Title of Invention

METHOD FOR OPERATING A GAS TURBINE GROUP

Abstract A gas turbine group (1) comprises means (3) , arranged in a suction-intake duct (2) , for cooling a suction-intake airflow (21) . These means are, for example, a device for injecting a liquid mass flow. According to the invention, the cooling means are activated automatically when a first limit temperature of the ambient air is overshot and are deactivated automatically when a second limit temperature is undershot. The stability of the automatic algorithm is improved in that the second limit temperature lies by a specific amount below the first limit temperature. In one embodiment of the invention, the limit temperatures are predetermined as a function of the position of an adjustable initial guide blade cascade (15) . By means of the invention, the advantages of cooling the suction-intake air are utilized whenever possible, without the attentiveness of the operating personnel being required for this. (Figure 1)
Full Text

Description
Method for operating a gas turbine group
Technical field
The present invention relates to a method for operating
a gas turbine group according to the preamble of claim
1.
Prior art
It is known from DE 25 49 790 to introduce a liquid into the suction-intake air of the compressor, upstream of the compressor, in order to increase the power output of a gas turbine group. The injected liquid mass flow is in this case dimensioned from case to case in such a way that, in addition to a first part mass flow, which evaporates upstream of the compressor in the suction-intake air, a further part mass flow penetrates as liquid into the compressor. The liquid cools, on the one hand, due to the evaporation of the suction-intake air, with the result that the mass flow of the working fluid is increased. If, furthermore, liquid penetrates into the compressor, this causes an intensive internal cooling of the air during compression. The power consumption of the compressor and the final compressor temperature fall as a result. This leads to a rise in the net power output and to an improved efficiency of the gas turbine circulation process.
In addition, to increase the power output precisely in the case of high outside temperatures, other methods for cooling the suction-intake air of gas turbine groups are also known, for example evaporation coolers, in which the suction-intake air flows over moistened surfaces, or coolers with heat exchangers which discharge heat from the suction-intake air.
Below a specific temperature of the ambient air and, if appropriate - insofar as the cooling principle is not

based on evaporation cooling - above a specific ambient atmospheric moisture, the cooling of the suction-intake air has to be deactivated, so that potentially harmful icing at the compressor inlet is avoided.
According to the prior art, the cooling of the suction-intake air serves primarily for increasing the power output beyond the basic maximum power of the gas turbine group which is available at a specific ambient temperature. If the ambient temperature lies above the critical icing temperature, cooling, for example liquid injection, is enabled and may be activated manually in the event of an increased power demand. As already indicated, the cooling of the suction-intake air and, in particular, the injection of liquid afford further advantages, for example an increase in efficiency and, in the case of a predetermined power output, a reduced temperature level of the overall circulation process. These potentials are utilized only incompletely in the manual activation of the cooling means.
Presentation of the invention
An object of the invention is, therefore, to specify a method of the type initially mentioned, such that the disadvantages of the prior art are avoided.
This is achieved by means of the method as claimed in claim 1.
The essence of the invention is, therefore, to activate automatically means for cooling the supply airflow of the compressor of a gas turbine group when the corresponding conditions, particularly with regard to the ambient temperature or the temperature of the inflow upstream of the compressor, if appropriate also with regard to atmospheric moisture, for enabling the cooling of the suction-intake air, for example for the inj ection of water or water/alcohol mixtures, are

fulfilled. The automatic activation of the cooling means ensures, inter alia, that the advantageous effects are utilized insofar as cooling is permissible within the framework of operational reliability, without in this case requiring the attentiveness of the operating personnel. In one embodiment of the invention, it is, of course, possible generally to deactivate the cooling manually, in order, for example, to save injectable liquid as an operating resource.
In one embodiment of the invention, the cooling means, for example a device for introducing a liquid mass flow, are activated only when this first limit temperature, also designated as the activation limit temperature, is continuously overshot at least for a certain delay time of, for example, one minute.
In a further embodiment of the invention, the cooling means, for example a device for introducing a liquid mass flow, are deactivated automatically when a second limit temperature, also designated as the deactivation limit temperature, is undershot. This second limit temperature is selected, in particular, to be lower than the first limit temperature- For example, the second limit temperature is selected so as to be 2 or 5°C lower than the first limit temperature. This difference between the two limit temperatures avoids an oversensitive activation and deactivation of the means for introducing the liquid mass flow. In a variant of the method according to the invention, the deactivation of the means for introducing the liquid mass flow takes place only when the second limit temperature has been continuously undershot at least for a second delay time of, for example, five minutes.
The delay times which are fixed for switching on and switching off and the difference between the two limit temperatures, to be precise the limit temperature which

triggers a deactivation of the means being lower than the limit temperature which triggers an activation of the means, increase the stability of the automatic algorithm.
In the prior art, it is known, for example from EP 781 909, to activate the introduction of liquid into the inflow of a compressor after the basic full load power of a gas turbine group has been reached. According to the invention, a device for introducing the liquid mass flow into the compressor inflow or other suitable means for cooling the suction-intake air are activated even well below the basic full load power of a gas turbine group, particularly even when an adjustable initial guide blade cascade of the compressor is not completely open. The temperature at which potential icing commences in the compressor inlet also depends, further, on the position of an adjustable initial guide blade cascade of the compressor. If this cascade is to a great extent closed, a sharp acceleration of the flow occurs in the region of the initial guide blade cascade, along with a lowering of temperature. This means that potential icing commences even at a higher ambient temperature than when an initial guide blade cascade is fully open. In one embodiment of the invention, this is taken into account in that the limit temperatures are predetermined as a function of the position of an adjustable initial guide blade cascade of the compressor, Of course, other influencing variables which may influence the commencement of potential icing, such as, for example, the ambient atmospheric moisture, may also be taken into account in fixing the limit temperature. Thus, for example, the limit temperatures may be fixed as a function of the ambient atmospheric moisture. It is also possible, within the framework of the implementation of the invention, to calculate a parameter from the ambient temperature and further

influencing variables, such as, for example, precisely the position of an adjustable initial guide blade cascade and the ambient atmospheric moisture, and to carry out the activation or deactivation of the cooling means as a function of this parameter. Ultimately, however, this too means the same as activating the means for introducing the liquid mass flow into the supply airflow of the compressor when a limit temperature of the ambient temperature is overshot and, if appropriate, deactivating when a second limit temperature is undershot.
The limit temperature is in this case raised or at least kept constant as a pure function of the position of the initial guide blade cascade during the closing of the initial guide blade cascade and in any event is not lowered as a function of the position of the initial guide blade cascade during the closing of the initial guide blade cascade. The term "limit temperature as a pure function of the position of the initial guide blade cascade" is to be understood as meaning that this requirement is in any event fulfilled when other parameters, on which the limit temperature is potentially likewise dependent, are constant. If further parameters have an influence here, for example the power of the gas turbine group or the moisture of the ambient air, the limit temperature may vary independently of the position of the initial guide blade cascade; however, for any fixed combination of such potential parameters, the required relation between the limit temperature and the position of the initial guide blade cascade is maintained.
In one embodiment of the invention, a further fixed lower limit temperature is predetermined, below which the cooling means are always deactivated. Furthermore, a lower limit value of the power of the gas turbine group may also be predetermined, below which the means

are always deactivated. In this case, this power limit value may be predetermined as an absolute power or as a relative power of the gas turbine group. A lower limit value of the position of the initial guide blade cascade may likewise be predetermined, the cooling means always being deactivated when the initial guide blade cascade is closed further.
The cooling power of the activated cooling device, for example a liquid mass flow introduced into the inflow of the compressor by a suitable device, is predetermined, in a variant of the method according to the invention, as a function of the mass airflow sucked in by the compressor and which depends in turn, in particular, on a position of the initial guide blade cascade. In another embodiment of the invention, the cooling power, for example the liquid mass flow introduced into the compressor inflow, is predetermined as a function of the power of the gas turbine group, of its relative power with respect to the full load power, of the final compressor temperature, of the final compressor pressure or of other suitable process variables of the gas turbine process.
The embodiments of the invention which are described above and are characterized in the subclaims may, of course, be combined with one another.
Brief description of the figures
The invention is explained in more detail below by means of exemplary embodiments illustrated in the drawing in which, in particular,
figure 1 shows a gas turbine group suitable for carrying out the method according to the invention; and
figure 2 shows an exemplary illustration of the regions in which the means for introducing the liquid mass flow

are activated or deactivated as a function of the ambient temperature and of the position of an adjustable initial guide blade cascade.
The exemplary embodiments illustrated below are to be understood merely instructively and serve for a better understanding of the invention; of course, not all the aspects of the invention characterized in the claims may be clarified within this framework.
Ways of implementing the invention
Figure 1 illustrates a gas turbine group 1 suitable for carrying out a method according to the invention. The gas turbine group 1, known per se from the prior art, has a compressor 11, a combustion chamber 12, a turbine 13 and a generator 14 which is arranged on a common shaft together with the compressor 11 and the turbine 13. The compressor 11 has, furthermore, an adjustable initial guide blade cascade 15. This can throttle or release the compressor inflow to a different extent, with the result that the mass airflow of the gas turbine group 1 is adapted to the load state in a manner which is known per se and is described sufficiently elsewhere. The supply airflow 21 flows to the compressor through an inflow duct 2; normally, in or on the inflow duct 2, further devices, such as weather protection slats, air filter devices, silencer devices and the like, are arranged, which, however, are familiar per se to a person skilled in the art and are therefore not illustrated, since they are not directly relevant to the implementation of the invention. A smoke gas flow 16 flows out of the turbine 13. Its residual heat may likewise be further utilized in a manner known per se. Arranged in the inflow duct is a device 3, by means of which a liquid mass flow can be introduced into the supply airflow 21 of the compressor. The evaporation of the liquid in the supply airflow cools the inflow to the compressor and

consequently increases the air density and, in the case of a constant position of the initial guide blade cascade 15, the mass airflow. If more liquid is introduced via the device 3 than can evaporate upstream of the compressor in the supply airflow, liquid drops penetrate into the compressor 11. These drops evaporate there with progressive compression and consequently bring about an intensive internal cooling of the compressor 11. By virtue of this process, the power consumption of the compressor falls, and the useful power available for driving the generator 14 rises. Moreover, if the useful power remains the same, the temperature level in the hot gas part of the gas turbine group is markedly reduced. During inflow into the compressor, the air is accelerated in the blade cascades of the compressor, with the result that the temperature at the compressor inlet falls. This lowering of temperature becomes all the more pronounced, the greater the extent to which the inflow is throttled by means of the adjustable initial guide blade cascade, that is to say the further the adjustable initial guide blade cascade is closed. This lowering of temperature may lead to the condensation of moisture from the suction-intake air and ultimately to the formation of ice. The build-up of ice in the inflow region of the compressor, on the one hand, leads to a deterioration in aerodynamics; on the other hand, ice fragments which come loose, if they penetrate into the compressor, may lead to serious damage to the compressor blades. The build-up of ice in the inflow region of the compressor must therefore as far as possible be avoided. In the prior art, various possibilities have been disclosed for supplying heat to the compressor inflow and thereby avoiding icing at the compressor inlet. By contrast, the injection of a liquid in the inflow duct 2 increases the risk of icing under unfavorable conditions. On the one hand, the temperature of the air is lowered further as a result

of the evaporation of the liquid; on the other hand, further moisture is supplied which may freeze in the compressor inlet. Consequently, under specific ambient conditions, the introduction of liquid upstream of the compressor is deactivated. The gas turbine group illustrated has at least one sensor 41 for the ambient temperature TAMB and, optionally, for the atmospheric moisture ψAMB of the ambient air. Alternatively, this measurement point may also be arranged in the inflow duct, upstream of the initial guide blade cascade; the inflow temperature is then measured. The measurement values are evaluated in the function block 4. The function block 4 determines from the measured values whether a permissible or an impermissible operating state for liquid injection is present and generates correspondingly a binary signal 0/1 which acts on the actuating member 31 and as a result of which the device 3 for introducing a liquid mass flow into the compressor inflow is activated or deactivated. That is to say, if the temperature TAMB undershoots a permissible minimum value, the device is deactivated. On the other hand, the device is activated automatically when a temperature limit value which reliably allows operation is overshot. These temperature limit values could optionally be fixed as a function of the ambient atmospheric moisture and/or other parameters. Furthermore, at a measurement point 42, the position VIGV of the adjustable initial guide blade cascade 15 is determined, and this is likewise evaluated in the function block 4. In this case, furthermore, the limit temperatures at which activation or deactivation of the device 3 takes place are fixed as a function of the position of the adjustable initial guide blade cascade. In this case, these selected temperatures are the higher, the further the adjustable initial guide blade cascade is closed, since an adjustable initial guide blade cascade closed to a great extent is accompanied by a correspondingly

greater lowering of temperature in the initial guide blade cascade. The liquid mass flow introduced when a device 3 is activated is in this case fixed, for example, in proportion to the mass airflow sucked in by the compressor.
Figure 2 illustrates an example of how the regions in which the device for introducing the liquid mass flow is activated or deactivated can be fixed as a function of the ambient temperature and of the initial guide blade cascade. In this case, the ambient temperature TAMB is plotted on the vertical axis, and the position VIGV of the adjustable initial guide blade cascade is plotted on the horizontal axis. Thus, a position of the initial guide blade cascade of 0° means that the initial guide blade cascade is open to a maximum. The adjustable initial guide blade cascade is closed increasingly toward negative angular positions. That is to say, the maximum closed position of the adjustable initial guide blade cascade is found on the left in the graph at -50° and the maximum open position of the adjustable initial guide blade cascade is found on the right at 0°. The area of the graph is subdivided into three regions I, II and III, The line designated by A represents the profile of the activation limit temperature against the position of the initial guide blade cascade. The line designated by B represents the profile of the deactivation limit temperature against the position of the initial guide blade cascade. When the line A leaves the region III and enters the region I, the activation signal for the means for introducing the liquid mass flow is set at active. That is to say, in the region I, the injection device 3 is always activated. If the line identified by B leaves the region III and enters the region II, the activation signal is set at inactive. That is to say, in the region II, the device 3 is always deactivated. The activation status is not changed if the overshooting of

lines A and B in each case takes place in reverse. The deactivation limit temperature in this case always lies below the activation limit temperature. The region III is formed between these. In this region, the injection device - or other means for cooling the suction-intake air, as appropriate - may be both activated and deactivated. This intermediate region prevents an oversensitive reaction of the automatic activation and deactivation algorithm. The lines designated by C and D designate absolute limit values of the ambient temperature and of the position of the initial guide blade cascade, below which values the device is always deactivated.
The method explained above for the automatic activation and deactivation of means for cooling the inflow of a compressor of a gas turbine group, for example a device for introducing a liquid mass flow into the inflow of a compressor of a gas turbine group, makes it possible to activate these means whenever the operating state of the gas turbine group and the ambient conditions allow this. In this case, the means are activated even below the basic full load of the gas turbine group at which the adjustable initial guide blade cascade is fully open. The advantages afforded by cooling, in particular the increased efficiency on account of the lower power consumption of the compressor, are therefore utilized whenever possible, without the constant attentiveness of the operating personnel being required for this purpose. Of course, within the scope of the invention, a possibility may also be provided for permanently deactivating the means manually, for example in order to save water. In the case of a low part load of the gas turbine group, cooling is deactivated automatically, for example to save water, without the attentiveness of the operating personnel being required.

The invention is described by way of example in terms of the injection of a liquid mass flow into the inflow of the compressor; the transfer of the automatic activation and deactivation algorithm to general means for cooling the compressor inflow will easily become apparent to a person skilled in the art.

List of reference symbols
1 Gas turbine group
2 Inflow duct
3 Cooling means, device for introducing a liquid mass flow
4 Function block

11 Compressor
12 Combustion chamber
13 Turbine
14 Generator
15 Adjustable initial guide blade cascade
16 Smoke gas flow
21 Supply airflow
31 Actuating member
41 Measurement point
42 Measurement point
A Profile of the activation limit temperature
B Profile of the deactivation limit temperature
C Absolute lower temperature limit value
D Absolute limit value of the position of the
initial guide blade cascade TAMB Ambient temperature
ΨAMB Relative atmospheric moisture of the ambient air VIGV Position of the adjustable initial guide blade
cascade







Patent Claims
1. A method for operating a gas turbine group (1), comprising measuring the temperature of the ambient air (TAMB) and/or the temperature in an inflow duct (2) of the gas turbine group, upstream of the compressor (11) of the gas turbine group, and automatically activating means (3) , arranged upstream of the compressor of the gas turbine group, for cooling the supply airflow of the compressor (11) when a first limit temperature (A) for this measurement value is overshot, characterized in that the means (3) are activated in the case of a partially closed position (VIGV) of an adjustable initial guide blade cascade (15) .
2. The method as claimed in claim 1, characterized in that the first limit temperature (A) is predetermined as a function of the position (VIGV) of an adjustable initial guide blade cascade of the compressor.
3. The method as claimed in either one of claims 1 and 2, characterized in that the second limit temperature (B) is predetermined as a function of the position (VIGV) of an adjustable initial guide blade cascade of the compressor.
4. The method as claimed in either one of claims 2 and 3, characterized in that the limit temperature is the higher, at least over a range of the position of the initial guide blade cascade, the further the initial guide blade cascade is closed.
5. The method as claimed in claim 4, characterized in that the limit temperature is raised or at least kept constant as a pure function of the position of the initial guide blade cascade during the closing of the initial guide blade cascade, and the limit temperature is in any event not lowered as a pure function of the

position of the initial guide blade cascade during the closing of the initial guide blade cascade.
6. The method as claimed in one of the preceding claims, characterized in that a fixed lower limit temperature (C) is predetermined, below which the means are always deactivated.
7. The method as claimed in one of the preceding claims, the cooling means comprising an evaporation cooler.
8. The method as claimed in one of the preceding claims, the cooling means comprising a heat exchanger which, in the activated state, discharges heat from the supply airflow.
9. The method as claimed in one of the preceding claims, the cooling means comprising a device for introducing a liquid mass flow into the supply airflow, characterized in that, with the means activated, a liquid mass flow is introduced into the supply airflow.
10. The method as claimed in one of the preceding claims, characterized in that a first delay time is fixed and, after the overshooting of the first limit temperature, the means are activated only when the limit temperature has been overshot at least for the entire delay time.
11. The method as claimed in one of the preceding claims, characterized in that, when a second limit temperature (B) is undershot, the means (3) for cooling the supply airflow are deactivated automatically.
12. The method as claimed in claim 11, characterized in that the second limit temperature (B) is selected to be lower than the first limit temperature (A).

13. The method as claimed in either one of claims 11 and 12, characterized in that a second delay time is fixed and, after the undershooting of the second limit temperature, the means are deactivated only when the limit temperature has been undershot at least for the entire second delay time.
14. The method as claimed in one of the preceding claims, characterized in that the ambient atmospheric moisture is measured and at least one limit temperature is predetermined as a function of the measured atmospheric moisture.
15. The method as claimed in one of the preceding claims, characterized in that a lower limit value of the power of the gas turbine group is predetermined, below which the means are always deactivated.
16. The method as claimed in claim 15, characterized in that the power limit value is predetermined as a relative power of the gas turbine group.
17. The method as claimed in one of claims 10 to 16, characterized in that a limit value (D) of the position of the initial guide blade cascade is predetermined, the means always being deactivated when the initial guide blade cascade is closed further.
18. The method as claimed in one of the preceding claims, characterized in that the cooling power applied by the means is predetermined as a function of the mass airflow sucked in by the compressor.
19. The method as claimed in one of the preceding claims, characterized in that a liquid mass flow introduced into the supply airflow by a device for introducing a liquid mass flow is predetermined as a

function of the mass airflow sucked in by the compressor.
Dated this 19 day of January 2007

(ARINDAM PAUL) Of De PENNING & De PENNING AGENT FOR THE APPLICANTS

Documents:

0224-chenp-2007-abstract.pdf

0224-chenp-2007-claims.pdf

0224-chenp-2007-correspondnece-others.pdf

0224-chenp-2007-description(complete).pdf

0224-chenp-2007-drawings.pdf

0224-chenp-2007-form 1.pdf

0224-chenp-2007-form 26.pdf

0224-chenp-2007-form 3.pdf

0224-chenp-2007-form 5.pdf

0224-chenp-2007-pct.pdf

224-CHENP-2007 AMENDED CLAIMS 18-05-2011.pdf

224-CHENP-2007 AMENDED PAGES OF SPECIFICATION 18-05-2011.pdf

224-CHENP-2007 CORRESPONDENCE 10-08-2010.pdf

224-CHENP-2007 CORRESPONDENCE OTHERS 18-05-2011.pdf

224-chenp-2007 form-3 18-05-2011.pdf


Patent Number 248178
Indian Patent Application Number 224/CHENP/2007
PG Journal Number 26/2011
Publication Date 01-Jul-2011
Grant Date 24-Jun-2011
Date of Filing 19-Jan-2007
Name of Patentee ALSTOM Technology Ltd.
Applicant Address BROWN BOVERI STRASSE 7, CH-5400 BADEN, SWITZERLAND
Inventors:
# Inventor's Name Inventor's Address
1 SHRI. DIAZ, CARLOS, ENRIQUE SCHELLENACKERSTRASSE 33D, CH-5400 BADEN, SWITZERLAND
2 HOFFMANN, JUERGEN HUEBACHERSTRASSE 17, CH-5417 UNTERSIGGENTHAL, SWITZERLAND
3 ULLRICH, ANDREAS SCHWARZWALDSTRASSE 22, D-797/87 LAUCHRINGEN, GERMANY
PCT International Classification Number F02C 7/143
PCT International Application Number PCT/EP05/52930
PCT International Filing date 2005-06-23
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 1215/04 2004-07-19 Switzerland