Title of Invention


Abstract The present invention relates to fluorocarbon vectors for the delivery of antigens to immunoresponsive target cells. It further relates to fluorocarbon vector-antigen constructs and the use of such vectors associated with antigens as vaccines and immunotherapeutics in animals.
Full Text Antigen delivery vectors and constructs
The present invention relates to novel antigen delivery constructs and their use in immunisation methods. In particular, the invention relates to constructs useful in immunising against human immunodeficiency virus.
^ackground of the invention
Recent advances in our comprehension of mammalian immune-logical responses have led to the prevention of certain diseases in man through prophylactic vaccination and the control and treatment of diseases by the use of immunotherapeutics. The types of diseases which may be addressed through immunological intervention include those caused by infectious agents, cancers, allergies and autoimmune diseases. In these cases, most commonly, the premise of the medical treatment is the efficient delivery of antigens to appropriate immune recognition cells. For example, prophylactic vaccination has successfully eradicated smallpox worldwide through the administration of a live attenuated strain of the virus bearing all the antigens of the wild type virus. Similarly infections due to the Haemophilus influenzae serotype b bacterium have been significantly reduced in Western countries following the development of a vaccine based upon the polysaccharide antigen from the bacterial cell wall. Moreover, some cancers such as human melanoma respond to immunotherapy using autologous dendritic cells (DC) as a cellular adjuvant and defined peptides derived from the melanosomal protein gplOO as the source of tumour-specific antigen to generate a cell-mediated immune response.
Self-tolerance to autoantigen can be restored in the treatment of experimental autoimmune encephalomyelitis by injection of a specific neuroantigen that is the target of the destructive immune response. Hence specificity can be afforded by such treatment without the need for long-tern immunosuppression.
For infectious diseases, the most rapid progress in disease control has occurred where antibody raised to the administered antigen is capable of neutralising the infectious agent or toxin secreted therefrom, whether this be mediated through IgM, IgG or IgA.
Likewise, autoimmune diseases have been treated with antigens that can ameliorate the action of auto-antibodies. However, for the eradication of virus-infected cells, cancer cells and cells harbouring intracellular bacteria, cellular immune responses are also required. For example, intracellular viruses (e.g. retroviruses, oncornaviruses, orthomyxoviruses, paramyxoviruses, togaviruses, rhabdoviruses, arenaviruses, adenoviruses, herpesviruses, poxviruses, papovaviruses and rubella viruses) are able to replicate and spread to adjacent cells without becoming exposed to antibody. The importance of cell-mediated immunity is emphasised by the inability of children with primary T-cell deficiency to clear these viruses, whilst patients with immunoglobulin deficiency but intact cell-mediated immunity do not suffer this handicap. A small, but important, number of bacteria, fungi, protozoa and parasites survive and replicate inside host cells. These organisms include Mycobacteria (tuberculosis and leprosy), Legionella (Legionnaires Disease), Rickettsiae (Rocky Mountain spotted fever), Chlamydiae, Listeria monocytogenes, Brucella, Toxoplasma gondii, Leishmania, Trypanosoma, Candida albicans, Cryptococcus, Rhodotorula and Pneumocystis. By living inside cells, these organisms are inaccessible to circulating antibodies. Innate immune responses are also ineffective. The major immune defense against these organisms is cell-mediated immunity; involving both CD8+cytolytic T Lymphocytes and CD4 helper T Lymphocytes.
The development of vaccines and immunotherapeutics capable of eliciting an effective and sustained cell-mediated immune response remains one of the greatest challenges in vaccinology. In particular the development of a safe and efficacious vaccine for the prevention and treatment of Human Immunodeficiency Virus (HIV) infection has been hindered by the inability of vaccine candidates to stimulate robust, durable and disease-relevant cellular immunity.
The host cell-mediated immune response responsible for eradicating intracellular pathogens or cancer cells is termed the Th1 response. This is characterised by the induction of cytotoxic T-lymphocytes (CTL) and T-helper lymphocytes (HTL) leading to the activation of immune effector mechanisms as well as immunostimulatory cytokines such as IFN-gamma

and IL-2. The importance of Th1 responses in the control of viral infection has recently been shown by Lu et at. (Nature Medicine (2004)). This clinical study with chronically HIV-1 infected individuals demonstrated a positive correlation between the suppression of viral load and both the HIV-1-specific IL-2-or IFN-gamma-expressing CD4+T cells and specific HIV-1 CD8+ effector cell responses. Current immunological strategies to improve the cellular immunity induced by vaccines and immunotherapeutics include the development of live Attenuated versions of the pathogen and the use of live vectors to deliver appropriate '^antigens or DMA coding for such antigens. Such approaches are limited by safety considerations within an imncreasingly stringent regulatory environment. Furthermore, issues arising from the scalability of manufacturing processes and cost often limit the commercial viability of products of biological origin.
In this context, rationally defined synthetic vaccines based on the use of peptides have received considerable attention as potential candidates for the development of novel prophylactic vaccines and immunotherapeutics. T cell and B cell epitopes represent the only active part of an immunogen that are recognized by the adaptive immune system. Small peptides covering T or B cell epitope regions can be used as immunogens to induce an immune response that is ultimately cross-reactive with the native antigen from which the sequence was derived. Peptides are very attractive antigens as they are chemically well-defined, highly stable and can be designed to contain T and B cell epitopes. T cell epitopes, including CTL and T helper epitopes, can be selected on the basis of their ability to bind MHC molecules in such a way that broad population coverage can be achieved (The HLA Factsbook, Marsh, S., Academic Press. 2000). Moreover, the ability to select appropriate T and B cell epitopes enable the immune response to be directed to multiple conserved epitopes of pathogens which are characterised by high sequence variability (such as HIV, hepatitis C virus (HCV), and malaria).
In order to stimulate T lymphocyte responses, synthetic peptides contained in a vaccine or an immunotherapeutic product should preferably be internalized by antigen presenting cells and especially dendritic cells. Dendritic cells (DCs) play a crucial role in the initiation of primary T-cell mediated immune responses. These cells exist in two major stages of maturation associated with different functions. Immature dendritic cells (iDCs) are located in most tissues or in the circulation and are recruited into inflamed sites. They are highly specialised antigen-capturing cells, expressing large amounts of receptors involved in antigen uptake and phagocytosis. Following antigen capture and processing, iDCs move to local T-cell locations in the lymph nodes or spleen. During this process, DCs lose their antigen-capturing capacity turning into immunostimulatory mature DCS (mDCs).
Dendritic cells are efficient presenting cells that initiate the host's immune response to peptide antigen associated with class I and class II MHC molecules. They are able to prime na'i've CD4 and CDS T-cells. According to current models of antigen processing and presentation pathways, exogeneous antigens are internalised into the endocytic compartments of antigen presenting cells where they are degraded into peptides, some of which bind to MHC class II molecules. The mature MHC class ll/peptide complexes are then transported to the cell surface for presentation to CD4 T-lymphocytes. In contrast, endogenous antigen is degraded in the cytoplasm by the action of the proteosome before being transported into the cytoplasm where they bind to nascent MHC class I molecules. Stable MHC class I molecules complexed to peptides are then transported to the cell surface to stimulate CDS CTL. Exogenous antigen may also be presented on MHC class I molecules by professional APCs in a process called cross-presentation. Phagosomes containing extracellular antigen may fuse with reticulum endoplasmic and antigen may gain the machinery necessary to load peptide onto MHC class I molecules. It is well recognised, however, that free peptides are often poor immunogens on their own (Fields Virology, Volume 1, Third Edition, 1996).
To optimise the efficacy of peptide vaccines or therapeutics, various vaccine strategies have been developed to direct the antigens into the antigen-presenting cell in order to target the MHC class I pathway and to elicit cytotoxic T-lymphocyte (CTL) responses. As an example of a synthetic delivery system, fatty acyl chains have been covalently linked to peptides as a means of delivering an epitope into the MHC class I intracellular compartment in order to induce CTL activity. Such lipopetides, for example with a monopalmitoyl chain linked to a peptide representing an epitope from HIV Env protein are described in the US patent 5, 871, 746. Other technologies have been delivered that aim to deliver epitopes into the intracellular compartment and thereby induce CTLs. These include vectors such as Penetratin, TAT and

its derivatives, DMA, viral vectors, virosomes and liposomes. However, these systems either elicit very weak CTL responses, have associated toxicity issues or are complicated and expensive to manufacture at the commercial scale.
There is therefore a recognised need for improved vectors to direct the intracellular delivery of antigens in the development of vaccines and drugs intended to elicit a cellular immune |isponse. A vector in the context of immunotherapeutics or vaccines is any agent capable of transporting or directing an antigen to immune responsive cells in a host. Fluorinated surfactants have been shown to have lower critical micellar concentrations than their hydrogenated counterparts and thus self-organise into micelle structures at a lower concentration then equivalent hydrocarbon molecule. This physicochemical property is related to the strong hydrophobic interactions low Van der Waal's interactions associated with fluorinated chains which dramatically increase the tendency of fluorinated amphiphiles to self-assemble in water and to collect at interfaces. The formation of such macromolecular structures facilitates their endocytic uptake by cells, for example antigen-presenting cells (Reichel F. et. al. J. Am. Chem. Soc. 1999, 121, 7989-7997). Furthermore haemolytic activity is strongly reduced and often suppressed when fluorinated chains are introduced into a surfactant (Riess, J. G.; Pace, S.; Zarif, L. Adv. Mater. 1991, 3, 249-251) thereby leading to a reduction in cellular toxicity.
This invention seeks to overcome the problem of delivering antigens to immune responsive cells by using a novel fluorocarbon vector in order to enhance the immunogenicity if administered antigens. The fluorocarbon vector may comprise one or more chains derived from perfluorocarbon or mixed fluorocarbon/hydrocarbon radicals, and may be saturated or unsaturated, each chain haying from 3 to 30 carbon atoms. In order to link the vector to the antigen through a covalent linkage, a reactive group, or ligand, is incorporated as component of the vector, for example -CO-, -NH-, S, O or any other suitable group is included; the use of such ligands for achieving covalent linkages are well-known in the art. The reactive group may be located at any position on the fluorocarbon molecule. Coupling of the fluorocarbon vector to the antigen may be achieved through functional groups such as -OH, -SH, _COOH, -NH2 naturally present or introduced onto any site of the antigen. Examples of such linkages include amide, hydrazone, disulphide, thioether and oxime bonds. Alternatively, non-covalent linkages can be used, for example an ionic interaction may be formed via a cation linking together a histidine residue of a peptide antigen and a carboxylic acid on the fluorocarbon vector. Optionally, a spacer element (peptidic or non-peptidic) may be incorporated to permit cleavage of the antigen from the fluorocarbon element for processing within the antigen-presenting cell and to optimise steric presentation of the antigen. The spacer may also be incorporated to assist in the synthesis of the molecule and to improve its stability and/or solubility. Examples of spacers include polyethylene glycol (PEG), amino acids such as lysine or arginine that may be cleaved by proteolytic enzymes and hydrocarbons.
Thus, in a first aspect, the present invention provides a fluorocarbon vector having a chemical structure CmFn--CyHx-L, or derivatives thereof, where m=3 to 30, n In the context of the present invention "derivatives" refers to relatively minor modifications of the fluorocarbon compound such that the compound is still capable of delivering the antigen as described herein. Thus, for example, a number of the fluorine moieties can be replaced with other halogen moieties such as Cl, Br or I. In addition it is possible to replace a number of the fluorine moieties with methyl groups and still retain the properties of the molecule as discussed herein.
In a particular embodiment of the above formula the vector may be perfluoroundecanoic acid of the following formula (I):
F2 F2 F2 F2 9 F3C C CC C
Fa F
or alternatively 2H, 2H, 3H, 3H-perfluoroundecanoic acid of the following formula (II):
(Figure Remove)

In a second aspect the invention provides a vector-antigen construct CmFn-CyHx-(Sp)-R where Sp is an optional chemical spacer moiety and R is an antigen.
The antigen associated with the vector may be any antigen capable of inducing an immune response in an animal, including humans Preferably the immune response will have a beneficial effect in the host. Antigens may be derived from a virus, bacterium or mycobacterium, parasite, fungus, or any infectious agent or an autologous antigen or allergen.
Examples of viruses include, but are not limited to, Human Immunodeficiency Virus-1 (HIV-1) or -2, influenza virus, Herpes virus HSV-1 and HSV-2), hepatitis A virus (HAV), hepatitis B virus (HBV), or hepatitis C virus (HCV).
Examples of bacteria and mycobacteria include, but are not limited to Mycobacterium tuberculosis, Legionella, Rickettsiae, Chlamydiae, and Listeria monocytogenes.
Examples of parasites include, but are not limited to Plasmodium falciparum and other species of the Plasmodial family.
Examples of fungi include, but are not limited to Candida albicans, Cryptococcus, Rhodotorula and Pneumocystis.
Autologous or self-antigens include, but are not limited to the following antigens associated with cancers, HER-2/neu expressed in breast cancer, gplOO or MAGE-3 expressed in melanoma, P53 expressed in colorectal cancer, and NY-ESO-1 or LAGE-1 expressed by many human cancers.
Allergens include, but are not limited to phospholipase A2(API ml) associated with severe reactions to bee, Derp-2, Der p 2, Der f, Der p 5 and Der p 7 associated with reaction against the house-dust mite Dermatophagoides pteronyssinus, the cockroach allergen Bla g 2 and the major birch pollen allergen Bet v 1.
Thus in a embodiment, the present invention provides a vector-antigen construct where the
antigen is, or represents, an antigen from a virus, bacterium, mycobacterium, parasite,
fungus, autologous protein or allergen. :~
Antigens may be proteins, protein subunits, peptides, carbohydrates, lipid or combinations thereof, provided they present an immunologically recognisable epitope. Such antigens may be derived by purification from the native protein or produce by recombinant technology or by chemical synthesis. Methods for the preparation of antigens are well-known in the art. Furthermore antigens also include DMA or oligonucleotide encoding an antigenic peptide or protein.
Thus in yet a further embodiment, the present invention provides a vector-antigen construct where the antigen is a protein, protein subunit, peptide, carbohydrate or lipid or combinations thereof.
For the construct to be immunologically active the antigen must comprise one or more epitopes. Peptides or proteins used in the present invention preferably contain a sequence of

at lest seven, more preferably between 9 and 100 aminp-acids and most preferably between around 15 to 35 amino acids. Preferably, the amino acid sequence of the epitope(s) bearing peptide is selected to enhance the solubility of the molecule in aqueous solvents. Furthermore, the terminus of the peptide which does not conjugate to the vector may be altered to promote solubility of the construct via the formation of multimolecular structures such as micelles, lamellae, tubules or liposomes. For example, a positively charged amino pcid could be added to the peptide in order to promote the spontaneous assembly of micelles. Either the N-terminus or the C-terminus of the peptide can be coupled to the vector to create the construct. To facilitate large scale synthesis of the construct, the N-or C-terminal amino acid residues of the peptide can be modified. When the desired peptide is particularly sensitive to cleavage by peptidases, the normal peptide bond can be replaced by a noncleavable peptide mimetic; such bonds and methods of synthesis are well known in the art.
As a specific example, the peptide NNTRKRIRIQRGPGRAFVTIGK-NH2 represents an epitope from the Env (301-322) protein of HIV-1, which has been shown to be immunologically active. This represents yet another embodiment of the present invention. (Reference http:// www.hiv.lanl.gov/content/immunology/index.html).
More than one antigen may be linked together prior to attachment to the ligand. One such example is the use of fusion peptides where a promiscuous T helper epitope can be covalently linked to one or multiple CTL epitopes or one or multiple B cell epitope which can be a peptide, a carbohydrate, or a nucleic acid. As an example, the promiscuous T helper epitope could be the PADRE peptide, tetanus toxoid peptide (830-843) or influenza haemagglutinin, HA(307-319).
In another embodiment therefore, the vector-antigen construct is one where R is more than one epitope or antigen linked together. Epitopes may also be linear overlapping thereby creating a cluster of densely packed multi-specific epitopes.
Due to the strong no-covalent molecular interactions characteristic to fluorocarbons, the antigen may also be non-covalently associated with the vector and still achieve the aim of being favourably taken up by antigen-presenting cells.
The present invention also provides vaccines and immunotherapeutics comprising one or more fluorpcarbon vector-antigen constructs. Multi-component products of this type are desirable since they are likely to be more effective in eliciting appropriate immune responses. For example, the optimal formulation of an HIV immunotherapeutic may comprise a number of epitopes from different HIV proteins. In this case each epitope may be linked to a common fluorpcarbon vector or each epitope could be bound to a dedicated vector. Alternatively, multiple epitopes may be incorporated into a formulation in order to confer immunity against a rage of pathogens. A multi-component product may contain one or more vector-antigen construct, more preferably 2 to about 20, more preferably 3 to about 8 such constructs.
Compositions of the invention comprises fluorocarbon vectors associated to antigens optionally together with one or more pharmaceutically acceptable carriers and/or adjuvants. Such adjuvants, capable of further potentiating the immune response, may include, but are not limited to, muramyldipeptide (MDP) derivatives, CpG, monophosphoryl lipid A, oil in water adjuvants, water-in-oil adjuvants, aluminium salts, cytokines, immunostimulating complex (iSCOMs), liposomes, microparticules, saponins, cytokines, or bacterial toxins and toxoids. Other useful adjuvants will be well-known to one skilled in the art. The choice of carrier if required is frequently a function of the route of delivery of the composition. Within this invention, compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, ocular, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal) administration.
The formulation may be administered in any suitable form, for example as a liquid, solid, aerosol, or gas. For example, oral formulations may take the form of emulsions, syrups or solutions or tablets or capsules, which may be enterically coated to protect the active component from degradation in the stomach. Nasal formulations may be sprays or solutions. Transdermal formulations may be adapted for their particular delivery system and may comprise patches. Formulations for injection may be solutions or suspensions in distilled water or another pharmaceutically acceptable solvent or suspending agent.

Thus in a further aspect, the present invention provides a prophylactic or therapeutic formulation comprising the vector-antigen construct with or without a suitable carrier and/or adjuvant.
The appropriate dosage of the vaccine or immunotherapeutic to be administered to a patient will be determined in the clinic. However, as a guide, a suitable human dose, which may be jWependent upon the preferred route of administration, may be from 1 to 1000ug. Multiple closes may be required to achieve an immunological effect, which, if required, will be typically administered between 2 to 12 weeks apart. Where boosting of the immune response over longer periods is required, repeat doses 3 months to 5 years apart may be applied.
The formulation may combine the vector-antigen construct with another active component to effect the administration of more than one vaccine or drug. A synergistic effect may also be observed through the co-administration of the two or more actives. In the treatment of HIV infection, an example of one such drug is Highly Active Anti-Retroviral Therapy (HAART). In other aspects the invention provides;
i) Use of the immunogenic construct as described herein in the preparation of a
medicament for treatment or prevention of a disease or symptoms thereof.
A method of treatment through the induction of an immune response following
administration of the constructs or formulations described herein;
The use of the fluorocarbon vectors and fluorocarbon vector-antigen constructs in
The examples refer to the figures in which:
Figure 1: shows HPLC chromatograms of various peptides and constructs at T=0;
Figure 2: shows HPLC chromatograms of various peptides and constructs stored at 40°C for
27 days;
Figure 3: shows critical micelle concentration evaluation for two peptides, FAVS-3-ENV and FAVS-1-ENV;
Figure 4: shows particle size analysis by quasi light scattering spectrometry after 20 hours standing for various peptide constructs;
Figure 5: shows cellular immune response assessed by ex vivo IFN-gamma ELISPOT assay in mice after single immunisation (A,B), first boost (C,D) and second boost (E,F);
Figure 6 shows nature of T lymphocytes primed in vivo by various fluorocarbon-peptide constructs;
Figure 7: shows cellular immune response assessed by ex vivo IFN-g ELISPOT assay in mice after three immunisations with FAVS-1-ENV alone or in combination with murabutide;
Figure 8: cytokine measurement after three injections with FAVS-1-ENV alone or in combination with murabutide; and
Figure 9: shows cellular immune response assessed by ex vivo IFN-g ELISPOT assay in mice after two intranasal administrations with FA VS-I-ENV alone or in combination with murabutide.
Example 1
Synthesis of Fluorocarbon-vectored peptides
The following fluorocarbon-vector peptides were synthesised:
Where the standard amino acid one letter code is utilised and PEG is CH2-CH2-O. NNTRKRIRIQRGPGRAFVTIGK is the ENV(301-322) peptide of the Human Immunodeficiency Virus.
Peptide synthesis was carried out on an ABI 430 or ABI 433 automatic peptide synthesizer, on Rink amide resin (0.38mmol/g loading) using Nsc (2-(4-nitrophenylsulfonyl)ethoxycarbpnyl), or Fmoc ((9-fluorenylmethylcarbonyl) amino acids. Coupling was promoted with HOCt (6-Chlorp-1-oxybenzptriazole) and DIG (1,3-diisopropylcarbodiimide) , and Fmoc/Nsc deprotectipn was carried out using 20% piperidine in DMF (Dimethylformamide) . Uncoupled N-termini were capped with acetic anhydride as of each cycle. Cleavage of the peptide from resin and concomitant sidechain deprptection was achieved using TFA, water and TIS (Diisopropylsilane) (95:3:2), with crude isolation of product by precipitation into cold diethyl ether. Purification was performed by preparative HPLC using Jupiter C5 or Luna C18 (2) columns (250x22mm) and peptide mass was verified by mass spectrometry.
Peptide purity was verified prior to conducting the experiments by HPLC (HP 1050) using a column from Supelco (C5, 250x4.6mm, 300A, 5^im) under gradient elution. Solvent A (90% Water, 10% Acetonitrile, 0.1% TFA), Solvent B (10% Water, 90% Acetonitrile, 0.1 % TFA). A gradient 0 to 100% of B in 30 minutes was used and column temperature was 40 °C. The wavelength of the UV detector was set up at 215nm. Purity of the fluorocarbon-vector peptides in each case was greater than 90%.
The chemical stability of hermetically sealed samples containing lyophilised vector-peptides was assessed at 4°C, 20°C and 40°C together with the unvectored peptide as a comparator (NNTRKRIRIQRGPGRAFVTIGK-NH2). The stability over the time was monitored by HPLC using the conditions described above. The data is shown in figures 1 and 2.
For each peptide conjugate, no sign of degradation was observed after 27 days at 40°C incubation, with a single peak eluting at the same retention time as found at T=0.
Example 2
Physicochemical analysis of Fluorocarbon-vectored peptides (i) Solubility
The solubility of the fluorocarbon-vector peptides in aqueous solution at concentrations useful for a pharmaceutical formulation was confirmed. Solutions of peptides were prepared at 20°C by dissolving the lyophilised peptide powder with PBS (0.01M,pH 7.2) across a range of concentrations. Preparations were then vortexed for one minute. An aliquot was collected and the remainder of the solution was centrifuged for 10 minutes at 12,000rpm. To a 96-well flat bottom plate containing 25ja1 aliquots of serial dilutions of each peptide was added 200f.i1 of the BCA working reagent (Pierce, UK) containing the solution A (bicichoninic acid, sodium carbonate, sodium tartrate in a sodium hydroxyde 0.1M solution, 50vol,) and B (4% cupric sulphate solution, 1 voL). After incubating for 45 minutes at 37°C and cooling for 10 minutes, the absorbance was measured at 570 nm. The plates were analysed by a Wallac Victor multilabel counter (Perkin Elmer). For each peptide a calibration curve was plotted and used to determine the peptide concentration in the soluble fraction, expressed in nmol/ml. Data are presented Table 1. All the peptides were found to be fully soluble at the concentration of antigen used for murine immunisation studies.

Free peptide FAVS-1-ENV FAVS-2-ENV FAVS-3-ENV

>3300 nmol/ml >4000 nmol/rnl > 500 nmol/ml >3000 nmdl/ml

Table 1: Summary of the solubility assay performed by the protein assay method (ii) Critical Micelle Concentration [CMC]
The Critical Micelle Concentration of the fluorocarbon-vectored peptides in physiological phosphate buffered saline was determined by dye bonding with 8-anilino-1-napfithalene--sulphonic acid (ANS). Starting from 300|j.g peptide/ml solutions, serial two-fold dilutions of the peptide and peptide-vector solutions in PBS (0.0 1M, pH 7.2) were prepared at 20°C, from which 200^1 were added to the wells of a microplate. 40jal of freshly dissolved ANS in PBS was then added to each well. After two minutes the plate was excited at 355 nm and scanned 460 nm on a Victor microplate fluorimeter. The ratio (Intensity of fluorescence of the ample/Intensity of fluorescence of the blank) was plotted on a linear scale versus the concentration on a logarithmic scale. Data are presented Figure 3.
(Hi) Particle size analysis
Particle size analysis was performed on a Malvern 4700C Quasi Light Scattering spectrometer (Malvern Ltd, UK) equipped with an Argon laser (Uniphase Corp., San Jose, CA) tuned at 488 nm. Samples were maintained at a temperature of 25°C. The laser has variable detector geometry for angular dependence measurement. Measurements were performed at angles of 90° and 60°. Solutions were prepared by dissolving the peptide in filtered 0.01 M phosphate buffered saline to a concentration of 500nmol/ml and vortexing for 1 minute. Solutions were then dispensed into cuvettes (working volume of 1ml). Measurements were taken after 15 minutes at an angle of 90° (Figure 4). The Kcount value output is proportional to the number of particles detected; in all cases the Kcount was> 10 in order to ensure that reliable size distribution measurements were obtained.

ITS reference Sending Time (h) Kcount Size (nm) Average Polydispersity
Population! Population2 Size (nm)
FAVS-1-ENV 0.25 177 28 - 28.3 0.151
0.180 0.450
20 230 32 - 32.7

FAVS-2-ENV 0.25 190 15 120 28.5

20 245 20 300 68.4 0.539
FAVS-3-ENV 0.25 201 70 400 209 0.659
20 225 105 800 207 0.647
Table 2: Particle size of micellar solution in PBS.
Example 3
(i) Immunogenicity of Fluorocarbon-vectored peptides
Specific-pathogen-free mice (6-8 week female Balb/c) were purchased from Harlan (UK). Peptides ENV, FAVS-1-ENV, FAVS-2-ENV or FAVS-3-ENV were dissolved in PBS (0.01 M, pH 7.2). Each dose was normalised to 50nmol peptide per ml based on the net peptide content obtained from amino-acid analysis. Mice (3 per group) were immunized subcutaneously under the skin of the interscapular area with 50nmol peptide in a volume of 100^1 PBS, pH 7.2. Three doses were administered at ten day intervals. A mouse group receiving a priming dose of free peptide admixed with Complete Freund's adjuvant (50nmoi peptide in PBS emulsified in an equal volume of adjuvant) and booster doses of Incomplete Freund's adjuvant served as a positive control. Ten days after the final immunisation mice were sacrificed and spleens removed to assess the cellular immune response to the peptide. To determine the progress of the immune response development, groups of mice receiving a single and two doses of peptide were also set up.
The in vivo cellular response primed by the vectored peptides was monitored by IFNgamma ELISPOT on fresh spleen cells in order to enumerate the ex-vivo frequency of peptide-specific IFN-gamma producing cells and more specifically peptide-specific CD8+ T lymphocytes primed following immunisation. Spleen cells were restimulated in vitro with the ENV(301-322) NNTRKRIRIQRGPGRAFVTIGK peptide containing a well-known T-helper epitope and ENV(311-320) RGPGRAFVTI a shorter peptide corresponding to the CD8
epitope (MHC class I H-2Dd-restricted known as P18-110) in order to cover both components of the cellular immune response (T Helper and CDS T cell activity).
The spleens from each group of mice were pooled and spleen cells isolated. Cells were washed three times in RPMI-1640 before counting. Murine IFN-g Elispot assays were performed using Diaclone Kit (Diaclone, France) according to the manufacturer's instructions with the following modifications. Duplicate culture of spleen cells at cell density of 5x105/well •'were distributed in anti-IFN-gamma antibody coated PVDF bottomed-wells (96-well multiscreenTM - IP microplate - Millipore) with the appropriate concentration of peptide (10, 1, 0 mg/ml of T helper ENV(301-322) or P18-I10 CTL epitope) in culture medium (RPMI-1640), 5 |^M (3-mercaptoethanol, 5mM glutamine supplemented with 10% Foetal Calf Serum during 18 hours at 37°C under 5% CO2 atmosphere. The spots were counted using a Carl Zeiss Vision ELIspot reader unit. The results correspond to mean values obtained with each conditions after background subtraction. Results are expressed as spot fonning units (SFC) per million input spleen cells (Figure 5).
(ii) Nature of T lymphocytes primed in vivo by the fluorocarbon-pep tides (CD4 and CDS T cell separation)
Spleen Cells from immunized mice were distributed in 48-well microplates at cell density of 2.5x106 / well with Vglml of T helper ENV(301-322) or P18-I1O CTL peptides. At day 3, 5nglml of recombinant murine IL-2 was added to each well. At day 7, prestimulated spleen cells were harvested, washed three times in RPMI 1640, counted and separated by magnetic cell sorting using magnetic beads conjugated with monoclonal rat anti-mouse CD8a and CD4 antibodies (MACS, Microbeads Miltenyi Biotec, UK) according to manufacturer's instructions. CD4 and CDS + T cells were distributed at cell density of 2.5x105/well in duplicate in antibody coated PVDF bottomed-wells (96-well multiscreen™"-!P microplate, Millipore) with 1 mg/ml of peptide in culture medium (RPMI-1640, 5j.iM p-mercaptoethanol, Glutamine, non-essential amino-acids, sodium pyruvate supplemented with 10% Foetal Calf Serum for 12 hours at 37°C under 5% CO2 atmosphere. The spots were counted using a Carl Zeiss Vision ELIspot reader unit. The results correspond to mean values obtained with each conditions after background subtraction (10 spots). Results are expressed as spot forming units (SFC) per million input spleen cells.
According to the ex vivo IFN-y ELISPOT assays, the FA VS-peptide constructs were able to prime a strong cellular immune response against both the long (ENV301-322) and the short ENV peptides (P18-110 CTL epitope) after a single in vivo exposure to the antigen (Figure 5A and B). Figure 6 demonstrates that both CD4+ and CD8 + ENV -specific T cells were efficiently primed in vivo.
The intensity of the response after priming with the FAVS-peptides was in the same range as the responses obtained from mice immunized with the native peptide emulsified in Freund's adjuvant. ENV-specific T cell responses are clearly amplified after a first and a second boost with the FAVS-I-ENV formulation (Figure 5C, D, E, F) as summarized in Figure 6.
This clearly demonstrates the ability of the FAVS-peptides to be taken up by antigen presenting cells in vivo in order to reach the MHC class I and MHC class II pathways anc thereby prime strong cellular immune responses.
Example 4
Immunogenicity of Fluorocarbon-vectored peptides co-administered with synthetic adjuvant
In order to assess the potential impact of a synthetic immunostimulant on the quantitative anc, qualitative immunogenicity of the FAVS-peptides, FAVS-I-ENV was injected alone and ir combination with Murabutide. Murabutide (N-acetyl-muramyl-L-alanyl-Dglutamine-O-n-butyl ester; a synthetic derivative of muramyl dipeptide and NOD-2 agonist) is a synthetic immune potentiator that activates innate immune mechanisms and is known to enhance both cellula and humoral responses when combined with immunogens ("Immune and antiviral effects o the synthetic immunomodulator murabutide: Molecular basis and clinical potential", G. Bahr' in: "Vaccine adjuvants: Immunological and Clinical Principles", eds Hacket and Ham (2004) Humana Press).

Specific-pathogen-free mice (6-8 week female Balb/c) were purchased from Harlarv(UK). The FAVS-I-ENV construct was used at two different dose levels, one group of mice receiving SOnmoles and a second group received 5 nmoles of construct. Mice (3 per group) were immunized subcutanepusly under the skin of the interscapular area with FAVS-I-ENV either alone or in combination with 100jag of Murabutide in a total .volume of lOOjJ PBS, pH 7.2. Three doses were administered at ten day intervals. A control gPDup receiving murabutide alone was also set up.
Ten days after the final immunisation-mice were sacrificed and spleens removed to assess the cellular immune response to the T helper ENV(301-322) or P18-110 CTL epitope peptides. Interferon-gamma Elispot and Th-l and Th-2 cytokine measurements were performed on the isolated spleens as described in Example 3. Briefly, spleen cells were cultured with the appropriate concentration of peptide (10 or 0 j,ig/ml of T helper ENV (301-322) or P18-110 CTL epitope) in culture medium during 18 hours at 37°C under 5% CO2 atmosphere. IFN-g Elispot assay was then performed. The spots were counted using a Carl Zeiss Vision Elispot reader unit. The results correspond to mean values obtained with each conditions after background subtraction ( Multiplex cytokine measurements (IL-2, IFN-g, IL4, IL-5, IL-10, IL-13) were performed on fresh spleen cells re-stimulated with the ENV (301-322) peptide from mice immunised with the 5 nmol dose of FAVS-1-ENV. Supernatants were collected at 24 hours and 48 hours. Levels of cytokines (IL2, IL4, IL-5, IL-10, IL-13, IFN-y) in cell culture supernatant, samples were measured using the Cytokine specific Sandwich ELISA according to the mutiplex format developed by SearchLight Proteomic Arrays (Pierce Biotechnology, Wobum, MA). Results were expressed in pg cytokine/ml.
FAVS-1-ENV administered alone was shown to induce predominantly Th-l cytokine production (i.e. IL-2 and IFN-g) with low levels of Th-2 cytokines also being produced. The inclusion of murabutide within the formulation led to the induction of a more balanced Th-l/Th-2 response with higher levels of Th-2 cytokines such as IL-5, IL-10 and IL-13 (Figure 8).
Example 5
Immunogenicity of Fluorocarbon-vectored peptides administered mucosally
Specific-pathogen-free mice (6-8 week female Balb/c) were purchased from Harlan (UK). FAVS-1-ENV (50 nmoles per mouse) was administered twice intranasally in 0.01M PBS alone or in combination with 100jag of Murabutide with 10 days interval between both administration. Mice were slightly anaesthetised with Isoflurane (Isoflo, Solvay, UK). 20^il of soluble peptide solution (10^1/nostril) was administered using a micropipette. A control group received PBS only. Each dosing group comprised six animals. Mice were sacrificed 10 days after the last administration by carbon dioxide asphyxiation. Spleens were removed, pooled for each group of mice and spleen cells were isolated. Cells were washed three times with RPMI-1640 before counting. Counting was performed using a Thomas counting slide. Spleen cells from individual mice were cultured with the appropriate concentration of peptide (10 or Ojag/ml of T helper ENV (301-322) or P18-110 CTL epitope) in culture medium during 18 hours at 37°C under 5% CO2 atmosphere. IFN-g Elispot assay was then performed using the Diaclone Kit as described in Example 3. The spots were counted using a Carl Zeiss Vision Elispot reader unit. The results correspond to mean values obtained with each conditions after background subtraction ( All six mice per group immunised intranasally either with FAVS-1-ENV alone or in combination with murabutide produced a robust systemic T-cell response. Combination with murabutide led to modest increases in the frequency of IFN- gamma producing T cells (Figure 9).
Example 6
Example HIV peptides
Candidate peptides for attachment to the fluorocarbon vector to produce a prophylactic or therapeutic vaccine for HIV may include the following one or more peptides or fragments

thereof, or homologues (including the corresponding consensus, ancestral or central tree
sequences from HIV-1 representing different clades such as but not limited to clades A, B, C,
D, F, G and H as referred to in the 2004 Los Alamos National Laboratory database) or natural
and non-natural variants thereof, but not necessarily exclusively. The standard one letter and
three-letter amino acid codes have been utilised. Homologues have at least a 50% identity
compared to a reference sequence. Preferably a homologue has 80, 85, 90, 95, 98 or 99%
^entity to a naturally occurring sequence. The sequences provided below are 35 amino acids
*Nn length. Fragments of these sequences that contain one or more epitopes are also
candidate peptides for attachment to the fluorocarbon vector.
Trp-Lys-G1y-G1u-G1y-A1a-Va1-Va1-lle-G1n-Asp-Asn-Ser-Asp-lle-Lys-Va1-Va1-Pro-Arg-Arg-Lys-A1a-Lys-lle-lle-Arg-Asp-Tyr-G1 y-Lys-G1 n-Met-A1 a-G1 y
G1u-1le-Tyr-Lys-Arg-Trp-1le-1le-Leu-G1y-Leu-Asn-Lys-lle-Va1-Arg-Met-Tyr-Ser-Pro-Thr-Ser-lle-Leu-Asp-lle-Arg-G1 n-G1y-Pro-Lys-G1 u-Pro-Phe-Arg
G1 u-His-Leu-Lys-Thr-A1 a-Va1 -G1 n-Met-A1 a-Va1 l-Phe-lle-His-Asn-Phe-Lys-Arg-Lys-G1 y-
Trp-G1u-Phe-Va1-Asn-Thr-Pro-Pro-Leu-Va1-Lys-Leu-Trp-Tyr-G1n-Leu-G1u-Lys-G1u-Pro-Ile-Va1 -G 1 y-A1 a-G 1 u-Thr-Phe-Tyr-Va1 -Asp-G1 y-Ala-A1 a-Asn-Arg
G1 y-G1 u-Arg-11 e-Va1 -Asp-11 e-11 e-A1 a-Thr-Asp-M e-G1 n-Thr-Lys-G1 u-Leu-G1 n-Lys-G1 n-lle-
Thr-Lys-11 e-G1 n-Asn-Phe-Arg-Va1 -Tyr-Tyr-Arg-Asp-Ser-Arg
Phe-Arg-Lys-Tyr-Thr-A1a-Phe-Thr-I1e-Pro-Ser-I1e-Asn-Asn-G1u-Thr-Pro-G1y-I1e-Arg-Tyr-G1 n-Tyr-Asn-Va1 -Leu-Pro-G1 n-G1 y-Trp-Lys-G1 y-Ser-Pro-Al a
Asn-Trp-Phe-Asp-l 1 e-Thr-Asn-Trp-Leu-Trp-Typ-Tyr-l 1 e-Lys-l 1 e-Phe-l 1 e-Met-11 e-Va 1 -G 1 y-G1 y-Leu-M e-G1 y-Leu-Arg-11 e-Va1 -Phe-A1 a-Va1 -Leu-Ser-11 e-Va1
Va1-A1a-Ser-G1y-Tyr-I1e-G1u-A1a-G1u-Va1-I1e-Pro-A1a-G1u-Thr-G1y-G1n-G11u-Thr-A1a Tyr-Phe-Leu-Leu-Lys-Leu-A1 a-G1 y-Arg-Trp-Pro-Va1 -Lys-Thr-l 1 e

Pro-Asp-Lys-Ser-G 1 u-Ser-G 1 u-Leu-Va 1 -Ser-G 1 n-l 1 e-l 1 e-G 1 u-G 1 n-Leu-11 e-Lys-Lys-G 1 u-Lys-Va1-Tyr-Leu-A1 a-Trp-Va1 -Pro-A1 a-His-Lys-G1 y-11 e-G1 y-G1 y
Asn-Arg-Trp-G1 n-Va1 -Met-l 1 e-Va1 -Trp-G1 n-Va1 -Asp-Arg-Met-Arg-l 1 e-Arg-Thr-Trp-Lys-Ser-Va1 -Lys-His-His-Met-Tyr-l 1 e-Ser-Arg-Lys-A1 a-Lys-G1 y
His-Pro-Asp-Lys-Trp-Thr-Va1 -G1 n-Pro-M e-Va1 -Leu-Pro-G1 u-l_ys-Asp-Ser-Trp-Thr-Va1 -Asn-Asp-11 e-G1 n-l_ys-l_eu-Va1 -G1 y-Lys-Leu-Asn-Trp-A1 a-Ser-G1 n
Pro-A1a-I1e-Phe-G1n-Ser-Ser-Met-Thr-Lys-I1e-Leu-G1u-Pro-Phe-Arg-Lys-G1n-Asn-Pro-Asp-l 1 e-Va 1-11 e-Tyr-G 1 n-Tyr-Met-Asp-Asp-Leu-Tyr-Va 1 -G1 y-Ser
Met-Arg-G1y-A1a-His-Thr-Asn-Asp-Va1-Lys-G1n-Leu-Thr-G1u-A1a-Va1-G1n-Lys-I1e-A1a-Thr-G1 u-Ser-M e-Va1 -11 e-Trp-G1y-Lys-Thr-Pro-Lys-Phe-Lys-Leu
G1u-Lys-A1a-Phe-Ser-Pro-G1u-Va1-I1e-Pro-Met-Phe-Ser-A1a-Leu-Ser-G1u-G1y-A1a-Thr-Pro-G1 n-Asp-Leu-Asn-Thr-Met-Leu-Asn-Thr-Va1 -G1 y-G1 y-His-G1 n
A1 a-Ser-Va1-Leu-Ser-G1 y-G1 y-G1 u-Leu-Asp-Arg-Trp-G1 u-Lys-11 e-Arg-Leu-Arg-Pro-G1 y-Gly-Lys-Lys-Lys-Tyr-Lys-Leu-Lys-His-I1e-Va1-Trp-A1a-Ser-Arg
G1 u-Leu-Tyr-Lys-Tyr-Lys-Va1-Va1-Lys-H e-G1 u-Pro-Leu-G1 y-Va1 -A1 a-Pro-Thr-l_ys-A1 a-Lys-Arg-Arg-Va1 -Va1 -G1 n-Arg-G1 u-Lys-Arg-A1 a-Va1 -G1 y-lle-G1 y

G1 n-Me-Tyr-G1 n-G1 u-Pro-Phe-Lys-Asn-Leu-l_ys-Thr-G1 y-Lys-Tyr-A1 a-Arg-Met-Arg-G1 y-A1a-His-Thr-Asn-Asp-Va1 -Lys-G1 n-Leu-Thr-G1 u-A1 a-Va1 -G1 n-Lys
ttsn-Leu-Leu-Arg-A1 a-11 e-G1 u-A1 a-G1 n-G1 n-His-Leu-Leu-G1 n-Leu-Thr-Va1 -Trp-G1 y-11 e-lys-G1 n-Leu-G1 n-A1 a-Arg-Va1 -Leu-A1 a-Va1 -G1 u-Arg-Tyr-Leu-Tys
Thr-Thr-Asn-G1 n-Lys-Thr-G1 u-Leu-G1 n-A1 a-11 e-His-Leu-A1 a-Leu-G1 n-Asp-Ser-G1 y-Leu-G1u-Va1-Asn-I1e-Va1-Thr-Asp-Ser-G1n-Try-A1a-Leu-G1y-I1e-I1e
G1 u-A1 a-G1 u-Leu-G1 u-Leu-A1 a-G1 u-Asn-Arg-G1 u-11 e-Leu-Lys-G1 u-Pro-Va1 -His-G1 y-Va1 -Tyr-Tyr-Asp-Pro-Ser-Lys-Asp-Leu-I1 e-Ala-G1 u-11 e-G1 n-Lys-G1 n
G1 u-Pro-Phe-Arg-Asp-Tyr-Va1 -Asp-Arg-Phe-Tyr-Lys-Thr-Leu-Arg-A1 a-G1 u-G1 n-A1 a-Ser-G1 n-G1 u-Va1 -Lys-Asn-Trp-Met-Thr-G1 u-Thr-Leu-Leu-Va1 -G1 n-Asn
Asn-G1u-Trp-Thr-Leu-G1u-Leu-Leu-G1u-G1u-Leu-Lys-Ser-G1u-A1a-Va1-Arg-His-Phe-Pro-Arg-I1e-Trp-Leu-His-G1y-Leu-G1 y-G1 n-His-11 e-Tyr-G1 u-Thr-Tyr
G1u-G1y-Leu-I1e-Try-Ser-G1n-Lys-Arg-G1n-Asp-I1e-Leu-Asp-Leu-Trp-Va1-Tyr-His-Thr-G1n-G1 y-Tyr-Phe-Pro-Asp-Trp-G 1 n-Asn-Tyr-Thr-Pro-G 1 y-Pro-G 1 y
His-Phe-Leu-Lys-G 1 u-Lys-G 1 y-G 1 y-Leu-G 1 u-G 1 y-Leu-l 1 e-Tyr-Ser-G 1 n-Lys-Arg-G 1 n-Asp-11 e-Leu-Asp-l_eu-Trp-Va1 -Tyr-His-Thr-G1 n-Gly-Tyr-Phe-Pro-Asp

Phe-Pro-Va1-Arg-Pro-G1n-Va1-Pro-Leu-Arg-Pro-Met-Thr-Tyr-Lys-A1a-A1a-Va1-Asp-Leu-Ser-His-Phe-Leu-Lys-G 1 u-Lys-G 1 y-G 1 y-Leu-G 1 u-G 1 y-Leu-l 1 e-Tyr
Phe-Pro-G 1 n-l 1 e-Thr-Leu-Trp-G 1 n-Arg-Pro-Leu-Va1 -Thr-l 1 e-Lys-l 1 e-G 1 y-G 1 y-G 1 nrLeu-Lys-GI1 u-A1 a-Leu-Leu-Asp-Thr-G1 y-A1 a-Asp-Asp-Thr-Va1 -Leu-G1 u
Leu-Va1-I1e-Thr-Thr-Tyr-Trp-G1y-Leu-His-Thr-G1y-G1u-Arg-Asp-Trp-His-Leu-G1y-G1n-G1y-Va1-Ser-11 e-G1 u-Trp-Arg-Lys-Lys-Arg-Tyr-Ser-Thr-Gln-Val
A1 a-Pro-Pro-G 1 u-G 1 u-Ser-Phe-Arg-Phe-G 1 y-G 1 u-G 1 u-Thr-Thr-Thr-Pro-Ser-G 1 n-Lys-Gln-G1 n-Pro-l 1 e-Asp-Lys-G1 u-Leu-Tyr-Pro-Leu-A1 a-Ser-Leu-Arg-Ser
Lys-Arg-Arg-Va1 -Va1 -G1 n-Arg-G1 u-Lys-Srg-A1 a-A1 a-Va1 -G1 y-11 e-G1 y-A1 a-Met-Phe-Leu-G1 y-Phe-Leu-G1 y-A1 a-A1 a-G1 y-Ser-Ser-Thr-Met-G1 y-Aa-A1 a-Ser-Met-Thr
G1y-Leu-G1y-G1n-His-I1e-Tyr-G1u-Thr-Tyr-G1y-Asp-Thr-Trp-A1a-G1y-Va1-G1u-A1a-I1e-11 e-Arg-11 e-Leu-G 1 n-G 1 n-Leu-Phe-11 e-His-Phe-Arg-l 1 e-G 1 y
Candidate peptides for inclusion into a prophylactic or therapeutic vaccine for HIV may be peptides from any of the structural or functional domains Gas, Pol, Nef, Env, Vif, Vpr, Vpu, Tat or Rev in any such combination.

1. A fluorocarbon vector-antigen construct characterised in that the fluorocarbon vector-antigen construct is of structure CmFn.-CyHx-(Sp)-R or derivatives thereof, where m = 3 to 30, n 2. A fluorocarbon vector-antigen construct as claimed in claim 1 of structure
(Structure Removed)
where Sp is an optional chemical spacer moiety and R is an immunogenic peptide antigen which is derived from an infectious agent, an autologous protein or cancer antigen.
3. A fluorocarbon vector-antigen construct as claimed in claim 1 of structure
(Structure Removed)
where Sp is an optional chemical spacer moiety and R is an immunogenic peptide antigen which is derived from an infectious agent, an autologous protein or cancer antigen.
4. A fluorocarbon vector-antigen construct as claimed in claim 1 of structure
(Structure Removed)
where Sp is an optional chemical spacer moiety and R is an immunogenic peptide antigen which is derived from an infectious agent, an autologous protein or cancer antigen.
5. A fluorocarbon vector antigen construct as claimed in any of claims 1 to 4,
wherein the infectious agent is a virus, bacteria, parasite, mycobacterium or
6. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen comprises one or more epitopes from an influenza virus protein.
7. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen comprises one or more epitopes from a human immunodeficiency virus protein.
8. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen consists of between 7 to 70 amino acids.
9. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen comprises at least one MHC class I or II, or B cell epitope.
10. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen comprises more than two or more overlapping epitopes.
11. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen is an HIV epitope.
12. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen is selected from known antigens of SEQ ID Nos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36 or fragments, derivatives, homologues or combinations thereof.
13. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5, wherein the peptide antigen is one or more HIV env epitopes.
14. A fluorocarbon vector-antigen construct as claimed in claim 11, wherein the peptide antigen is the HIV env epitope peptide with the amino acid sequence NNTRKRIRIQRGPGRAFVTIGK-NH2.
15. A fluorocarbon vector-antigen construct as claimed in any of claims 1 to 5,
wherein the peptide antigen comprises multiple epitopes and/or fusion peptides.
16. A fluorocarbon vector-antigen construct substantially as herein described with reference to the accompanying drawings and as illustrated in the foregoing examples.
















5905-delnp-2006-description (complete).pdf


















5905-delnp-2006-pct-search report.pdf

5905-DELNP-2006-Petition 137-(08-09-2010).pdf

Patent Number 246988
Indian Patent Application Number 5905/DELNP/2006
PG Journal Number 12/2011
Publication Date 25-Mar-2011
Grant Date 23-Mar-2011
Date of Filing 11-Oct-2006
# Inventor's Name Inventor's Address
PCT International Classification Number A61K 47/48
PCT International Application Number PCT/GB2005/001279
PCT International Filing date 2005-04-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0408164.2 2004-04-13 U.K.