Title of Invention

A DEVICE FOR CLEANING A GAS TURBINE ENGINE

Abstract The invention relates to device for cleaning a gas turbine engine (2), and in particular an engine of turbofan type. The present invention further relates to a method for cleaning such a engine. The device comprises a plurality of nozzles (31, 33, 35) arranged to atomize cleaning liquid in the air stream in an air inlet (20) of the engine (2) up-stream of a fan (25) of the engine (2). According to the invention a first nozzle (31) is arranged at a position such that the cleaning liquid emanating from the first nozzle (31) impinges the surfaces of the blades (40) substantially on the pressure side (53); a second nozzle (35) is arranged at a position such that the cleaning liquid emanating from the second nozzle (35) impinges the surfaces of the blades (40) substantially on the suction side (54); and a third nozzle (33) is arranged at a position such that the cleaning liquid emanating from the third nozzle (33) passes substantially between the blades (40) and enters an inlet (23) of the core engine (203). Thereby, the different types of fouling found on the fan and in the core engine compressor of turbofan engine can be removed in an efficient manner.
Full Text Method and apparatus for cleaning a turbofan gas turbine engine

Technical field
The present invention generally relates to the field of cleaning gas
turbine engines, and more specifically a method and apparatus for
cleaning a turbofan gas turbine engine installed in an aircraft.
Background of the invention
A gas turbine installed as an aircraft engine comprises a compressor
compressing ambient air, a combustor burning fuel together with the
compressed air and a turbine for powering the compressor. The
expanding combustion gases drive the turbine and also result in
thrust used for propelling the air craft.
Gas turbines engines consume large quantities of air. Air contains
foreign particles in form of aerosols which enters the gas turbine
compressor with the air stream. The majority of the foreign particles
will follow the gas path and exit the engine with the exhaust gases.
However, there are particles with properties of sticking on to
components in the compressor's gas path. Stationary gas turbines
like gas turbines used in power generation can be equipped with filter
for filtering the air to the compressor. However, gas turbines installed
in aircrafts are not equipped with filters because it would create a
substantial fall in pressure and are thereby more exposed to air
contaminants. Typical contaminants found in the aerodrome
environment are pollen, insects, engine exhaust, leaking engine oil,
hydrocarbons coming from industrial activities, salt coming from
nearby sea, chemicals coming from aircraft de-icing and airport
ground material such as dust.


Preferably engine components such as compressor blades and vanes
should be polished and shiny. However, after a period of operation a
coating of foreign particles builds up. This is also known as
compressor fouling. Compressor fouling results in a change in the
properties of the boundary layer air stream of the components. The
deposits result in an increase of the component surface roughness.
As air flows over the component surface the increase of surface
roughness results in a thickening of the boundary layer air stream.
The thickening of the boundary layer air stream has negative effects
on the compressor aerodynamics. At the blade trailing edge the air
stream forms a wake. The wake is a vortex type of turbulence with a
negative impact on the air flow. The thicker the boundary layer the
stronger the turbulence in the wake. The wake turbulence together
with the thicker boundary layer has the consequence of a reduced
mass flow through the engine. The reduced mass flow is the most
profound effect of compressor fouling. Further, the thicker boundary
layer and the stronger wake turbulence formed at the blade trailing
edge result in a reduced compression pressure gain which in turn
results in the engine operating at a reduced pressure ratio. Anyone
skilled in the art of heat engine working cycles understands that a
reduced pressure ratio result in a lower thermodynamic efficiency of
the engine. The reduction in pressure gain is the second most
remarkable effect from compressor fouling. The compressor fouling
not only reduces the mass flow and pressure gain but also reduces
the compressor isentropic efficiency. Reduced compressor efficiency
means that the compressor requires more power for compressing the
same amount of air. The reduced mass flow, pressure ratio and
isentropic efficiency reduce the engine thrust capability. The power
for driving the compressor is taken from the turbine via the shaft.
With the turbine requiring more power to drive the compressor there
will be less thrust for propulsion. For the air craft pilot this means he


must throttle for more power as to compensate for the lost thrust.
Throttling for more power means the consumption of fuel increases
and thereby increasing operating costs.
Compressor fouling also has a negative effect to the environment.
With the increase of fuel consumption follows an increase of
emissions of green house gas such as carbon dioxide. Typically
combustion of 1 kg of aviation fuel results in formation of 3.1 kg
carbon dioxide.
The loss in performance caused by compressor fouling also reduces
the durability of the engine. As more fuel has to be fired for acquiring
a required thrust, follows an increase in the temperature in the
engine combustor chamber. When the pilot throttles for take-off on
the runway the temperature in the combustion chamber is very high.
The temperature is not too far from the limit of what the material can
stand. Controlling this temperature is a key issue in engine
performance monitoring. The temperature is measured with a sensor
in the hot gas path section downstream of the combustor outlet. This
is known as exhaust gas temperature (EGT) and is carefully
monitored. Both exposure time and temperature are logged. During
the lifetime of the engine the EGT log is frequently reviewed. At a
certain point of the EGT record it is required that the engine will have
to be taken out of service for an overhaul.
High combustor temperature has a negative effect to the
environment. With the increase of combustor temperature follows an
increase of NOx formation. NOx formation depends to a large extent
on the design of the burner. However, any incremental temperature
to a given burner results in an incremental increase in NOx.


Hence, compressor fouling has significant negative effects to aero
engine performance such as increased fuel consumption, reduced
engine life, increased emissions of carbon dioxide and NOx.
Jet engines can have a number of different designs but the above-
mentioned problems arises in all of them. Typical small engines are
the turbojet, turboshaft and turboprop engines. Other variants of
these engines are the two compressor turbojet and the boosted
turboshaft engine. Among the larger engines there are the mixed flow
turbofan and the unmixed flow turbofan which both can be designed
as one, two or three shaft machines. The working principles of these
engines will not be described here.
The turbofan engine is designed for providing a high thrust for
aircraft operating at subsonic velocities. It has therefore found a wide
use as engines for commercial passenger aircrafts. The turbofan
engine comprises of a fan and a core engine. The fan is driven by the
power from the core engine. The core engine is a gas turbine engine
designed such that power for driving the fan is taken from a core
engine shaft. The fan is installed upstream of the engine compressor.
The fan consists of one rotor disc with rotor blades and alternatively
a set of stator vanes downstream if the rotor. Prime air enters the fan.
A discussed above, the fan is subject to fouling by insects, pollen as
well as residue from bird impact, etc. The fan fouling may be removed
by washing using cold or hot water only. This cleaning washing
process is relatively easy to perform.
Downstream of the fan is the core engine compressor. Significant for
the compressor is that it compresses the air to high pressure ratios.
With the compression work follows a temperature rise. The
temperature rise in a high pressure compressor may be as high as


500 degree Celsius. We find that the compressor is subject to
different kind of fouling compared to the fan. The high temperature
results in particles more easily being "baked" to the surface and will
be more difficult to remove. Analyses show that fouling found in core
engine compressors are typically hydrocarbons, residues from anti-
icing fluids, salt etc. This fouling is more difficult to remove. It may at
some time be accomplished by washing with cold or hot water only.
Else the use of chemicals will have to be practised.
A number of cleaning or washing techniques have been developed
during the years. In principle, aero engine washing can be practised
by taking a garden hose and spraying water into the engine inlet.
This method has however a limited success due to the simple nature
of the process. An alternative method is by hand scrubbing the
compressor blades and vanes with a brush and liquid. This method
has limited success as it does not enable cleaning of the interior
blades of the compressor. Moreover, it is time-consuming. U.S. Pat.
No. 6,394,108 to Butler discloses a thin flexible hose which one end
is inserted from the compressor inlet towards the compressor outlet
in between the compressor blades. At the inserted end of the hose
there is a nozzle. The hose is slowly retracted out of the compressor
while liquid is being pumped into the hose and sprayed through the
nozzle. The patent discloses how washing is accomplished. However
the washing efficiency is limited by the compressor rotor not being
able to rotate during washing. U.S. Pat. No. 4,059,123 to Bartos
discloses a mobile cart for turbine washing. However, the patent does
not disclose how the cleaning process is accomplished. U.S. Pat. No.
4,834,912 to Hodgens II et al. discloses a cleaning composition for
chemically dislodging deposits of a gas turbine engine. The patent
illustrates the injection of the liquid into a fighter jet aircraft engine.
However, no information is provided about the washing process. U.S.


Pat 5,868,860 to. Asplund discloses the use of a manifold for aero
engines with inlet guide vanes and another manifold for engines
without inlet guide vanes. Further the patent discloses the use of
high liquid pressure as means of providing a high liquid velocity,
which will enhance the cleaning efficiency. However, the patent does
not address the specific issues related to fouling and washing of
turbofan aero engines.
The arrangement described hereinafter with reference to Fig. 1 is
further regarded as common knowledge in this field. A cross section
view of a single shaft turbojet engine is shown in Fig.l. Arrows show
the mass flow through the engine. Engine 1 is built around a rotor
shaft 17 which at its front end is connected a compressor 12 and at
its rear end a turbine 14. In front of the compressor 12 is a cone 104
arranged to split the airflow. The cone 104 is not rotating. The
compressor has an inlet 18 and an outlet 19. Fuel is burnt in a
combustor 13 where the hot exhaust gases drives turbine 14.
A washing device consist of a manifold 102 in form of a tube which in
one end is connected to a nozzle 15 and the other end connected to a
coupling 103. Hose 101 is at one end connected to coupling 103
while the other end is connected to a pump (not shown). Manifold
102 is resting upon cone 104 and is thereby held in a firm position
during the cleaning procedure. The pump pumps a washing liquid to
nozzle 15 where it atomizes and forms a spray 16. The orifice
geometry of nozzle 15 defines the spray shape. The spray can form
many shapes such as circular, elliptical or rectangular depending on
its design. For example, a circular spray has a circular distribution of
droplets characterized by the spray having the shaped of a cone. An
elliptical spray is characterised by one of the ellipses axis is longer
than the other. A rectangular spray is somewhat similar to the


elliptical spray but with corners according to the definition of a
rectangle. A square spray is somewhat similar to the circular spray in
that the two geometry axes are of equal length but the square shaped
spray has corners according to the definition of a square.
Liquid is atomized prior to entering the compressor for enhanced
penetration into the compressor. Once inside the compressor the
droplets collide with gas path components such as rotor blades and
stator vanes. The impingement of the droplets results in wetting
surface and establishing of a liquid film. The deposited particles on
the gas path components are released by mechanical and chemical
act of the liquid. Liquid penetration into the compressor is further
enhanced by allowing the rotor shaft to rotate during washing. This is
done by letting the engine's starter motor turn the rotor whereby air
is driven through the engine carrying the liquid from the compressor
inlet towards the outlet. The cleaning effect is further enhanced by
the rotation of the rotor as the wetting of the blades creates a liquid
film which will be subject to motion forces such as centrifugal forces
during washing.
What is said about the cleaning of the compressor will also have
effect on cleaning of the whole gas turbine engine. As the cleaning
liquid enters the engine compressor and the rotor is rotating the
washing fluid will enter the combustion chamber and further through
the turbine section and thereby cleaning the whole engine.
However, this method is not efficient for a turbofan turbine engine for
a number of reasons. Firstly, because the fouling of different
components of a turbofan engines may have significantly different
properties regarding, for example, the stickiness, it will require
different methods for the removal as discussed above. Secondly, since


the fan and its cone for splitting the airflow is rotating, the cone
cannot be used for holding the manifold. Possible, the manifold can
be mounted on a stand or a frame placed upstream of the fan but
this arrangement would not provide an efficient cleaning of the engine
since the main part of the cleaning liquid emanated from the nozzles
would impinge at the suction side of the blades of the fan.
Summary of the invention
Thus, an object of the present invention is to provide a device and a
method for removing the different types of fouling found on the fan
and in the core engine compressor of turbofan engine and thereby
reduce the negative effects of the fouling effects to aero engine
performance such as increased fuel consumption, reduced engine
life, increased emissions of carbon dioxide and NOx.
It is further an object of the present invention to provide an
apparatus and a method that are able to clean the fan and the core
engine compressor in one washing operation.
These and other objects are achieved according to the present
invention by providing a method and an apparatus having the
features defined in the independent claims. Preferred embodiments
are defined in the dependent claims.
For the purposes of clarity, the terms "radial direction" and "axial
direction" refer to a direction radially from the centreline of the engine
and a direction along the centreline of the engine, respectively.
In the context of the present invention, the term "tangential angle"
relates to an angle tangential viewed from the centreline of the
engine.


According to a first aspect of the present invention, there is provided
a device for cleaning a gas turbine engine, which engine includes at
least one engine shaft, a rotatably arranged fan comprising a plurality
of fan blades mounted on a hub and extending substantially in a
radial direction, each having a pressure side and a suction side, and
a core engine including a compressor unit and turbines for driving
the compressor unit and the fan, comprising a plurality of nozzles
arranged to atomize a cleaning liquid in the air stream in an air inlet
of the engine up-stream of the fan. The device according to the first
aspect of the present invention comprises a first nozzle arranged at a
first position relative a centre line of the engine such that the
cleaning liquid emanated from the first nozzle impinges the surfaces
of the blades substantially on the pressure side; a second nozzle
arranged at a second position relative the centre line of the engine
such that the cleaning liquid emanated from the second nozzle
impinges the surfaces of the blades substantially on the suction side;
and a third nozzle arranged at a third position relative the centre line
of the engine such that the cleaning liquid emanated from the third
nozzle passes substantially between the blades and enters an inlet of
the core engine.
According to a second aspect of the present invention, there is
provided a method for cleaning a gas turbine engine, which engine
includes at least one engine shaft, a rotatably arranged fan
comprising a plurality of fan blades mounted on a hub and extending
substantially in a radial direction, each having a pressure side and a
suction side, and a core engine including a compressor unit and
turbines for driving the compressor unit and the fan, comprising the
step of atomizing cleaning liquid in the air stream in an air inlet of
the engine up-stream of the fan by means of a plurality of nozzles,


The method according to the second aspect of the present invention
further comprises the steps of: applying cleaning liquid emanated
from a first nozzle substantially on the pressure side; applying
cleaning liquid emanated from a second nozzle substantially on the
suction side; and directing cleaning liquid emanated from a third
nozzle such that the cleaning liquid passes substantially between the
blades and enters an inlet of the core engine.
Thus, the present invention is based on the insight that the
properties of the fouling of different components of the engine have
different properties and therefore require different approaches for the
cleaning. As an example, the fouling of the core compressor is has
different properties compared to the fouling of the blades of the fan,
for example, due to the higher temperature of the compressors. The
high temperature results in particles more easily being "baked" to the
surface and will be more difficult to remove. Analyses show that
fouling found in core engine compressors are typically hydrocarbons,
residues from anti-icing fluids, salt etc. This fouling is therefore more
difficult to remove than the fouling of the blades of the fan.
This solution provides several advantages over the existing solutions.
One advantage is that the cleaning of the parts of the engine
subjected for fouling is adapted to the certain properties of the fouling
of each part. Accordingly, the cleaning of the different components of
the fan and the core engine can be individually adapted. This entails
a more efficient and time-saving cleaning of the engine compared to
the known methods, which utilize an uniform cleaning process.
Thereby, costs can be saved compared to the known methods
because the consumption of fuel can be reduced.


Another advantage is that both the suction side as well as the
pressure side of the blades of the fan can be reached by the cleaning
liquid. Thereby, the cleaning of the fan is more complete and efficient
compared to the known methods as they do not allow cleaning of the
pressure side.
A further advantage is that the cleaning device according to the
present invention can be used a variety of different types of turbine
engines including turbo-fan gas turbine engine having one, two,
three, or more shafts, and in which the fan and the cone for splitting
the airflow is rotating.
An additional advantage is that the durability of the engine can be
increased since a more efficient fouling removal entails that the
combustor temperature can be lowered. This has also a favourable
effect on the environment due to a decrease of NOx formation.
According preferred embodiments of the present invention, the first
nozzle and the second nozzle are arranged so that the cleaning liquid
emanating from the first nozzle and the second nozzle, respectively,
form a spray which, at impinge against a blade of the fan, has a
width, along an axis substantially parallel with the radial extension of
the blades of the fan, substantially equal to the length of a leading
edge of the blade. Thereby, the spray will provide liquid to the blade
on its entire length from tip to hub and the efficiency of the cleaning
or washing of the pressure side and the suction side, respectively, of
the blades of the fan are increased.
According to embodiments of the present invention, the third nozzle
is arranged so that the cleaning liquid emanating from the third
nozzle forms a spray which, at the inlet, has a width, along an axis


substantially parallel with the radial extension of the blades of the
fan, substantially equal to the distance between the splitter and the
point on the hub.
Further objects and advantages of the present invention will be
discussed below by means of exemplifying embodiments.
Brief description of the drawings
Preferred embodiments of the invention will now be described in
greater detail with reference to the accompanying drawings, in which
Fig. 1 shows the cross section of an aero gas turbine engine.
Fig.2 shows the cross section of a turbo-fan gas turbine engine.
Fig.3 shows the cross section of a turbo-fan gas turbine engine and
the preferred embodiment of the invention with two nozzles for
cleaning of the engine fan and one nozzle for cleaning the core engine.
Fig.4 shows details of the installation of nozzles.
Fig.5 shows the nozzle installation for cleaning of the fan blade
pressure side.
Fig.6. shows the nozzle installation for cleaning of the fan blade
suction side.
Fig.7. shows the nozzle installation for cleaning of the core engine.
Description of preferred embodiments


With reference now to Fig. 2, a two shaft unmixed turbofan aero
engine will be described. The two shaft unmixed turbofan engine is
one of several possible designs of a turbofan engine. This invention is
not limited to the embodiment of this description and its figures as it
is evident that the invention can be applied to other variants of
turbofan engine designs such as the mixed turbofan engine or
turbofan engines with one, three or more shafts. Characteristic for
the turbofan engine on which the invention is suitable for practice is
that the fan and its cone for splitting the airflow is rotating.
Engine 2 in Fig.2 comprises of a fan unit 202 and a core engine unit
203. The engine is built around a rotor shaft 24 which at its front end
is connected to a fan 25 and at the rear end turbine 26. Turbine 26
drives fan 25. A second shaft 29 is in form of a coaxial to first shaft
24. Shaft 29 is connected at its front end to compressor 27 and rear
end to turbine 28. Turbine 28 drives compressor 27. Arrows show the
air flow through the engine. Both fan unit 202 and core engine unit
203 provides thrust for propelling an aircraft.
Engine 2 has an inlet 20 where inlet air enters the engine. The inlet
air flow is driven by fan 25. One portion of the inlet air exits at outlet
21. The remaining portion of the inlet air enters into the core engine
at inlet 23. The air to the core engine is then compressed by
compressor 27. The compressed air together with fuel (not shown) is
combusted in combustor 201 resulting in pressurized hot
combustion gases. The pressurized hot combustion gases expands
towards core engine outlet 22. The expansion of the hot combustion
gases is done in two stages. In a first stage the combustion gases
expands to an intermediate pressure while driving turbine 28. In a
second stage the hot combustion gases expands towards ambient
pressure while driving turbine 26. The combustion gases exits the


engine at outlet 22 at high velocity providing thrust. The gas from
outlet 22 together with air from outlet 21 together make up the
engine thrust.
Fig.3 shows a cross section of the two shaft unmixed turbofan aero
engine 2. Similar parts are shown with the same reference numbers
as Fig.2. Fig.3 is an example only where the illustrated principals
apply to other aero gas turbine engines designs such as the mixed
turbofan engine or turbofan engines with one, three or more shafts.
Turbojet engine fans are designed with set of blades installed on the
fan hub and pointing outward in basically radial direction. Each
blade has a pressure side and a suction side defined by the direction
of rotation of the fan. A compressor washing device consist of three
nozzles types for spraying a cleaning fluid each one with a dedicated
purpose. One nozzle type serves the purpose of providing a cleaning
fluid for cleaning the pressure side of the fan. Another type nozzle
serves the purpose of providing a cleaning fluid for cleaning the
suction side of the fan. Yet another nozzle type serves the purpose of
providing a cleaning fluid for cleaning the core engine. The nozzles
are positioned upstream of fan 25. The nozzles have different spray
characteristics and liquid capacities.
A washing device for washing fan 25 consist of a stiff manifold 37 in
form of a conduit which in one end is connected to nozzles 31 and 35.
Nozzles 31 and 35 are firmed by the stiff manifold 37. The other end
of manifold 37 is connected to coupling (not shown) which is further
connected to a hose (not shown) which is further connected to a
pump (not shown). The cleaning liquid in conduit 37 may consist of
water or water with chemicals. The liquids temperature may be as
provided from the liquid source or may be heated in a heater (not


shown). The pump pumps the washing liquid to nozzle 31 and 35.
Liquid exiting the nozzle atomizes and forms a spray 32 and 36
respectively. Sprays 32 and 36 are directed towards fan 25.
The liquid pressure in conduit 37 is in the range 35 - 220 bar. This
high pressure results in a high liquid velocity through the nozzle.
Liquid velocity is in the range 50-180 m/s. The liquid velocity gives
the droplets sufficient inertia to allow the droplets to travel to the fan
from the nozzle tip. Arriving at the fan, the droplet velocity is
significantly higher than the rotation velocity of the fan, thereby
enabling washing of either the pressure side of the fan or the suction
side of the fan as further described below. The droplets collide with
the fan and will wet the fan surface. Contaminants will be released by
chemical act of the chemicals or the water. During the cleaning
process fan 25 is allowed to rotate by the help of the engine starter
motor or by other means. The rotation serves several purposes. First,
the rotation result in an air flow through the fan enhancing the travel
of the spray towards the fan. The air flow thereby increases the
collision velocity on the fan surface. A higher collision velocity
improves the cleaning efficiency. Second, the rotation of the fan
enables wetting of the entire fan area by use of only one nozzle as the
spray coverage extends from the fan hub to the fan tip. Third, the fan
rotation enhances the removal of released contaminants as the air
flow will shear off liquid from the fan blade surface. Fourth, the fan
rotation enhances the removal of released contaminants as
centrifugal forces will shear off liquid from the fan blade surface.
A washing device for washing the core engine consist of a stiff
manifold 38 in form of a conduit which in one end is connected to
nozzles 33. Nozzle 33 is firmed by the stiff manifold 38. The other end
of manifold 38 is connected to coupling (not shown) which is further


connected to a hose (not shown) which is further connected to a
pump (not shown). The cleaning liquid in conduit 38 may consist of
water or water with chemicals. The liquids temperature may be as
provided from the liquid source or may be heated in a heater (not
shown). The pump pumps a washing liquid to nozzle 33. Liquid
exiting the nozzle atomizes and forms a spray 34. Spray 34 is directed
towards fan 25. The liquid pressure in conduit 38 is in the range 35 -
220 bar. This high pressure results in a high liquid velocity through
the nozzle orifice. Liquid velocity is in the range 50-180 m/s. The
liquid velocity gives the droplets sufficient inertia to allow the droplets
to travel from the nozzle tip through the fan (in between the blades) to
inlet 23. Arriving at inlet 23, the liquid enters the compressor.
Inside the compressor the droplets collide with compressor
components such as blades and vanes. Contaminants will be released
by chemical act of the chemicals or the water. During the cleaning
process compressor 27 is allowed to rotate by the help of the engine
starter motor or by other means. The rotation serves several
purposes. First, the rotation result in an air flow through the
compressor enhancing the travel of the droplets towards the
compressor exit. The air flow thereby increases the collision velocity
on the compressor surface. A higher collision velocity improves the
cleaning efficiency. Second, the fan rotation enhances the removal of
released contaminants as the air flow will shear off liquid from the
fan blade surface. Third, the compressor rotation enhances the
removal of released contaminants as centrifugal forces will shear off
liquid from the compressor rotor blade surface.
The orifice geometry of nozzle 31, 35 and 33 defines the spray shape.
The shape of the spray has a significant importance to washing
result. The spray can be made to form many shapes such as circular,


elliptical or rectangular. This is accomplished by an appropriate
design and machining operations of the nozzle orifice. The circular
spray has a circular distribution of droplets characterized as a
conical spray. The elliptical spray is similar to the conical spray
however characterised by one of the circle axis is longer than the
other. It can be defined that the elliptical spray has a width-wise
distribution and a thickness-wise distribution of droplets where the
width-wise direction corresponds to the long axis of the ellipse and
the thickness-wise direction corresponds to the short axis of the
ellipse. It is also possible by appropriate design and machining
operations of the nozzle orifice to create a rectangular spray. The
rectangular spray shape has a width-wise and thickness-wise
distribution similar as to the elliptical spray. The circular spray has
equal width-wise and thickness-wise distribution. The square spray
has equal width-wise and thickness-wise distribution.
Fig.4 shows a cross section portion of the un-mixed turbofan engine.
Fig.4 shows details of the nozzle installation and orientation relative
to engine centreline 400. Similar parts are shown with the same
reference numbers as in Fig.2 and Fig.3. A fan 25 has a blade 40 with
a leading edge 41 and a trailing edge 42. Blade 40 has a tip 43 and a
boss 44 at the hub of fan 25. According to the design of the un-mixed
turbofan engine, air flow 20 will after passing fan 25 be split into two
flows. One portion of air flow 20 exits the fan section of the engine at
outlet 21. The other portion of the air flow enters the core engine
section at inlet 23 for providing air to the core engine. The air stream
is split into the two streams by splitter 45. The opening of inlet 23 is
limited by on one side splitter 45 and on the opposite side a point 46
on the hub.


According to the invention the washing system consist of three types
of nozzles, each dedicated for a specific task. The first nozzle type
serves the purpose of washing the pressure side of the fan blade. The
first nozzle type has an elliptic or rectangular spray shape. The
second nozzle type serves the purpose of washing the suction side of
the fan blade. The second nozzle type has an elliptic or rectangular
spray shape. The third nozzle serves the purpose of washing the core
engine. The third nozzle type has an elliptic or rectangular spray
shape. A washing unit according to the invention is made up of one
or a multiple of each of the three nozzle types.
Fig.4 shows the first nozzle type, nozzle 31, and it's with-wise
projection. Nozzle 31 serves the purpose of providing washing liquid
for washing the pressure side of blade 40. The leading edge 41 of
blade 40 has a length equal to the distance between tip 43 and boss
44. Nozzle 31 is positioned in axial direction at a point preferably
more than 100 mm, and more preferably more than 500 mm and less
than 1000 mm, upstream of the fan leading edge 41. The nozzle 31 is
positioned in a radial direction at a point less than the fan diameter
and greater than the fan hub diameter. Nozzle 31 is directed towards
fan 25. Nozzle 31 atomizes a washing liquid forming a spray 32.
Nozzle 31 provides an elliptic or rectangular spray pattern. The nozzle
is oriented so that the width-wise axis of the spray pattern is parallel
with leading edge 41 of blade 40. At one side of the spray pattern the
width-wise distribution is limited by streamline 75. On the opposite
side of the spray pattern the width-wise distribution is limited by
streamline 76. From the nozzle's orifice point the width-wise measure
of spray 32 at leading edge 41 will be equal to the length of leading
edge 41. The spray will thereby provide liquid to the blade on its
entire length from tip to hub.


Fig.5 shows nozzle 31 as seen from a projection from the rotor
periphery towards the shaft centre. In Fig.5 nozzle 31 is seen in its
thickness-wise projection. Nozzle 31 serves the purpose of providing
washing liquid for washing the pressure side of blade 40. Fan 25
consists of a multiple of fan blades mounted on the fan hub and
extending basically in radial direction. The view shows the typical
blade pitch relative to the engine centreline 400. The fan rotates in
the direction indicated by arrow. Blade 40 has a leading edge 41 and
a trailing edge 42. Blade 40 has a pressure side 53 and a suction side
54. Nozzle 31 is positioned at a point upstream of fan 25. Nozzle 31
atomizes a washing liquid forming a spray 32. Nozzle 31 is directed
towards fan 25. Fig. 5 shows the nozzle tangential angle X relative to
the engine centreline 400. The tangential angle X is preferably more
than 40 degrees, and more preferably more than 60 degrees and less
than 80 degrees, relatively to the engine centreline 400. Nozzle 31
forms an elliptic or rectangular spray pattern. Nozzle 31 is oriented
around the nozzle axis so that the thickness-wise axis of the spray
pattern is limited on one side of the spray pattern by streamline 51
and on the opposite side of the spray pattern by streamline 52.
Returning to Fig.4, this figure show the second nozzle type, nozzle 35,
and it's with-wise projection. Nozzle 35 has the objectives of providing
washing liquid for washing the suction side of blade 40. Blade 40 has
a tip 43 and a boss 44. The leading edge 41 of blade 40 has a length
equal to the distance between tip 43 and boss 44. Nozzle 35 is
positioned in an axial direction at a point preferably more than 100
mm, more preferably more than 500 mm and less than 1000 mm,
upstream of the fan leading edge. The nozzle 35 is positioned in radial
direction at a point less than the fan diameter and greater than the
fan hub diameter. Nozzle 35 is directed towards fan 25. Nozzle 35
atomizes a washing liquid forming a spray 36. Nozzle 35 provides an


elliptic or rectangular spray pattern. The nozzle is oriented so that
the width-wise axis of the spray pattern is parallel with leading edge
41 of blade 40. At one side of the spray pattern the width-wise
distribution is limited by streamline 75. On the opposite side of the
spray pattern the width-wise distribution is limited by streamline 76.
From the nozzle's orifice point the width-wise measure of spray 36 at
leading edge 41 will be equal to the length of leading edge 41. The
spray will thereby provide liquid to the blade on its entire length from
tip to hub.
Fig.6 shows nozzle 35 as seen from a projection from the rotor
periphery towards the shaft centre. In Fig.6 nozzle 35 is seen in its
thickness-wise projection. Nozzle 35 serves the purpose of providing
washing liquid for washing the suction side of blade 40. Fan 25
consists of numerous of fan blades mounted on the fan hub and
extending basically in radial direction. The view shows the typical
blade pitch relative to the engine centreline 400. The fan rotates in
the direction indicated by arrow. Blade 40 has a leading edge 41 and
a trailing edge 42. Blade 40 has a pressure side 53 and a suction side
54. Nozzle 35 is installed at a point upstream of fan 25. Fig. 6 shows
the nozzle tangential angle Z relative to the engine centre line 400.
The tangential angel is preferably more than 20 degrees and less than
-20 degrees, and more preferably zero degrees, relatively the engine
centre line 400. Nozzle 35 atomizes a washing liquid forming a spray
36. Nozzle 35 is directed towards fan 25. Nozzle 35 forms an elliptic
or rectangular spray pattern. Nozzle 35 is oriented around the nozzle
axis so that the thickness-wise axis of the spray pattern is limited on
one side of the spray pattern by streamline 61 and on the opposite
side of the spray pattern by streamline 62.


Returning to Fig.4, this figure shows the third nozzle type, nozzle 33,
and it's with-wise projection. Nozzle 33, has the objectives of
providing washing liquid for washing of the core engine. Nozzle 33 is
positioned in axial direction at a point preferably more than 100 mm,
and more preferably more than 500 mm and less than 1000 mm,
upstream of the fan leading edge. Nozzle 33 is positioned in radial
direction at a point less than half the fan diameter and greater than
the fan hub diameter. Nozzle 33 is oriented as to allow the liquid to
penetrate through the fan in between the blades. Nozzle 33 atomizes
a washing liquid forming a spray 34. Nozzle 33 forms an elliptic or
rectangular spray pattern. The nozzle is oriented so that the width-
wise axis of the spray pattern is parallel with leading edge 41 of blade
40. At one side of the spray pattern the width-wise distribution is
limited by streamline 47. On the opposite side of the spray pattern
the width-wise distribution is limited by streamline 48. The air inlet
to the core engine has an opening corresponding to the distance
between splitter 45 and point 46. The width-wise measure of spray 34
at the inlet opening to the core engine will correspond to the distance
between splitter 45 and point 46. Spray 34 thereby provides liquid for
entering inlet 23.
Fig. 7 shows details of a typical installation of nozzle 33 as seen from
a projection from the rotor periphery towards the shaft centre. In
Fig.7 nozzle 33 is seen in its thickness-wise projection. Fan 25
consists of numerous of fan blades mounted on the fan hub and
extending basically in radial direction. The view shows a typical blade
pitch relative to the engine centreline 400. The fan rotates in the
direction indicated by arrow. Blade 40 has a leading edge 41 and a
trailing edge 42. The third nozzle type, nozzle 33, has the purpose of
providing washing liquid for washing the core engine. Nozzle 33 is
positioned at a point upstream of fan 25. Fig. 7 shows the nozzle

WE CLAIM
1. A device for cleaning a gas turbine engine (2), which engine (2) comprises
at least one engine shaft (24,29), a fan (25) rotatably arranged on a first
shaft (24), which fan (25) comprises a plurality of fan blades (40)
mounted on a hub and extending substantially in a radial direction each
having a pressure side (53) and a suction side (54), and a core engine
(203) including a compressor unit (27) and turbines (26,28) for driving
said compressor unit (27) and said fan (25), comprising a plurality of
nozzles (31,33, 35) arranged to atomize cleaning liquid in the air stream in
an air inlet (20) of the engine (2) up-stream of said fan (25),
characterized by
a first nozzle (31) arranged at a position relative a centre line (400) of
said engine (2) upstream said fan (25) and arranged such that the
cleaning liquid emanated from said first nozzle (31) impinges the surfaces
of said blades (40) substantially on said pressure side (53);
a second nozzle (35) arranged at a position relative said centre line (400)
of said engine (2) upstream said fan (25) and arranged such that the
cleaning liquid emanated from said second nozzle (35) impinges the
surfaces of said blades (40) substantially on said suction side (54); and
a third nozzle (33) arranged at a position relative said centre line (400) of
said engine (2) upstream said fan (25) and arranged such that the
cleaning liquid emanated from said third nozzle (33) passes substantially
between said blades (40) and enters an inlet (23) of said core engine
(203).

2. The device as claimed in claim 1, wherein said first nozzle (31) and said
second nozzle (35) are arranged so that the cleaning liquid emanated
from said first nozzle (31) and said second nozzle (35), respectively, form
a spray (32) which, at impinge against a blade (40), has a width (75,76),
along an axis substantially parallel with the radial extension of the blades
(40) of said fan (25), substantially equal to the length of a leading edge
(41) of said blade (40).

3. The device as claimed in claim 1 or 2, wherein when said inlet (23) of said
core engine (203) is limited by on one side a splitter (45) and on the
opposite side a point (46) on said hub, said third nozzle (33) is arranged
so that the cleaning liquid emanated from said third nozzle (33) forms a
spray (34) which, at said inlet (23), has a width (47,48), along an axis
substantially parallel with the radial extension of the blades (40) of said
fan (25), substantially equal to the distance between said splitter (45) and
said point (46) on said hub.
4. The device as claimed in any one of the preceding claims, wherein said
first nozzle (31) is arranged at a first tangential angle (X) relatively to said
centre line (400) of said engine (2), and/or said second nozzle (35) is
arranged at a second tangential angle (Z) relatively to said centre line
(400) of said engine (2), and/or said third nozzle (33) is arranged at a
third tangential angle (Y) relatively to said centre line (400) of said engine
(2).
5. The device as claimed in claim 4, wherein said first tangential angle (X)
preferably is greater than 40 degrees and more preferably greater than 60
degrees and less than 80 degrees.

6. The device as claimed in claim 4, wherein said second tangential angle (Z)
preferably greater than-20 degrees and less than 20 degrees and more
preferably substantially zero degrees.
7. The device as claimed in claim 4, wherein said third tangential angle (Y)
preferably is greater than 20 degrees and more preferably greater than 25
degrees and less than 30 degrees.
8. The device as claimed in any one of the preceding claims, wherein each of
said first nozzle (31), said second nozzle (35), and said third nozzle (33)
are arranged at a point more than 100 mm in a an axial direction
upstream the leading edge (41) of said fan (25), and more preferably at a
point more than 500 mm and less than 1000 mm upstream the leading
edge (41) of said fan (25).
9. The device as claimed in any one of the preceding claims, wherein each of
said first nozzle (31), said second nozzle (35), and said third nozzle (33)
are arranged at a position, in a radial direction, at a point less than the
diameter of the fan (25) and greater than a diameter of said hub of said
fan (25).
10. A method for cleaning a gas turbine engine (2), which engine (2)
comprises at least one engine shaft (24,29), a fan (25) rotatably arranged
on a first shaft (24), which fan (25) comprises a plurality of fan blades
(40) mounted on a hub and extending substantially in a radial direction
each having a pressure side (53) and a suction side (54), and a core

engine (203) including a compressor unit (27) and turbines (26,28) for
driving said compressor unit (27) and said fan (25), comprising a plurality
of nozzles (31,33, 35) arranged to atomize cleaning liquid in the air
stream in an air inlet (20) of the engine (2) up-stream of said fan (25),
characterized by comprising the steps of:
applying cleaning liquid emanated from a first nozzle (31) substantially on
said pressure side (53);
applying cleaning liquid emanated from a second nozzle (35) substantially
on said suction side (54); and
directing cleaning liquid emanated from a third nozzle (33) such that the
cleaning liquid passes substantially between said blades (40) and enters
an inlet (23) of said core engine (203).
11.The method as claiemd in claim 10, Comprising the step of:
forming a spray (32) of the cleaning liquid emanated from said first nozzle
(31) and said second nozzle, respectively, which, at impinge against said
leading edge (41), has a width (75, 76), along an axis substantially
parallel with the radial extension of the blades (40) of said fan (25),
substantially equal to the length of a leading edge (41) of a blade (40).

12.The method as claimed in claim 10 or 11, wherein said inlet of said core
engine (203) is limited by, on one side, a splitter (45) and, on the
opposite side, a point (46) on said hub, comprising the step of:
forming a spray (34) of the cleaning liquid emanating from said third
nozzle (33) which, at said inlet, has a width (47,48), along an axis
substantially parallel with the radial extension of the blades (40) of said
fan (25), substantially equal to the distance between said splitter (45) and
said point (46) on said hub.
13.The method as claimed in any one of claims 10-12, comprising the steps
of:
directing the cleaning liquid emanated from said first nozzle (31) at a first
tangential angle (X) relatively to said centre line (400) of said engine (2),
and/or
directing the cleaning liquid emanated from said second nozzle (35) at a
second tangential angle (Z) relatively to said: centre line (400) of said
engine (2), and/or
directing the cleaning liquid emanated from said third nozzle (33) at a
third tangential angle (Y) relatively to said centre line (400) of said engine
(2).
14.The method as claimed in claim 13, wherein said first tangential angle (X)
preferably is greater than 40 degrees and more preferably greater than 60
degrees and less than 80 degrees.

15. The method as claimed in claim 13, wherein said second tangential angle
(Z) is preferably greater than - 20 degrees and less than 20 degrees and
more preferably substantially zero degrees.
16. The method as claimed in claim 13, wherein said third tangential angle
(Y) preferably is greater than 20 degrees and more preferably greater
than 25 degrees and less than 30 degrees.
17. The method as claimed in any one of the preceding claims 10-16,
comprising the step of arranging each of said first nozzle (31), said second
nozzle (35), and said third nozzle (33) preferably at a point more than 100
mm in a an axial direction upstream the leading edge (41) of said fan
(25), and more preferably at a point more than 500 mm and less than
1000 mm upstream the leading edge (41) of said fan (25).
18.The method as claiemd in any one of the preceding claims 10-
17, comprising the step of arranging each of said first nozzle (31), said
second nozzle (35), and said third nozzle (33) at a position, in a radial
direction, at a point less than the diameter of the fan (25) and greater
than a diameter of said hub of said fan (25).


The invention relates to device for cleaning a gas turbine engine (2), and in
particular an engine of turbofan type. The present invention further relates to a
method for cleaning such a engine. The device comprises a plurality of nozzles
(31, 33, 35) arranged to atomize cleaning liquid in the air stream in an air inlet
(20) of the engine (2) up-stream of a fan (25) of the engine (2). According to
the invention a first nozzle (31) is arranged at a position such that the cleaning
liquid emanating from the first nozzle (31) impinges the surfaces of the blades
(40) substantially on the pressure side (53); a second nozzle (35) is arranged at
a position such that the cleaning liquid emanating from the second nozzle (35)
impinges the surfaces of the blades (40) substantially on the suction side (54);
and a third nozzle (33) is arranged at a position such that the cleaning liquid
emanating from the third nozzle (33) passes substantially between the blades
(40) and enters an inlet (23) of the core engine (203). Thereby, the different
types of fouling found on the fan and in the core engine compressor of turbofan
engine can be removed in an efficient manner.

Documents:

00929-kolnp-2005-abstract.pdf

00929-kolnp-2005-claims.pdf

00929-kolnp-2005-description complete.pdf

00929-kolnp-2005-form 1.pdf

00929-kolnp-2005-form 2.pdf

00929-kolnp-2005-form 3.pdf

00929-kolnp-2005-form 5.pdf

929-KOLNP-2005-(01-02-2012)-FORM-27.pdf

929-kolnp-2005-abstract 1.1.pdf

929-KOLNP-2005-ABSTRACT.pdf

929-kolnp-2005-amanded claims 1.1.pdf

929-KOLNP-2005-AMANDED CLAIMS.pdf

929-kolnp-2005-correspondence 1.1.pdf

929-KOLNP-2005-CORRESPONDENCE 1.2.pdf

929-kolnp-2005-correspondence-1.3.pdf

929-KOLNP-2005-CORRESPONDENCE.1.3.pdf

929-KOLNP-2005-CORRESPONDENCE.pdf

929-kolnp-2005-correspondence1.4.pdf

929-kolnp-2005-description (complete) 1.1.pdf

929-KOLNP-2005-DESCRIPTION (COMPLETE).pdf

929-KOLNP-2005-DRAWINGS.pdf

929-KOLNP-2005-EXAMINATION REPORT.1.3.pdf

929-kolnp-2005-examination report.pdf

929-KOLNP-2005-FORM 1.pdf

929-kolnp-2005-form 13.1.pdf

929-KOLNP-2005-FORM 13.pdf

929-KOLNP-2005-FORM 18.1.3.pdf

929-kolnp-2005-form 18.1.pdf

929-KOLNP-2005-FORM 18.pdf

929-kolnp-2005-form 2 1.1.pdf

929-KOLNP-2005-FORM 2.pdf

929-KOLNP-2005-FORM 26.1.3.pdf

929-kolnp-2005-form 26.pdf

929-KOLNP-2005-FORM 27.pdf

929-KOLNP-2005-FORM 3.1.3.pdf

929-kolnp-2005-form 3.1.pdf

929-KOLNP-2005-FORM 3.pdf

929-KOLNP-2005-FORM 5.1.3.pdf

929-kolnp-2005-form 5.1.pdf

929-KOLNP-2005-FORM 5.pdf

929-KOLNP-2005-FORM-27.pdf

929-kolnp-2005-granted-abstract.pdf

929-kolnp-2005-granted-claims.pdf

929-kolnp-2005-granted-description (complete).pdf

929-kolnp-2005-granted-drawings.pdf

929-kolnp-2005-granted-form 1.pdf

929-kolnp-2005-granted-form 2.pdf

929-KOLNP-2005-GRANTED-LETTER PATENT.pdf

929-kolnp-2005-granted-specification.pdf

929-KOLNP-2005-OTHERS.1.3.pdf

929-KOLNP-2005-OTHERS.pdf

929-kolnp-2005-others1.1.pdf

929-KOLNP-2005-PETITION UNDER RULE 137.pdf

929-KOLNP-2005-REPLY TO EXAMINATION REPORT.1.3.pdf

929-KOLNP-2005-REPLY TO EXAMINATION REPORT.pdf

929-kolnp-2005-reply to examination report1.1.pdf


Patent Number 248932
Indian Patent Application Number 929/KOLNP/2005
PG Journal Number 37/2011
Publication Date 16-Sep-2011
Grant Date 12-Sep-2011
Date of Filing 19-May-2005
Name of Patentee GAS TURBINE EFFICIENCY AB.
Applicant Address P.O. BOX 633, S-175 27 JARFALLA, SWEDEN
Inventors:
# Inventor's Name Inventor's Address
1 MR. PETER ASPLUND BERGAMNSVAGEN 61, S-165 71 HASSELBY, SWEDEN
2 MR. CARL-JOHAN HJERPE SIGUNVAGEN4, S-131 46 NACKA, SWEDEN
PCT International Classification Number B08B 3/02
PCT International Application Number PCT/SE2004/000194
PCT International Filing date 2004-02-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA