Title of Invention

"AZOLE DERIVATIVE USEFUL AS ANTIFUNGAL AGENTS WITH REDUCED INTERACTION WITH METABOLIC CYTOCHROMES"

Abstract The present invention relates to a compound selected from the group consisting of the azole derivatives having the general formula; including the salts thereof with pharmaceutically acceptable acids, the N-oxide forms thereof and the stereochemical isomers thereof, where: A is N or CH; Het is an aromatic heterocyclic radical containing one or more 0 or N atoms, optionally substituted with one or more 5- or 6- membered aromatic rings; B is an alkanoyl containing from 1 to 6 carbon atoms or is a residue of the formula where: R1 is hydrogen or a linear or branched alkyl residue containing from 1 to 6 carbon atoms and optionally substituted in one or more positions by hydroxyl groups; R2 and R3, taken separately, are hydrogen or an alkyl with 1-4 carbon atoms or, taken together, are a divalent radical of the formula -CH=N-, -N=CH-, -CH=-CH-, -CH2-CH2-
Full Text AZOLE DERIVATIVE USEFUL AS ANTIFUNGAL AGENTS WITH REDUCED INTERACTION WITH METABOLIC CYTOCHROMES
The present invention relates to novel compounds, of the general formula (I), the N-oxide forms thereof, the salts thereof with pharmaceutically acceptable acids and the stereochemical isomers thereof, which are useful as antifungal agents; to pharmaceutical compositions containing such compounds as the active ingredient; to methods for the production of said compounds and the associated pharmaceutical compositions.
(Formula Removed)
PRIOR ART
Numerous IH-imidazole and lH-l,2,4-triazole derivatives have been described and used for their antifungal properties. In particular derivatives of the type 1-(l,3-dioxolan-2-yl)memyl-lH-iniidazoles and lH-l,2,4-triazoles have been described in US patent 4,144,346, While others, of the type l-(4-phenyl-l-pipera2inyl-aryloxyme1hyl-l,3-dioxolan-2-yl)memyl-lH-imidazoles and 1H-1,2,4-triazoles, haye-been described in US patent 4,267,179. Itraconazole, one of the antifungal agents most widely used in clinical practice, belongs to this class of molecules; in itraconazole, as in other antifungal agents of this class, there is a dichlorophenyl (or difluorophenyl) residue attached to position 2 of the dioxolane ring.
We have now discovered a new class of antifungal molecules in which a heteroaromatic residue is attached to position 2 of the dioxolane ring; this new class of molecules, while retaining the antifungal properties of previous molecules, interacts to a lesser extent with some metabolic cytochromes; this characteristic is indicative of a better toxicological profile and of reduced interaction with other drugs. Moreover, the molecules provided by the present

invention have good solubility in water and may more readily be formulated and administered orally and/or parenterally.
DESCRIPTION OF THE INVENTION
The present invention provides novel IH-imidazole and lH-l,2,4-triazole derivatives having the formula
(Formula Removed)
the salts thereof with pharmaceutically acceptable acids, the N-oxide forms
thereof and the stereochemical isomers thereof, where:
A isN or CH;
Het is an aromatic heterocyclic radical containing one or more 0, N or S atoms,
optionally substituted with one or more 5- or 6-membered aromatic rings; said
radical may, for example, be selected from among: pyridines, pyridazines,
pyrazdnes, pyrimidines, thiophenes, oxazoles, thioazoles, pyrroles, pyrazoles,
imidazoles, triazoles and any corresponding fusion derivatives having two or
more rings or with one or more benzene rings;
B is an alkanoic residue containing from 1 to 6 carbon atoms (for example formyl,
aceryl, propanoyl etc.) or is a residue of the formula
(Formula Removed)

R2 R3 Formula (II) where:

Rl is hydrogen or a linear or branched alkyl residue containing from 1 to 6 carbon
atoms and optionally substituted in one or more positions by hydroxyl type
groups;
R2 and R3, taken separately, may be hydrogen or an alkyl with 1-4 carbon atoms
or, taken together, may be a divalent radical of the formula -CH=N-5 -N=CH-, -
CH=CH-, -CH2-CH2-.
Those compounds of the formula (I) where Rl is hydrogen may give rise to
tautomeric forms, which also fall within the scope of the present invention.
Compounds of the formula (I) may furthermore exist in hydrated and/or solvated
form and such forms also fall within the scope of the present invention.
The present invention also provides the use of the compounds of the formula (I),
both as a mixture of stereochemical isomers and in the form of the individual
isolated isomers as active ingredients alone or in combination with other
medicines for the production of pharmaceutical compositions intended for the
treatment of conditions of mycotic origin (such as for example vaginal
candidiasis) by means of topical and/or systemic administration.
The compounds provided by the present invention may be prepared by joining
intermediates of the formula (III),
(Formula Removed)
Formula(III) where A and Het are defined as above, with intermediates of the formula (IV),
(Formula Removed)

where B is defined as above.
The hydroxyl group of the intermediates (III) may be converted into an activated
group (tosyl, mesyl, triflate etc.) by methods known to the person skilled in the
art.
The intermediates of the formula (III) may be prepared using methods known to
the person skilled in the art; for example, starting from the corresponding
bromoacety] heteroaromatic derivatives, the procedure described in scheme 1
shown below may be followed.
(Formula Removed)

Scheme 1
Intermediates of the formula (IV) are commercially available, or may be prepared by means of known synthetic methods.
On the basis of the formula (I), it is obvious that the compounds provided by the present invention contain at least two asymmetric carbon atoms, specifically the atoms in positions 2 and 4 of the dioxolane ring; said compounds may accordingly exist in different stereoisomeric forms which, whether individually or as a mixture, fall within the scope of the present invention. With regard to the dioxolane ring, two regioisomeric forms may be distinguished, each comprising a pair of enantiomers which, in accordance with the rules stated in the C.A. Index Guide, section IV, page 85 (1972) are respectively denoted the cis form and the trans form. The two racemic forms may be obtained separately by using methods known to the person skilled in the art. Methods which may usefully be used include selective crystallisation and chromatographic separation. Such methods may also usefully be applied during the production of the intermediates of the formula (III), once the stereochemical configuration of the dioxolane ring has been established: in some cases, depending on the nature of the heterocyclic group, regioselective secondary reactions may also occur which result in the removal of one of the two forms. This occurs, for example, when the heterocyclic nucleus consists of 2-pyridine; in this case, during activation of the intermediate

(III), the trans form is subjected to an intramolecular regioselective reaction which facilitates its removal from the reaction mixture (c.f. scheme 2).
(Figure Removed)
Scheme 2
The optical isomers of the two regioisomeric forms (cis(+), cis(-), trans(+) and trans(-)) may in turn be obtained separately, preferably as early as during preparation of the intermediates of the formula (III) by using methods known to the person skilled in the art.
The compounds of the formula (I) and the pharmaceutically acceptable salts thereof are valuable therapeutic agents for treating fungal and bacterial infections. These compounds have in fact demonstrated considerable antifungal activity, both in vitro and in in vivo, towards various species of fungi, such as Candida albicans, Candida glabrata, Candida parapsilosis, Aspergillusfianigatus. Another positive characteristic of the compounds of the formula (I) concerns their limited activity in inhibiting various metabolic enzymes (for example the cytochromes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) which, in contrast, are frequently inhibited by other azole type antifungal agents. The inhibition of such enzymes in fact underlies various toxic effects and interactions with other drugs exhibited by some drugs in this class.
The data obtained in the experiments described below demonstrate the antifungal and antibacterial potency of some compounds of the formula (I) and their slight inhibition of the more significant cytochromes; these examples are merely intended to illustrate the usefulness of this class of compounds, but not to limit the scope of the present invention, whether with regard to the type of microorganisms which may effectively be combatted or with regard to the descriptive scope of the of the general formula (I). Experiment A: antifungal activity of compounds of the formula (II)

The antifungal activity of the compounds of the formula (I) was determined using various strains of yeast and filamentous fungi. The IC5o value (minimum concentration to bring about 50% inhibition) was determined using the liquid phase microdilution method as specified in documents M27 (1997) and M38-P (1998) from NGCLS (National Committee for Clinical Laboratory Standards). Table no. 1 shows IC50 values (mg/ml) for some compounds of the invention.

(Table Removed)
Table no. 1
Experiment B; Inhibition of human cytochromes by compounds of the formula (I) Inhibition of the enzymatic activity of the most significant isoforms of human cytochromes by the compounds of the formula (I) was measured by using specific substrates which become fluorescent as a result of the metabolic action of a particular cytochrome isoform. The individual isoenzymes (Gentest) and the respective substrates were incubated in 96 well plates in buffer containing NADH at 37°C in the presence or absence of the compound under investigation. On completion of the experiment the plates were read at the appropriate wavelengths in a "Fiuoroskan Ascent" instrument, and the IC50 values (minimum concentration to bring about 50% inhibition) were calculated. The degree of inhibition of each individual isoenzyme by known inhibitors was also assessed as a positive control.
Table no. 2 shows the IC50 values (µM) obtained for some of the compounds of the invention.

(Table Removed)
Table no. 2
Experiment C: study of the efficacy of compounds of the formula (I) in a mouse model of systemic Candidiasis.
Immunocompetent CDI mice (approx. 20 g) were inoculated with a strain of Candida albicans of clinical origin, which had previously been investigated for its in vitro susceptibility to itraconazole (NCCLS standard method) and for its LD50 in mice.
The C. albicans isolate was cultured for 24 h in yeast dextrose broth. The blastospores were recovered by centrirugation, repeatedly washed in sterile saline solution and the inoculum adjusted to the desired concentration. The inoculum was verified by a subsequent count of CFU/ml on Sabouraud plates. The mice were then inoculated intravenously (0.2 ml/mouse). 24 hours after inoculation with C. albicans, the animals were randomised into the following treatment groups (10 mice/group):
1. Itraconazole: 50 mg/kg/day (two 25 mg/kg treatments twice daily at 12
hour intervals)
2. Compound under investigation: 50 mg/kg/day (two 25 mg/kg treatments
twice daily at 12 hour intervals)
3. Compound under investigation; 10 mg/kg/day (two 5 mg/kg treatments
twice daily at 12 hour intervals)
4. Control (placebo)
The compounds were administered orally (suspension in PEG 200, 0.2 ml/mouse) for 10 consecutive days and the animals were observed until day 30. The survival curves between the various treatment groups and between these groups and the control groiip were evaluated using the Kaplan-Meier method.

(Table Removed)
Table no. 3 EXAMPLES
The following Examples are intended to illustrate the scope of the present
invention and should not be considered to limit it in any way.
(A) Preparation of the intermediates of the formula (III) EXAMPLE NO. 1
A) Synthesis of 2-bromoacetyl-pyridine hydrobromide
100 g of 2-acetylpyridine were dissolved in 366 ml of 33% hydrobromic acid in acetic acid; the solution was heated to 40°C and a solution of 264 g of pyridinium tribromide in 500 ml of acetic acid was added. The mixture was kept at 40°C overnight.
The reaction mixture was cooled and the precipitate filtered out and washed with 200 ml of acetic acid. The precipitate was resuspended in 400 ml of THF, then filtered out and dried, giving rise to 200 g of 2-bromoacetyl-pyridine hydrobromide (yield 87%).

B) Synthesis of 2-(pyridin-2-yl)-2-bromomeihyl-4-hydroxyinetbyl-l .3-dioxolane
(cis/trans)
316 ml of glycerol were dissolved in 2 1 of toluene and 13.6 g of p-toluenesulfonic acid and 195 g of 2-bromoacetyl-pyridine hydrobromide were added to this solution.
The reaction mixture was refluxed for 24 hours, with removal of the water present in the azeotrope. Once the mixture had cooled to ambient temperature, 2 1 of 5% NaHCO3 were added, the two-phase mixture was stirred for 5 minutes and the phases were then separated. The aqueous phase was extracted six times with 600 ml of toluene, the organic phases were combined, dehydrated with Na2So4, and evaporated to dryness under reduced pressure, giving rise to 80 g of (cis/trans)-2-(pyridin-2-yl)-2-bromomethyl-4-hydroxymeth.yl-1,3-dioxolane (yield 42%).
C) Synthesis of cis(±)2-(pyridm-2-yl)-2-bromomethyl-4-henzoxvmethyl-1.3-
dioxolane
80 g of (cis/trans)-2-(pyridin-2-yl)-2-bromomethyl-4-hydroxymethyl-l,3-dioxolane, obtained in the previous section, and 47 ml of pyridine were dissolved in 800 ml of methylene chloride; 34 ml of benzoyl chloride dissolved in 200 ml of methylene chloride were added to the solution, which was cooled in an ice bath. Once the addition was complete, the reaction mixture was kept at ambient temperature overnight, then was washed twice with 500 ml of 5% NaHCO3. The organic phase was dehydrated with Na2SO4 and evaporated to dryness.
The crude product was purified on a silica gel column using an ethyl acetate in n-hexane gradient (from 10 to 40%). 22.1 g of cij(±)-2-(pyridin-2-yl)-2-bromomethyl-4-benzoxymethyl-l,3-dioxolane were obtained (yield 19.9%). 41.2 g of "trans" product were also obtained to give a total of 63.3 g of 2-(pyridin-2-yl)-2-bromomethyl-4-benzoxymethyl-l,3-dioxolane (overall yield
TLC (hexane/ethyl acetate; 1:1 vol./vol.): Rf for cis regioisomer = 0.55, Rf for trans regioisomer = 0.64
D) Synthesis of dj(±)-2-(pyridin-2-yl)-2-(1-2.4-triazol-l-yl-methyl)-4-hydroxymethyl-L3-dioxolane
6 g of cis(±)-2-(pyridin-2-yl)-2-bromomethyl-4-benzoxymethyl-l,3-dioxolane, obtained in the previous section, were dissolved in 100 ml of DMF, 3.4 g of 1,2,4-triazole potassium salt were added to the solution and the mixture was heated to 130°C for 24 hours. The solvent was removed under reduced pressure, the residue was diluted with 130 ml of THF/water (5:1; vol./vol.) and 20.4 nil of 32% NaOH and the mixture was refluxed for 3 hours. Once the reaction mixture had cooled, the phases present were separated and the basic aqueous phase was extracted three times with 20 ml of THF. The combined organic phases were dehydrated and evaporated. The residue obtained was redissolved with 200 ml of THF and undissolved solids were removed by filtration.
The solution was evaporated and the residue was purified on a silica gel column, elution being carried out with a mixture of ethyl acetate/methanol (85:15; vol./vol.); The secondary product cis(±)-2-(pyridw-2-yl)-2-(l,2,4-triazol-4-yl-methyl)-4-hydroxymethyl-l,3-dioxolane (TLC in AcOEt/MeOH 8/2; Rf=0.12) was removed in this purification step and 2.98 g of cis(±)-2-(pyridin-2-yl)-2-(l ,2,4-triazol-1 -yl-methyl)-4-hydroxymethyl-l ,3-dioxolane (TLC in AcOEt/MeOH 8/2; Rf=0.27) were obtained (yield 71%). ]HNMR(200MHz):
δ (CDC13)= 8.68 (d 1H); 8.1 (s 1H); 7.9 (s 1H); 7.72 (ddd 1H); 7.58 (dd 1H); 7.3 (ddd 1H); 4.95 (dd 1H); 4.7 (dd 1H); 4.3 (m 1H); 4 (dd 1H); 3.7 (m 3H); 3.32(ddlH)ppm EXAMPLE NO. 2
Following the procedure described in Example no. 1 and using 4-acetylpyridine. the intermediate cis(±)-2-(pyridm-4-yr}-2-(1;2;4-triazol-l-3'l-methyl)-4-hydroxymethyl-1.3-dioxolane was obtained. 1H-NMR (200MHz):
δ (CDC13)= 8.6 (d 2H); 8.1 (s 1H); 8.0 (s 1H); 7.2 (d 2H); 4.9 (t 1H); 4.5 (s 2H); 4.2 (m 1H); 3.8 (m 1H): 3.6 (m 1H); 3.1 (m 2H) ppm EXAMPLE NO. 3

Following the procedure described in Example no. 1 and using 3-
acetylpyridine, the intermediate cis(±)-2-(pyridin-3-yl)-2-(ls2,4-triazol-l-yl-
methyl)-4-hydroxymethyl-l,3-dioxolane was obtained.
'H-NMR (200 MHz):
δ(CDC13)= 8.55 (m 2H); 8.4 (s 1H); 7.9 (s 1H); 7.7 (m 1H); 7.2 (m 1H); 4.85
(t 1H); 4.65 (s 2H); 4.0 (m 1H); 3.8 (m 1H); 3.6 (m 1H); 3.25 (m 1H); 3.1 (m
1H) ppm
EXAMPLE NO. 4
Following the procedure described in Example no. 1 and using 2-
acetyltbiazole, the intermediate cis(±)-2-(thiazol-2-yl)-2-(l,2,4-triazol-l-yl-
methyl)-4-hydroxymethyl-l,3-dioxolane was obtained.
'H-NMR(200MHz):
δ (CDC13)= 8.2 (d 1H); 7.9 (m 2H); 7.4 (d 1H); 5.05 (d 1H); 4.8 (m 1H); 4.45
(m 1H); 4.15 (t 1H); 3.85 (m 3H); 3.3 (dd 1H) ppm
EXAMPLE NO. 5
3 g of Pseudomonas cepacia Hpases (PCL) were added to a solution of 5 g of
cis(±)2-(pyridin-2-yl>2-(l ,2,4-triazoi-l -yl-methyl)-4-hydroxymethyl-l ,3-
dioxolane, obtained as described in Example no. 1, and 17 ml of vinyl acetate
in 100 ml of dichloromethane. The suspension was stirred for seven days, any
changes in the reaction being monitored by HPLC with a chiral column
(Chiralcel OJ, eluent ethanol/n-hexane 55:45).
The enzyme was filtered out and the solution was concentrated and introduced
into a silica gel column (eluent dichloromethane/methanol, 95:5). 1.5 g of cw(-
)2-(pyridin-2-yl)-2-(l,2,4-triazol-l-yl-me1iyl)-4-hydroxyniethyl-l,3-dioxolane
were isolated.
([a]D25°c=-13.6 (c=2.3; EtOH); ee=85%).
EXAMPLE NO. 6
4 g of d5(±)2-(pyridin-2-yl)-2-(l,2,4-triazol4-yl-methyl)-4-acetoxymethyl-
1,3-dioxolane, obtained from Example no. 5, partially enriched with cis(+)
isomer, were hydrolysed with NaOH in methanol giving rise to 3 g of cis(+)2-
(pyridm-2-yl)-2-(l,2,4-triazol4-yl-memyl)-4-hydroxyrnethyl-l,3-dioxolane
with an enantiomeric excess of 37%. The latter was dissolved in 80 ml of

dichloromethane and 4 g of PCL and 15 ml of vinyl acetate were added to the solution. The suspension was stirred for 30 hours, any changes in the reaction being monitored by HPLC with a chiral column (Chiralcel OJ, eluent ethanol/n-hexane 55:45).
The enzyme Avas filtered out and the solution was concentrated and introduced into a silica gel column (eluent dichloromethane/methanol, 95:5). 1.24 g of cis(+)2-(pyridm-2-yl)-2-(l,2,4-triazol-l-yl-niethyl)-4-acetoxymethyl-l,3-dioxolane were isolated. The ester was hydrolysed with NaOH in methanol and the residue was purified on a silica gel column (eluent dichloromethane/methanol, 97:3) giving rise to 1.05 g of cis(+)2-(pyridin-2-yl)-2-(l,2,4-triazol4-yl-methyl)-4-hydroxymethyl-l,3-dioxolane ([a]D2S°c=+14.0 (c=2.1; EtOH); ee=82%).
(B) Preparation of the intermediates of the formula (IV ) Various intermediates of the formula (IV) may be obtained commercially (e.g. 4-{4-[4-(4-hydroxyphenyl)-piperazm-l-yl]phenyl}-2,4-dihydro-2-[(l.,R/S)-l-methylpropyl]-3H-l,2,4-triazol-3-one; Nosch Labs, Hyderabad, India) or may be prepared in accordance with known procedures (c.f. for example US patent 4,267,179). The individual enantiomers of the intermediates (IV) which contain a chiral centre may be prepared using specific chiral reactants as shown in the following Examples. EXAMPLE NO. 7
A) 5 g of 4-toluenesulfonic acid (l,R)-l-methylpropyl ester were added to a suspension of 6 g of 4-{4-[4-(4-methoxyphenyl)-piperazin-l-yl]phenyl}-2,4-dihydro-3H-l,2,4-triazol-3-one and 1.12 g of KOH in 150 ml of DMSO. The reaction mixture was stirred at 40°C for 4 days, after which the solution was poured into 400 ml of water and the precipitate was filtered out and dried. The solid was suspended in 200 ml of methylene chloride and the insoluble fraction was removed by filtration; the filtered solution was evaporated and the residue was purified on a silica gel column (eluent CH2Cl2/methanol, 98:2, vol./vol.), giving rise to 3.2 g of 4-{4-[4-(4-methoxyphenyl)-piperazin-l-
(yield 51%).

3.2 g of 4-{4-[4-(4-methoxyphenyl)-piperazin-l-yl]p]ieiiyl}-2,4-dihydro-2-[(l)S)-l-methylpropyl]-3H-ls2,4-triazol-3-one obtained in the previous section were dissolved in 33 ml of 48% hydrobromic acid and the solution was refluxed for 6h. On completion, the mixture was cooled, the crystallised product was collected by filtration; the solid was dissolved in 100 ml of methanol/water (1:1, voL/vol.) and the solution was saturated by adding solid NaHCO3. The suspension was diluted with 70 ml of water and extracted three times with 80 ml of methylene chloride. The combined organic phases were dehydrated and evaporated to dryness. The residue was suspended in 70 ml of tert. -butyl methyl ether and stirred for 15 minutes; the solid was filtered out, giving rise to 2.1 gof 4-{4-[4-(4-hydroxyphenyl)-piperazin-l-yl]phenyl}-2,4-dihydro-2-[(l,S)-l-methylpropyl]-3H-l,2,4-triazol-3-one (yield 73%). !H-NMR (200 MHz):
↨5 (DMSO-d6)= 8.88 (s 1H); 8.34 (s 1H); 7.5 (d 2H); 7.1 (d 2H); 6.88 (d 2H); 6.7 (d 2H); 4.12 (m 1H); 3.33 (m 4H); 3.1 (m 4H); 1.7 (m 2H); 1.3 (d 3H); 0.8 (t3H)
EXAMPLE NO. 8
Following the procedure described in Example no. 7 and using 4-toluenesulfonic acid (l,S)-l-methylpropyl ester, the intermediate 4-{4-[4-(4-hydroxyphenyl)-piperazin- l-yl]phenyl} -2,4-dihydro-2-[(l ,R)-1 -methylpropyl]-3H-l,2,4-triazol-3-one (yield 73%) was obtained. 1H-NMR(200MHz):
δ (DMSO-d6)= 8.88 (s 1H); 8.34 (s 1H); 7.5 (d 2H); 7.1 (d 2H); 6.88 (d 2H); 6.7 (d 2H); 4.12 (m 1H); 3.33 (m 4H); 3.1 (m 4H); 1.7 (m 2H); 1.3 (d 3H); 0.8 (t3H)
(C) Preparation of the final products of the formula (I) EXAMPLE NO. 9
A) Synthesis of cis(±)-[2-(pyridin-2-yl)-2-a.2.4-triazol-l-yl-methyl)1.3-dioxolan-4-ylmethyl]4-toluenesulfpnate
2.72 g of cis(±)-2-(pyridin-2-yl)-2-(l,2,4-triazol-l-yl-methyl)-4-hydroxy-methyl-l,3-dioxolane were dissolved in 8.16 ml of pyridine and the solution was cooled in an ice bath. 2.36 g of 4-toluenesulfonyl chloride were added in

portions to the solution and, once addition was complete, the reaction mixture was adjusted to ambient temperature and stirred for approx. 2 hours. The reaction mixture was then diluted with 100 ml of ethyl acetate and washed first with 50 ml of 5% NaHCO3 and then with 50 ml of water. The organic phase was dehydrated with Na2S04 and evaporated to dryness. The crude product obtained in this manner was purified on a silica gel column (eluent ethyl acetate/methanol, 10:1, vol./vol.)s giving rise to 3.34 g of cw(±)-[2-(pyridm-l-yl)-2-(1,2,4-triazol-l-ylmethyl)-l,3-dioxolan-4-ylmethyl] 4-toluenesulfonate (yield 78%),
B) Synthesis of cis(±)-4-{4-[4-{4-[2-(pyridin-2-yn-2-(1H-l.2.4-triazol-l-yl-methul)-1.3-dioxolan-4-yl-methoxv]phenvl) -1 -piperazinvll -phenvl) -2-(1 -(R.S')methylpropyl)-2.4-dihydro-3H-1.2.4-triazol-3-one 0.818 g of potassium tert.-butylate were added to a solution of 2.835 g of 2,4-dihydro-4-{4-[4-(4-hydroxyphenyl)-l-pipera2inyl]phenyl}-2-(l-(R,S)methylpropyl)-3H-l,2,4-triazol-3-one in 60 ml of DMF. After 5 minutes, a solution of 3 g of cis(±)-[2-(pyridin-2-yl)-2-(l,2,4-triazol-l-yl-methyl)-l,3-dioxolan-4-yl-methyl] 4-toluenesulfonate, obtained in the previous section, in 60 ml of DMF was added. The reaction mixture was adjusted to 130°C and stirred for 3 hours, after which the solvent was evaporated under reduced pressure and the residue was resuspended with 60 ml of IN NaOH; the mixture was extracted three times with 120 ml of toluene. The combined organic phases were filtered and washed twice with 60 ml of IN NaOH and then with 120 ml of 5% NaCl. The organic phase was dehydrated and evaporated under reduced pressure, the residue was suspended in 13.5 ml of methyl ethyl ketone and the suspension was stirred for one hour. On completion, the solid was recovered by filtration and dried, giving rise to 1.275 g of cis(±)-4-{4-[4-{4-[2-(pyridin-2-yl)-2-(lH-1,2,4-triazol-l-yl-methyl}l,3-dioxolan-4-yl-methoxy]phenl}piperazin-l-yl]-phenyl}-2-[(l.R/S)-l-methylpropyl]-2.4-dihydro-3H-l52,4-triazoi-3-one (yield 28%; rn.p.= 166-167°C).
'H-NMR (200 MHZ):

6 (CDC13)= 8.72 (d 1H); 8.22 (s 1H); 7.91 (s 1H); 7.75 (ddd 1H); 7.60 (m 2H);
7.37 (m 3H); 6.92 (m 6H); 4.82 (s 2H); 4.45 (m 1H); 4.3 (m 1H); 4.03 (dd
1H); 3.82 (m 2H); 3.78 (m 9H); 1.78 (m 2H); 1.39 (d 3H); 0.91 (t 3H)
EXAMPLE NO. 10
Following the procedure described in Example no. 9 and using cis(±)-2-(pyridin-
4-yl)-2-(l.,2,4-triazol-l-yl-methyl)-4-hydroxymethyl-l,3-dioxolaneJ obtained in
Example no. 2, the product cis(±)-4-{4-[4r{4-[2-(pyridin-4-yl)-2-(lH-l,2,4-
Mazol-l-yl-methyl)-l,3-dioxolan-4-yl-methoxy]phenyl}-l-piperazinyl]-phenyl}-
2-(l-(R,S)methylpropyl)-2,4-dihydro-3H-l,2,4-triazol-3-one was obtained
(m.p.= 168-172°C).
1H-NMR(200MHz):
δ (CDC13)= 8.65 (d 2H); 8.20 (s 1H); 7.95 (s 1H); 7.60 (s 1H); 7.45 (m 4H);
6.90 (m 5H); 6.75 (d 1H); 4.52 (s 2H); 4.3 (m 2H); 4.1 (m 1H); 3.85 (m 3H);
3.3 (m 8H); 1.75 (m 2H); 1.40 (d 3H); 0.90 (t 3H)
EXAMPLE NO. 11
Following the procedure described in Example no. 9 and using cis(±)-2-(pyridin-
3-yl)-2-(l ,234-triazol-l-yl-meth.yl)-4-hydroxyme1:hyl-l ,3-dioxolane, obtained in
Example no. 3, the product cis(±)-4-{4-[4-{4-[2-(pyridin-3-yl)-2-(lH-l,2,4-
triazol-l-yl-methyl)-l,3-dioxolan-4-yl-methoxy]phenyl}-l-piperazinyl]-phenyl}-
2-(l-(R,S)methylpropyl)-2,4-dihydro-3H-l,2,4-tria2ol-3-one was obtained
(m.p.= 166-167°C).
1H-NMR(200MHz):
5 (CDC13)= 8.80 (s 1H); 8.65 (d 1H); 8.24 (s 1H); 7.92 (s 1H); 7.82 (d 1H);
7.62 (s 1H); 7.38 (m 3H); 6.99 (m 4H); 6.8 (d 2H); 4.56 (s 2H); 4.33 (m 2H);
3.38 (m 3H); 3.42 (m 9H); 1.78 (m 2H); 1.39 (d 3H); 0.90 (t 3H)
EXAMPLE NO. 12
Following the procedure described in Example no. 9 and using cw(±)-2-(thiazol-
2-yl)-2-(l,2,4-triazol-l-yl-methyl)-4-hydroxyrnethyl-l,3-dioxolane, obtained in
Example no. 4, the product cis(±)-4-{4-[4-{4-[2-(thiazol-2-yl)-2-(lH-l,2,4-
triazol-l-yl-methyl)-l,3-dioxolan-4-yl-methoxy]phenyl}-l-piperazinyl]-phenyl}-

2-(l-(R,S)methylpropyl)-2,4-dihydro-3H-l,2,4-triazol-3-one was obtained
(m.p.= 155°Cdec.).
1H-NMR(200MHz):
δ(CDC13)= 8.2 (s 1H); 7.9 (m 2H); 7.61 (s 1H); 7.42 (m 3H); 6.99 (m 4H);
6.80 (d 2H); 4.90 (s 2H); 4.58 (m 1H); 4.25 (m 2H); 3.81 (m 2H); 3.38 (m
10H); 1.75 (m 2H); 1.37 (d 3H); 0.89 (t 3H)
EXAMPLE NO. 13
Proceeding as described in Example no. 9, the intermediate cis(-)2-(pyridin-2-
yl)-2-(l,2,4-triazol-l-yl-methyl)-4-hydroxymethyl-l ,3-dioxolane, obtained in
Example no. 5, and the intermediate 4-{4-[4-(4-hydroxyphenyl)-piperazin-l-
yl]phenyl}-2,4-dihydro-2-[(l,S)-l-methylpropyl]-3H-l,2,4-triazol-3-one,
obtained in Example no. 7, were used to obtain cis(-)-4-{4-[4-{4-[2-(pyridin-
2-yl)-2-(lH-l,2,4-triazol-l-yl-methyl)-l,3-dioxolan-4-yl-
methoxy]phenyl}piperazin-l-yl]-phenyl}-2-[(l,S)-l-methylpropyl]-2,4-
dihydro-3H-l,2,4-triazol-3-one.
Chiral HPLC [Chiralcel OJ (4.6x250mm); ehient ethanol/hexane (75:25,
vol./vol.); 0.6 ml/min.]: Rt = 91.73 min.
EXAMPLE NO. 14
Proceeding as described in Example no. 9, the intermediate cis(+)2-(pyridin-2-
yl)-2-(l,2,4-triazol-l-yl-methyl)-4-hydroxymethyl-l,3-dioxolane, obtained in
Example no. 6, and the intermediate 4-{4-[4-(4-hydroxyphenyl)-piperazin-l-
yl]phenyl}-2,4-dihydro-2-[(l,S)-l-methylpropyl]-3H-l,2,4-triazol-3-one.)
obtained in Example no. 7, were used to obtain cis(+)-4-{4-[4-{4-[2-(pyridin-
2-yl)-2-(lH-l ,2,4-triazol-l -yl-methyl)-l ,3-dioxolan-4-yl-
methoxy]phenyl}piperazin-l-yl]-plienyl}-2-[(lJS)-l-methylpropyl]-2J4-
dihydro-3H-l ,2,4-triazol-3-one.
Chiral HPLC [Chiralcel OJ (4.6x250mm); eluent ethanol/hexane (75:25,
vol./vol.}; 0.6 ml/min.]: Rt = 119.04 min.
EXAMPLE NO. 15
Proceeding as described in Example no. 9. the intermediate cis(-)2-(pyridin-2-
yl)-2-(1.2.4-triazol-1 -yl-methyl)-4-hydroxymethyl-1,3-dioxolane, obtained in
Example no. 5. and the intermediate 4-{4-[4-(4-hydroxyphenyl)-piperazin-

obtained in Example no. 8, were used to obtain cis(-)-4-{4-[4-{4-[2-(pyridin-
methoxy]phenyl}piperazin- 1 -yl]-phenyl}-2-[(l ,R)-1 -methylpropyl]-2,4-
dihydro-3H-l,2,4-triazol-3-one.
Chiral HPLC [Chiralcel OJ (4.6x250mm); eluent ethanol/hexane (75:25,
vol/vol.); 0.6 nil/min.] : Rt = 68.28 min.
EXAMPLE NO. 16
Proceeding as described in Example no. 9, the intermediate cis(+)2-(pyridin-2-
yl)-2-(l,2,4-triazol-l-ylmethyl)-4-hydroxyrnethyl-l,3-dioxolane', obtained in
Example no. 6, and the intermediate 4-{4-[4-(4-hydroxyphenyl)-piperazin-l-
yl]phenyl}-2,4-dihydro-2-[(l,R)-1 -methylpropyl]-3H-l ,2,4-triazol-3-one,
obtained in Example no. 8, were used to obtain cis(+)-4-{4-[4-{4-[2-(pyridin-
2-yl)-2-(lH-lJ2,4-triazol-l-yl-methyl)-l,3-dioxolan-4-yl-
methoxy]phenyl}piperazin-l-yl]-phenyl}-2-[(l,R)-l-methylpropyl]-2,4-
dihydro-3H-l,2,4-triazol-3-one.
Chiral HPLC [Chiralcel OJ (4.6x250mm); eluent elhanol/hexane (75:25,
vol./vol.); 0.6 ml/min.]: Rt = 79.31 min.
EXAMPLE NO. 17
A) 0.1 g of cis(±)-[2-(pyridin-2-yl)-2-(l,2,4-triazol-l-yl-methyl)-l,3-
dioxolan-4-yl-methyl] 4-toluenesulfonate, obtained as described in section
A) of Example no. 9, were dissolved in 4 ml of anhydrous methylene
chloride and 48 mg of meta-chloroperbenzoic acid were added in portions
to the solution which had been cooled to 0°C. The mixture was stirred at
ambient temperature for 30 hours, after which the solvent was evaporated
and the residue was purified on a silica gel column (eluent: gradient from
ethyl acetate to ethyl acetate/methanol, 8:2, vol./vol.), giving rise to 100
mg of cis(±)-[2-(l-oxy-pyridin-2-yl)-2-(l,2,4-triazol-l-yl-methyl)-l,3-
dioxolan-4-yl-methyl] 4-toluenesulfonate (yield 62%).
B) Proceeding as described in section B) of Example no. 9 and using the
activated intermediate obtained in the preceding section, cis(±)-4-{4-[4-
{4-[2-(l -oxy-pyridin-2-yl)-2-(lH-l ,2,4-triazol-l -yl-methyl)-l,3-dioxolan-

4-yl-methoxy]phenyl}piperazin-l-yl]-phenyl}-2-[(l,R/s)-l-methylpropyl]-2,4-dihydro-3H-l,2,4-triazol-3-one (m.p. . = 206-210°C) was obtained.
δ (CDC13)= 8.3 (d 1H); 8.25 (s 1H); 7.9 (s 1H); 7.65 (s 1H); 7.6 (d 1H); 7.45 (d 2H); 7.3 (m 2H); 7.05 (d 2H); 6.95 (d 2H); 6.85 (d 2H); 5.25 (dd 2H); 4.5 (m 1H); 4.40 (m 1H); 4.30 (m 1H); 4.10 (m 1H); 4.05 (m 1H); 3.95 (in 1H); 3.70 (m 1H); 3.4 (in 4H); 3.25 (m 4H); 1.70 (m 2H); 1.40 (d 3H); 0.90 (t 3H) EXAMPLE NO. 18
Proceeding as described in Example no. 17 and using the activated intermediate cis(±)-[2-(pyridin-4-yl)-2-(l,2,4-triazol-l-yl-methyl)-l ,3-dioxolan-4-ylmethyl] 4-tohienesulfonate, obtained as described in Example no. 2, cis(±)-4-{4-[4-{4-[2-(l-oxy-pyridin-4-yl)-2-(lH-l,2,4-triazol-1 -yl-methyl)-l 33-dioxolan-4-yl-methoxy]phenyl}piperazin- 1 -yl]-phenyl}-2-[(l,R/S)-l-methylpropyl]-2,4-dihydro-3H-l,2,4-triazol-3-one (m.p.= 213-216°C) was obtained. 1H-NMR(200MHz):
δ (CDC13)= 8.25 (s 1H); 8.15 (d 2H); 7.95 (s 1H); 7.60 (s 1H); 7.45 (d 2H); 7.35 (d 2H); 7.15 (d 2H); 6.90 (d 2H); 6.65 (d 2H); 4.5 (s 2H); 4.3 (m 2H); 4.1 (m 1H); 3.9 (m 3H); 3.35 (m 4H); 3.25 (m 4H); 1.8 (m 2H); 1.40(d3H);0.90(t3H)










WE CLAIM:
1. A compound selected from the group consisting of the azole derivatives having the general formula
(Formula Rempved)
including the salts thereof with pharmaceutically acceptable acids, the N-oxide forms thereof and the stereochemical isomers thereof, where:
A is N or CH;
Het is an aromatic heterocyclic radical containing one or more 0 or N atoms, optionally substituted with
one or more 5- or 6- membered aromatic rings;
B is an alkanoyl containing from 1 to 6 carbon atoms or is a residue of the formula
(Formula Rempved)
where:
R1 is hydrogen or a linear or branched alkyl residue containing from 110 o caroon atoms and optionally substituted in one or more positions by hydroxyl groups;
R2 and R3, taken separately, are hydrogen or an alkyl with 1-4 carbon atoms or, taken together, are a divalent radical of the formula -CH=N-, -N=CH-, -CH=-CH-, -CH2-CH2-
2. A compound as claimed in claim 1 in which A) is a nitrogen atom.
3. A compound as claimed in any one of the preceding claims in which Het is selected from among: pyridine, pyridazine, pyrazine, pyrimidine, oxazole, pyrrole, pyrazole, imidazole, triazole and any corresponding fusion derivatives having two or more rings or with one or more benzene rings.
4. A compound as claimed in any one of the preceding claims in which B) is formyl, acetyl or propanoyl.
5. A compound as claimed in any one of the preceding claims in which B has the formula:
(Formula Rempved)
where R1 is hydrogen or a linear or branched alkyl residue containing from 1 to 6 carbon atoms and optionally substituted in one or more positions by hydroxyl groups.
6. A compound selected from the group consisting of cis-4-{4-[4-{4-[2-(2-pyridinyl)-2-(1 H-1,2,4-triazol-1-yl-methyl)-1,3-dioxolan-4-yl-methoxy]phenyl}-1-piperazinyl]-phenyl}-2-(1-methyl)-propyl-2,4-dihydro-3H-1,2,4-triazol-3-one, the salts thereof with pharmaceutically acceptable acids and the stereochemical isomers thereof.
7. A compound as claimed in claims 1-6 for use as a medicament.
8. A pharmaceutical composition containing a compound as claimed in claims 1-6, alone or in combination with atleast one other active ingredient, together with one or more pharmaceutically acceptable excipients and/or auxiliary substances.
9. A process for the production of a compound as claimed in claim 1 -6 in which a compound of formula III
(Formula Rempved)
where A is N or CH and Het is an aromatic heterocyclic radical containing one or more 0 or N atoms, optionally substituted with one or more 5-or 6-membered aromatic rings; is reacted with a compound of the formula
where B is an alkanoic residue containing from 1 to 6 carbon atoms is a residue of the formula
(Formula Rempved)
where: R1 is hydrogen or a linear or brancnea alkyl residue containing from 1 to 6 carbon atoms and optionally substituted in one or more positions by hydroxyl groups; R2 and R3, taken separately, are hydrogen or an alkyl with 1-4 carbon atoms or, taken together, are a divalent radical of the formula -CH=N-, -N=CH-, -CH=CH-, -CH2-CH2-.
10. A compound substantially as herein described with reference to the foregoing description, tables and the accompanying formula.
11. A pharmaceutical substantially as herein described with reference to the foregoing description tables and the accompanying formula.
12. A process substantially as herein described with reference to the foregoing description tables and the accompanying formula.

Documents:

1807-DELNP-2006-Abstract-(04-03-2011).pdf

1807-DELNP-2006-Abstract-(25-11-2010).pdf

1807-delnp-2006-abstract.pdf

1807-delnp-2006-assignment.pdf

1807-DELNP-2006-Claims-(04-03-2011).pdf

1807-DELNP-2006-Claims-(25-11-2010).pdf

1807-delnp-2006-claims.pdf

1807-delnp-2006-correspondence-other.pdf

1807-DELNP-2006-Correspondence-Others-(04-03-2011).pdf

1807-DELNP-2006-Correspondence-Others-(25-11-2010).pdf

1807-DELNP-2006-Correspondence-Others-(26-07-2010).pdf

1807-delnp-2006-Correspondence-Others-(29-11-2010).pdf

1807-delnp-2006-correspondence-others.pdf

1807-delnp-2006-description (complete).pdf

1807-delnp-2006-form-1.pdf

1807-delnp-2006-form-18.pdf

1807-delnp-2006-form-2.pdf

1807-DELNP-2006-Form-3-(26-07-2010).pdf

1807-delnp-2006-form-3.pdf

1807-delnp-2006-form-5.pdf

1807-DELNP-2006-GPA-(25-11-2010).pdf

1807-delnp-2006-pct-101.pdf

1807-delnp-2006-pct-210.pdf

1807-delnp-2006-pct-237.pdf

1807-delnp-2006-pct-304.pdf

1807-delnp-2006-pct-401.pdf

1807-delnp-2006-pct-409.pdf

1807-delnp-2006-pct-416.pdf

1807-delnp-2006-Petition 137-(29-11-2010).pdf


Patent Number 247526
Indian Patent Application Number 1807/DELNP/2006
PG Journal Number 16/2011
Publication Date 22-Apr-2011
Grant Date 15-Apr-2011
Date of Filing 03-Apr-2006
Name of Patentee ITALFARMACO S.P.A.
Applicant Address VIALE FULVIO TESTI 330, I-20126 MILANO ITALY.
Inventors:
# Inventor's Name Inventor's Address
1 LATTANZIO MARIA VIA PADOVA 224, I 20132 MILANO ITALY.
2 MASCAGNI PAOLO VIA DON GALLI 25, I 20058 VILLASANTA MILANO ITALY.
3 MODENA DANIELA VIA CASATI 29, I 20052 MONZA MILANO ITALY.
4 PINORI MASSIMO VIA EDISON 24, I 23877 PADERNO D'ADDA LECCO, ITALY.
PCT International Classification Number C07D 405/14
PCT International Application Number PCT/EP2004/011667
PCT International Filing date 2004-10-14
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 MI2003A002020 2003-10-17 Italy