numbers. It is known from the state of art - and therefore not illustrated in further details - that the fiber slivers 2 entering the draw frame la leave the draw frame usually in form of a fleece that is formed by means of a fleece guiding nozzle respectively fleece nozzle 19 and - by means of a sliver funnel - is compressed to a fiber sliver 2 so that it can be deposited into the spinning can 37. Combinations of fleece nozzle and sliver funnel, as shown schematically in Fig. 1, are possible.
18

We Claim :
1. Spinning preparation machine with an autoleveling drafting equipment (la) to which at least one fiber sliver (2) is presented for drafting, with at least one microwave sensor (3, 30) to measure the fiber sliver thickness at the input and/or at the output, characterized by an apparatus to measure the temperature (40, 41) of at least one presented fiber sliver (2) and/or of the fiber sliver (2) leaving the drafting equipment (la), and compensation unit (4, 31; 10) for compensation of the measured results of at least one sensor (3, 30) based on the measured temperature(s).
2. Spinning preparation machine as claimed in claim 1, wherein the temperature of at least one fiber sliver (2) can be measured continuously.
3. Spinning preparation machine as claimed in claim 1, wherein the compensation unit is integrated in the electronic measuring system or evaluation unit (4, 31) of at least one microwave sensor (3, 30) or in an external device (10) outside the microwave sensor (3, 30).
4. Spinning preparation machine as claimed in one of the preceding claims, wherein the compensation unit (4, 31; 10) is designed and equipped in such manner that the measured results coming from at least one input sensor (3) and at least one output sensor (30) can be correlated with each other by means of a cross-correlator.
5. Spinning preparation machine with autoleveling drafting equipment (la) to which at least one fiber sliver (2) is presented for drafting, with at least one microwave sensor (3, 30) with a resonator (50) to measure fiber thickness at the input of the drafting equipment and/or at the output of the drafting
19

equipment, characterized by threading means (54) to thread the fiber sliver(s) (20) to be measured automatically into at least one sensor (3, 30).
6. Spinning preparation machine as claimed in claim 5, wherein the air threading means (54) comprise air nozzles (54) for pneumatic threading of the fiber sliver(s) to be measured.
7. Spinning preparation machine as claimed in claim 5, wherein the threading means (54) comprise holding means with which at least one fiber sliver (2) can be held in a defined position after the transfer of at least one microwave sensor (3, 30) from a measuring position into a cleaning position, so that it can be introduced into the measuring slit 51 without manual intervention.
Dated this day of October, 2005.

20

Documents:

1138-MUMNP-2005-CANCELLED PAGES(16-3-2009).pdf

1138-MUMNP-2005-CANCELLED PAGES(22-9-2011).pdf

1138-MUMNP-2005-CLAIMS(16-3-2009).pdf

1138-MUMNP-2005-CLAIMS(AMENDED)-(22-9-2011).pdf

1138-MUMNP-2005-CLAIMS(GRANTED)-(10-10-2011).pdf

1138-mumnp-2005-claims.pdf

1138-MUMNP-2005-CORRESPONDENCE(16-3-2009).pdf

1138-MUMNP-2005-CORRESPONDENCE(7-9-2011).pdf

1138-MUMNP-2005-CORRESPONDENCE(IPO)-(10-10-2011).pdf

1138-mumnp-2005-correspondence(ipo)-(14-3-2008).pdf

1138-mumnp-2005-correspondence-received.pdf

1138-mumnp-2005-descripiton (complete).pdf

1138-MUMNP-2005-DESCRIPTION(COMPLETE)-(16-3-2009).pdf

1138-MUMNP-2005-DESCRIPTION(GRANTED)-(10-10-2011).pdf

1138-MUMNP-2005-DRAWING(16-3-2009).pdf

1138-MUMNP-2005-DRAWING(GRANTED)-(10-10-2011).pdf

1138-mumnp-2005-drawings.pdf

1138-MUMNP-2005-ENGLISH TRANSLATION VARIFICATION(16-3-2009).pdf

1138-MUMNP-2005-ENGLISH TRANSLATION(22-9-2011).pdf

1138-MUMNP-2005-FORM 1(16-3-2009).pdf

1138-MUMNP-2005-FORM 1(22-9-2011).pdf

1138-mumnp-2005-form 2(16-3-2009).pdf

1138-MUMNP-2005-FORM 2(GRANTED)-(10-10-2011).pdf

1138-MUMNP-2005-FORM 2(TITLE PAGE)-(16-3-2009).pdf

1138-MUMNP-2005-FORM 2(TITLE PAGE)-(COMPLETE)-(14-10-2005).pdf

1138-MUMNP-2005-FORM 2(TITLE PAGE)-(GRANTED)-(10-10-2011).pdf

1138-MUMNP-2005-FORM 26(22-9-2011).pdf

1138-MUMNP-2005-FORM 3(16-3-2009).pdf

1138-MUMNP-2005-FORM 3(7-9-2011).pdf

1138-MUMNP-2005-FORM 5(16-3-2009).pdf

1138-MUMNP-2005-FORM PCT-IB-304(22-9-2011).pdf

1138-mumnp-2005-form-1.pdf

1138-mumnp-2005-form-18.pdf

1138-mumnp-2005-form-2.doc

1138-mumnp-2005-form-2.pdf

1138-mumnp-2005-form-26.pdf

1138-mumnp-2005-form-3.pdf

1138-mumnp-2005-form-5.pdf

1138-MUMNP-2005-PCT-ISA-210(16-3-2009).pdf

1138-MUMNP-2005-PETITION UNDER RULE-137(7-9-2011).pdf

1138-MUMNP-2005-REPLY TO HEARING(22-9-2011).pdf

1138-MUMNP-2005-REPLY TO HEARING(8-9-2011).pdf

1138-mumnp-2005-specification(amanded)-(16-3-2009).pdf

1138-MUMNP-2005-SPECIFICATION(AMENDED)-(22-9-2011).pdf

1138-MUMNP-2005-SPECIFICATION(MARKED COPY)-(22-9-2011).pdf

1138-MUMNP-2005-US DOCUMENT(22-9-2011).pdf

1138-mumnp-2005-wo international publication report(14-10-2005).pdf

abstract1.jpg


Patent Number 249193
Indian Patent Application Number 1138/MUMNP/2005
PG Journal Number 42/2011
Publication Date 21-Oct-2011
Grant Date 10-Oct-2011
Date of Filing 14-Oct-2005
Name of Patentee RIETER INGOLSTADT SPINNEREIMASCHINENBAU AG
Applicant Address FRIEDRICH- EBERT-STRASSES. 84, D-85055 INGOLSTADT,
Inventors:
# Inventor's Name Inventor's Address
1 JOACHIM DAMMIG AM MUHLANGER 50, 85053 INGOLSTADT
2 MICHAEL UEDING SCHWANTHALER STRASSE 32, 85049 INGOLSTADT
3 CHOKRI CHERIF HERKOMMERSTRASSE 3, D-85057 INGOLSTADT
PCT International Classification Number D01H5/32
PCT International Application Number PCT/EP2003/03442
PCT International Filing date 2003-04-02
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 102 14 955.0 2002-04-04 Germany