Title of Invention

HAIR AND/OR SCALP CARE COMPOSITIONS INCORPORATING AMINO-OXO-INDOLE-YLIDENE COMPOUNDS

Abstract A hair and/or scalp treatment composition comprising an amino-oxo-indole-ylidene compound of general formula (I): (I) fourmula should be here in which: R1, R2, R3 and R4 are each, independently, hydrogen or a monovalent organic group selected from alkyl, alkenyl, alkynyl, aryl, alkylenearyl, cycloalkyl, cycloalkenyl, and heterocyclyl.
Full Text J3792/C
FORM - 2
THE PATENTS ACT, 1970
(39 of 1970)
&
The Patents Rules, 2003
COMPLETE SPECIFICATION
(See Section 10 and Rule 13)
HAIR AND/OR SCALP CARE COMPOSITIONS INCORPORATING AMINO-OXO-INDOLE-YLIDENE COMPOUNDS
HINDUSTAN UNILEVER LIMITED, a company incorporated under the Indian Companies Act, 1913 and having its registered office at Hindustan Lever House, 165/166, Backbay Reclamation, Mumbai -400 020, Maharashtra, India
The following specification particularly describes the invention and the manner in which it is to be performed

WO 2006/097193

PCT/EP2006/001825


HAIR AND/OR SCALP CARE COMPOSITIONS INCORPORATING AMINO-OXO-INDOLE-YLIDENB COMPOUNDS
This invention relates to hair and/or scalp care compositions incorporating certain amino-oxo-indole-ylidene compounds. The invention also relates to the use of these amino-oxo-indole-ylidene compounds for the treatment and/or prevention of inflammatory skin conditions such as the scalp skin itching and flaking associated with dandruff.
Background
It is widely believed that Malassezia yeasts, such as Malassezia furfur, are the main cause of dandruff. However,
it is unclear why some people suffer from this condition while others do not. What is known is that increasing the level of Malassezia on the scalp does not automatically lead to dandruff. This suggests that Malassezia is necessary but not sufficient to cause the condition.

Recent studies have demonstrated that dandruff is associated with changes in scalp skin condition. Dandruff scalp skin has been shown to have decreased levels of stratum corneum lipids such as ceramides, an increased susceptibility to
application of topical histamine and a perturbed balance in the levels of inflammatory cytokine markers in the stratum corneum. These findings clearly demonstrate that dandruff is associated with changes in scalp skin condition and that dandruff is multifactorial. It is believed that the
weakened scalp skin barrier and perturbed condition of the

WO 2006/097193

PCT/EP2006/001825


scalp skin renders an individual susceptible to challenge by factors such as Malassezia.
The main, if not only, intervention strategy used on the market currently for the treatment of dandruff is the
topical application of antifungals such as zinc pyrithione (ZnPTO), octopirox and ketoconazole which are normally delivered from a shampoo. These antifungal agents remove (or at least reduce the level of) the Malassezia from the scalp, and provide effective treatment of the dandruff condition.
Although clinically proven to be effective in treating the clinical symptoms of dandruff over a two to four week
period, there remains a need to treat the main symptoms of dandruff more effectively and rapidly. The main symptoms of dandruff are visible skin flakes in the hair and on the shoulders and scalp itch. Scalp itch is perceived as being a particular problem in certain parts of the world, for
example it is the main symptom of dandruff in China, South-East Asia and India.
As well as treating the clinical signs of dandruff, therefore, there remains a need for providing rapid relief from scalp itch for dandruff sufferers.
WO04/00085 describes how cannabinoid receptor (CBR) activators may be useful in hair treatment compositions for the treatment and/or prevention of symptoms of dandruff such as scalp skin itching and flaking.

WO 2006/097193

PCT/EP2006/001825

The present inventors have found that certain amino-oxo-indole-ylidene compounds are capable of acting as CBR activators, and therefore may be used for the treatment and/or prevention of symptoms of dandruff such as scalp skin itching and flaking.



There is no suggestion in WO04/00085 that these compounds would possess such activity. Their structure is unusual compared to known classes of cannabinoid receptor (CBR) activator, as reviewed for example in Howlett et al., Pharmacol. Rev. 54 (2): 161-202, 2002.

Summary of the invention
According to the invention there is provided a hair and/or scalp care composition comprising an amino-oxo-indole-ylidene compound of general formula (I):
(I)


in which:

WO 2006/097193

PCT/EP2006/001825


R1, R2, R3 and R4 are each, independently, hydrogen or a monovalent organic group selected from alkyl, alkenyl, alkynyl, aryl, alkylenearyl, cycloalkyl, cycloalkenyl, and heterocyclyl.

In another aspect, the invention provides a method of treating and/or preventing inflammatory skin conditions such as the scalp skin itching and flaking associated with dandruff, which method comprises topically applying a composition according to the invention to the hair and/or skin, preferably to the hair and/or scalp.
De-bailed Description of the Invention and Preferred Embodiments

As used herein, the term "alkyl" includes straight chained and branched saturated hydrocarbon groups, typically methyl, ethyl, and straight chain and branched propyl and butyl groups. The hydrocarbon group can generally contain up to 16
carbon atoms, such as from 1 to 6. The term "alkyl" also includes "bridged alkyl," such as a C6-C16 bicyclic or polycyclic hydrocarbon group, for example, norbornyl, adamantyl, bicyclo[2.2.2]octyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.l]octyl, and decahydronaphthyl.

The term "cycloalkyl" is defined as a cyclic saturated hydrocarbon group, typically of 3 to 8 carbon atoms such as cyclopropyl, cyclobutyl, cyclohexyl, or cyclopentyl.
The terms "alkenyl" and "alkynyl" include straight chained and branched unsaturated hydrocarbon groups containing a

WO 2006/097193

PCT/EP2006/001825


carbon-carbon double bond or carbon-carbon triple bond, respectively. The hydrocarbon group can generally contain up to 16 carbon atoms, such as from 2 to 6. "Cycloalkenyl" is defined similarly to cycloalkyl, except a carbon-carbon double bond is present in the ring.
The term "alkylene" refers to an alkyl group having a substituent. For example, the term "C1-3 alkylenearyl" refers to an alkyl group containing one to three carbon atoms, and substituted with an aryl group.
The term "halo" or "halogen" is defined herein to include fluorine, bromine, chlorine, and iodine.
The term "aryl", alone or in combination, is defined herein as a monocyclic or polycyclic aromatic group, preferably a monocyclic or bicyclic aromatic group such as phenyl or naphthyl. An "aryl" group can be unsubstituted or substituted, for example with one or more substituents such
as halo, alkyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, haloalkyl, haloalkoxy, cyano, nitro, amino, alkylamino, acylamino, thio, alkylthio, alkylsulfinyl, and alkylsulfonyl.
The term "heterocyclyl" is defined herein as a saturated or partially or fully unsaturated monocyclic or bicyclic ring system, containing at least one heteroatom selected from oxygen, nitrogen, or sulphur. A "heterocyclyl" group can be unsubstituted or substituted, for example with one or more
substituents such as halo, alkyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, haloalkyl, haloalkoxy, cyano, nitro,

WO 2006/097193

PCT/EP2006/001825


amino, alkylamino, acylamino, thio, alkylthio, alkylsulfinyl, and alkylsulfonyl. A "heterocyclyl" group can also contain an oxo group (=0) attached to the ring.
R1 and R4 in general formula (I) are preferably independently selected from hydrogen and C1-6 alkyl, more preferably from hydrogen and C1-3 alkyl. Most preferably R1 and R4 are both hydrogen.
R2 in general formula (I) is preferably an aryl group, more
preferably a bicyclic aromatic group. Most preferably R2 is a naphthyl group.
R3 in general formula (I) is preferably an alkylenearyl group, more preferably a C1-3 alkylenearyl group. Most preferably R3 is a phenethyl (C6H5CH2CH2-) group.
A specific example of an amino-oxo-indole-ylidene compound of general formula (I) is a compound which has the structural formula (II):

WO 2006/097193

PCT/EP2006/001825


(II)
The above compound of structural formula (II) is termed
(naphthalen-1-ylamino)-acetic acid (2-oxo-l-phenethyl-l,2-dihydro-indol-3-ylidene)-hydrazide.
Amino-oxo-indole-ylidene compounds of formula (I) may be obtained from from suppliers such as Apin Chemicals Limited (Oxon., UK)., Sigma-Aldrich and Interbioscreens.
The amount of amino-oxo-indole-ylidene compound of formula (I)in the compositions of the invention is preferably selected in the range of from 0.05 to 20%, more preferably from 0.1 to 10%, most preferably from 0.25 to 5wt% by weight based on total weight.

WO 2006/097193

PCT/EP2006/001825


Antidandruff Agent
Preferably, compositions according to the invention comprise from 0.01% to 30% by weight, more preferably 0.1% to 10%, most preferably 0.5 to 2% by weight of an antidandruff
agent. By "antidandruff agent" is meant a different compound from the an amino-oxo-indole-ylidene compound of formula (I). Antidandruff agents are compounds that are active against dandruff and are typically antimicrobial agents, preferably antifungal agents.
Suitable antidandruff agents include compounds selected from zinc pyrithione, climbazole, ketoconazole, octopirox and mixtures thereof.

The preferred antifungal agent is zinc pyrithione (ZnPTO) which, on account of its relative insolubility in aqueous systems, is generally used in hair treatment compositions as a particulate dispersion. The zinc pyrithione may be used
in any particle form including, for example, crystalline
forms such as platelets and needles and amorphous, regularly or irregularly shaped particles. If zinc pyrithione is present in the composition, a suspending agent is preferably used to prevent or inhibit the settling of the particles out
of the composition. The average particle diameter of the zinc pyrithione particles (i.e, their maximum dimension) is typically from about 0.2 to about 50 mm, preferably from about 0.4 to about 10 mm, more preferably from 0.4 to lmm.
Antifungal agents typically display a minimum inhibitory
concentration of about 50 mg/ml or less against Malassezia.

WO 2006/097193

PCT/EP2006/001825


If the antifungal agent is soluble in aqueous systems, it may be present in solution in a composition used in the invention.
Product Forms
Compositions of the present invention are typically for topical application to the hair and/or scalp and may be formulated as transparent or opaque emulsions, lotions, creams, pastes or gels.
Hair and/or scalp care compositions of the invention may be rinse off products or leave on products. Rinse off products are intended to be substantially rinsed off the hair and/or the scalp of the user with water after use. Leave on
products are intended not to be rinsed off the hair and/or the scalp of the user immediately after use (ie, within at least the first 2 hours, preferably at least four hours, after application of the composition). Leave on products include, for example, lotions, creams and hair oils that are intended for topical application to the hair and/or the scalp. Rinse off compositions include shampoos and hair conditioners, as well as hair and/or scalp treatment products which are intended to be left on the hair and/or scalp for up to 2 hours (eg, 5 minutes to 2 hours) before being rinsed off.
Preferred product forms are shampoos, conditioners, hair oils and lotions.

WO 2006/097193

PCT/EP2006/001825


Shampoo Compositions
Shampoo compositions according to the invention will typically comprise one or more anionic cleansing surfactants which are cosmetically acceptable and suitable for topical application to the hair.
Anionic Cleansing Surfactant
Examples of suitable anionic cleansing surfactants are the alkyl sulphates, alkyl ether sulphates, alkaryl sulphonates, alkanoyl isethionates, alkyl succinates, alkyl sulphosuccinates, N-alkyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, and alpha-
olefin sulphonates, especially their sodium, magnesium, ammonium and mono-, di- and triethanolamine salts. The alkyl and acyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated. The alkyl ether sulphates, alkyl ether phosphates and alkyl ether carboxylates may
contain from 1 to 10 ethylene oxide or propylene oxide units per molecule.
Typical anionic cleansing surfactants for use in shampoo compositions of the invention include sodium oleyl succinate,
ammonium lauryl sulphosuccinate, ammonium lauryl sulphate, sodium dodecylbenzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauryl isethionate and sodium N-lauryl sarcosinate. The most preferred anionic surfactants are sodium lauryl sulphate,
sodium lauryl ether sulphate(n)EO, (where n ranges from 1 to

WO 2006/097193

PCT/EP2006/001825


3), ammonium lauryl sulphate and ammonium lauryl ether sulphate(n)EO, (where n ranges from 1 to 3).
Mixtures of any of the foregoing anionic cleansing surfactants may also be suitable.
The total amount of anionic cleansing surfactant in shampoo compositions of the invention is generally from 5 to 30, preferably from 6 to 20, more preferably from 8 to 16 percent by weight of the composition.
Co-surfactant
Shampoo compositions according to the invention can optionally include co-surfactants, to help impart aesthetic, physical or cleansing properties to the composition.
A preferred example is an amphoteric or zwitterionic surfactant, which can be included in an amount ranging from 0 to about 8, preferably from 1 to 4 wt%.
Examples of amphoteric and zwitterionic surfactants include alkyl amine oxides, alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines (sultaines), alkyl glycinates,
alkyl carboxyglycinates, alkyl amphopropionates,
alkylamphoglycinates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates, wherein the alkyl and acyl groups have from 8 to 19 carbon atoms. Typical amphoteric and zwitterionic surfactants for use in shampoos of the
invention include lauryl amine oxide, cocodimethyl

WO 2006/097193

PCT/EP2006/001825


sulphopropyl betaine and preferably lauryl betaine, cocamidopropyl betaine and sodium cocamphopropionate.
Another preferred example is a nonionic surfactant, which can be included in an amount ranging from 0 to 8, preferably from 2 to 5 percent by weight of the composition.
For example, representative nonionic surfactants that can be included in shampoo compositions of the invention include
condensation products of aliphatic (C8 – C18) primary or
secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.
Other representative nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono-isopropanolamide.
Further nonionic surfactants which can be included in shampoo compositions of the invention are the alkyl polyglycosides (APGs). Typically, the APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups. Preferred APGs are defined by the following formula:
RO - (G)n
wherein R is a branched or straight chain alkyl group which may be saturated or unsaturated and G is a saccharide group.

WO 2006/097193

PCT/EP2006/001825

- 13 -
R may represent a mean alkyl chain length of from about C5 to
about C20- Preferably R represents a mean alkyl chain length
of from about C8 to about C12. Most preferably the value of R
lies between about 9.5 and about 10.5. G may be selected
from C5 or C6 monosaccharide residues, and is preferably a
glucoside. G may be selected from the group comprising glucose, xylose, lactose, fructose, mannose and derivatives thereof. Preferably G is glucose.
The degree of polymerisation, n, may have a value of from
about 1 to about 10 or more. Preferably, the value of n lies in the range of from about 1.1 to about 2. Most preferably the value of n lies in the range of from about 1.3 to about 1.5.

Suitable alkyl polyglycosides for use in the invention are commercially available and include for example those materials identified as: Oramix NS10 ex Seppic; Plantaren 1200 and Plantaren 2000 ex Henkel.

Other sugar-derived nonionic surfactants which can be included in shampoo compositions of the invention include the
C10-C18 N-alkyl (C1-C6) polyhydroxy fatty acid amides, such as
the C12-C18 N-methyl glucamides, as described for example in
WO 92 06154 and US 5 194 639, and the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide.

WO 2006/097193

PCT/EP2006/001825


A preferred blend of cleansing surfactants is a combination of ammonium lauryl ether sulphate, ammonium lauryl sulphate, PEG 5 cocamide and cocamide MEA (CTFA designations).
The shampoo composition can also optionally include one or more cationic co-surfactants included in an amount ranging from 0.01 to 10, more preferably from 0.05 to 5, most preferably from 0.05 to 2 percent by weight of the composition. Useful cationic surfactants are described hereinbelow in relation to conditioner compositions.
The total amount of surfactant (including any co-surfactant, and/or any emulsifier) in shampoo compositions of the invention is generally from 5 to 50, preferably from 5 to 30, more preferably from 10 to 25 percent by weight of the composition.
Cationic Polymer
A cationic polymer is a preferred ingredient in shampoo compositions according to the invention, for enhancing conditioning performance of the shampoo.
The cationic polymer may be a homopolymer or be formed from two or more types of monomers. The molecular weight of the polymer will generally be between 5 000 and 10 000 000, typically at least 10 000 and preferably in the range 100 000 to about 2 000 000. The polymers will have cationic nitrogen containing groups such as quaternary ammonium or protonated amino groups, or a mixture thereof.

WO 2006/097193

PCT/EP2006/001825


The cationic nitrogen-containing group will generally be present as a substituent on a fraction of the total monomer units of the cationic polymer. Thus when the polymer is not a homopolymer it can contain spacer non-cationic monomer units. Such polymers are described in the CTFA Cosmetic
Ingredient Directory, 3rd edition. The ratio of the cationic to non-cationic monomer units is selected to give a polymer having a cationic charge density in the required range.
Suitable cationic conditioning polymers include, for
example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as (meth)acrylamide, alkyl and dialkyl (meth)acrylamides, alkyl (meth)acrylate, vinyl caprolactone
and vinyl pyrrolidine. The alkyl and dialkyl substituted
monomers preferably have C1-C7 alkyl groups, more preferably Cl-3 alkyl groups. Other suitable spacers include vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol and ethylene glycol.

The cationic amines can be primary, secondary or tertiary amines, depending upon the particular species and the pH of the composition. In general secondary and tertiary amines, especially tertiary, are preferred.

Amine substituted vinyl monomers and amines can be polymerized in the amine form and then converted to ammonium by quaternization.
The cationic conditioning polymers can comprise mixtures of monomer units derived from amine- and/or quaternary

WO 2006/097193

PCT/EP2006/001825


ammonium-substituted monomer and/or compatible spacer monomers.
Suitable cationic conditioning polymers include, for example:
copolymers of l-vinyl-2-pyrrolidine and 1-vinyl-3-methyl-imidazolium salt (e.g. chloride salt), referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, (CTFA) as Polyquaternium-16. This material is commercially available from BASF Wyandotte Corp. (Parsippany, NJ, USA) under the LUVIQUAT tradename (e.g. LUVIQUAT FC 370);
- copolymers of l-vinyl-2-pyrrolidine and
dimethylaminoethyl methacrylate, referred to in the industry (CTFA) as Polyquaternium-11. This material is available commercially from Gaf Corporation (Wayne, NJ, USA) under the GAFQUAT tradename (e.g., GAFQUAT 755N);
20
cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallyammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the
25 industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively;
mineral acid salts of amino-alkyl esters of homo-and copolymers of unsaturated carboxylic acids having from 3 30 to 5 carbon atoms, (as described in U.S. Patent 4,009,256);

WO 2006/097193

PCT/EP2006/001825

- 17 -
cationic polyacrylamides(as described in W095/22311).
Other cationic conditioning polymers that can be used include cationic polysaccharide polymers, such as cationic 5 cellulose derivatives, cationic starch derivatives, and cationic guar gum derivatives. Suitably, such cationic polysaccharide polymers have a charge density in the range from 0.1 to 4 meq/g.
10 Cationic polysaccharide polymers suitable for use in
compositions of the invention include those of the formula:
A_0-[R-N+ (R1) (R2) (R3)X~],
15 wherein: A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual. R is an
alkylene, oxyalkylene, polyoxyalkylene, or hydroxyalkylene
12 3 group, or combination thereof. R , R and R independently
represent alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or 20 alkoxyaryl groups, each group containing up to about 18
carbon atoms. The total number of carbon atoms for each
1 2 cationic moiety (i.e., the sum of carbon atoms in R , R and
3 R ) is preferably about 20 or less, and X is an anionic
counterion.
25
Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR (trade mark) and LR (trade mark) series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted
30 epoxide, referred to in the industry (CTFA) as

WO 2006/097193

PCT/EP2006/001825

- 18 -
Polyquaternium 10. Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry 5 (CTFA) as Polyquaternium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200.
Other suitable cationic polysaccharide polymers include 10 quaternary nitrogen-containing cellulose ethers (e.g. as described in U.S. Patent 3,962,418), and copolymers of etherified cellulose and starch (e.g. as described in U.S. Patent 3,958,581) .
15 A particularly suitable type of cationic .polysaccharide
polymer that can be used is a cationic guar gum derivative, such as guar hydroxypropyltrimonium chloride (commercially available from Rhone-Poulenc in their JAGUAR trademark series).
20
Examples are JAGUAR C13S, which has a low degree of substitution of the cationic groups and high viscosity. JAGUAR C15, having a moderate degree of substitution and a low viscosity, JAGUAR C17 (high degree of substitution, high
25 viscosity), JAGUAR C16, which is a hydroxypropylated cationic guar derivative containing a low level of substituent groups as well as cationic quaternary ammonium groups, and JAGUAR 162 which is a high transparency, medium viscosity guar having a low degree of substitution.

WO 2006/097193

PCT/EP2006/001825

- 19 -
Preferably the cationic conditioning polymer is selected from cationic cellulose and cationic guar derivatives. Particularly preferred cationic polymers are JAGUAR C13S, JAGUAR C15, JAGUAR C17 and JAGUAR C16 and JAGUAR C162. 5
The cationic conditioning polymer will generally be present in compositions of the invention at levels of from 0.01 to 5, preferably from 0.05 to 1, more preferably from 0.08 to 0.5 percent by weight of the composition. 10
When cationic conditioning polymer is present in a shampoo composition according to the invention, it is preferred if the copolymer is present as emulsion particles with a mean
diameter (D3,2 as measured by light scattering using a
15 Malvern particle sizer) of 2 micrometres or less.
Hair Conditioner Compositions
Compositions in accordance with the invention may also be 20 formulated as conditioners for the treatment of hair (typically after shampooing) and subsequent rinsing.
Hair conditioner compositions according to the invention will suitably comprise a cationic conditioning surfactant that is 25 cosmetically acceptable and suitable for topical application to the hair.
Cationic Conditioning Surfactant
30 Examples of suitable cationic conditioning surfactants are those corresponding to the general formula:

WO 2006/097193

PCT/EP2006/001825

- 20 -tN(Ri) (R2) (R3) (R4)]+ (X)~
in which Ri, R2, R3, and R4 are independently selected from
(a) an aliphatic group of from 1 to 22 carbon atoms, or (b) 5 an aromatic, alkoxy, polyoxyalkylene, alkylamido,
hydroxyalkyl, aryl or alkylaryl group having up to 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate nitrate, sulphate, and 10 alkylsulphate radicals.
The aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups. The longer chain aliphatic groups, e.g., those 15 of about 12 carbons, or higher, can be saturated or unsaturated.
Preferred cationic conditionings surfactants are monoalkyl quaternary ammonium compounds in which the alkyl chain 20 length is C16 to C22.
Other preferred cationic conditioning surfactants are so-called dialkyl quaternary ammonium compounds in which Rl and R2 independently have an alkyl chain lengths from C16 to C22
25 and R3 and R4 have 2 or less carbon atoms.
Examples of suitable cationic surfactants include: cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammonium chloride, octyltrimethylammonium
30 chloride, dodecyltrimethylammonium chloride,

WO 2006/097193

PCT/EP2006/001825

- 21 -
hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, 5 didodecyldimethylammonium chloride,
dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, cocotrimethylammonium chloride, PEG-2 oleylammonium chloride and salts of these where the chloride is replaced by halogen, (e.g. , bromide), acetate, citrate, lactate,
10 glycolate, phosphate nitrate, sulphate, or alkylsulphate.
Further suitable cationic surfactants include those materials having the CTFA designations Quaternium-5, Quaternium-31 and Quaternium-18. Mixtures of any of the foregoing materials may also be suitable. A particularly useful cationic
15 conditioning surfactant is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese.
Salts of primary, secondary, and tertiary fatty amines are 20 also suitable cationic conditioning surfactants. The alkyl groups of such amines preferably have from about 12 to about 22 carbon atoms, and can be substituted or unsubstituted.
Particularly useful are amido substituted tertiary fatty
25 amines. Such amines, useful herein, include
stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitareddopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine,
30 behenamidopr opyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldirnethylamine,

WO 2006/097193

PCT/EP2006/001825

- 22 -
arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine,
arachidamidoethyldimethylamine, diethylaminoethylstearamide. 5 Also useful are dimethylstearamine, dimethylsoyamine,
soyamine, myristylamine, tridecylamine, ethylstearylamine, N-tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxyethylstearylamine, and arachidyl behenylamine. These amines are typically used in
10 combination with an acid to provide the cationic species. The preferred acid useful herein includes L- glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, L-glutamic hydrochloride, and mixtures thereof; more preferably
15 L-glutamic acid, lactic acid, citric acid. Cationic amine surfactants included among those useful in the present invention are disclosed in U.S. Patent 4,275,055 to Nachtigal, et al., issued June 23, 1981.
20 The molar ratio of protonatable amines to H from the acid is
preferably from about 1:0.3 to 1:1.2, and more preferably from about 1:0.5 to about 1:1.1.
In the conditioners of the invention, the level of cationic 25 conditioning surfactant is suitably from 0.01 to 10,
preferably from 0.05 to 5, more preferably from 0.1 to 2 percent by weight of the total composition.

WO 2006/097193

PCT/EP2006/001825

- 23 -
Fatty Materials
Hair conditioner compositions according to the invention preferably additionally comprise fatty materials. 5
By "fatty material" is meant a fatty alcohol, an alkoxylated fatty alcohol, a fatty acid or a mixture thereof.
Preferably, the alkyl chain of the fatty material is fully 10 saturated.
Representative fatty materials comprise from 8 to 22 carbon atoms, more preferably 16 to 22. Preferred fatty materials include cetyl alcohol, stearyl alcohol and mixtures thereof.
15
Alkoxylated, (e.g. ethoxylated or propoxylated) fatty alcohols having from about 12 to about 18 carbon atoms in the alkyl chain can be used in place of, or in addition to, the fatty alcohols themselves. Suitable examples include
20 ethylene glycol cetyl ether, polyoxyethylene (2) stearyl ether, polyoxyethylene (4) cetyl ether, and mixtures thereof.
The level of fatty material in conditioners of the invention 25 is suitably from 0.01 to 15, preferably from 0.1 to 10, and more preferably from 0.1 to 5 percent by weight of the composition. The weight ratio of cationic surfactant to fatty material is suitably from 10:1 to 1:10, preferably from 4:1 to 1:8, optimally from 1:1 to 1:7, for example 1:3.

WO 2006/097193

PCT7EP2006/001825

- 24 -
Hair conditioner compositions of the invention can also contain a cationic polymer. Suitable cationic polymers are described hereinabove in relation to shampoo compositions.
5 Hair Oils and Lotions
Hair oils are also suitable product forms according to the invention. Hair oils predominantly comprise water-insoluble oily conditioning materials. Lotions are aqueous emulsions 10 comprising water-insoluble oily conditioning materials. Suitable surfactants can also be included in lotions to improve their stability to phase separation.
Other Optional Ingredients 15
Compositions of this invention may contain any other ingredient normally used in hair treatment formulations.
Suspending Agents
20
Hair treatment compositions according to the invention such as shampoos suitably comprise from 0.1 to 5 wt% of a suspending agent. Suitable suspending agents are selected from polyacrylic acids, cross-linked polymers of acrylic
25 acid, copolymers of acrylic acid with a hydrophobic monomer, copolymers of carboxylic acid-containing monomers and acrylic esters, cross-linked copolymers of acrylic acid and acrylate esters, heteropolysaccharide gums and crystalline long chain acyl derivatives. The long chain acyl derivative
30 is desirably selected from ethylene glycol stearate,
alkanolamides of fatty acids having from 16 to 22 carbon

WO 2006/097193

PCT/EP2006/001825

- 25 -
atoms and mixtures thereof. Ethylene glycol distearate and polyethylene glycol 3 distearate are preferred long chain acyl derivatives. Polyacrylic acid is available commercially as Carbopol 420, Carbopol 488 or Carbopol 493. 5 Polymers of acrylic acid cross-linked with a polyfunctional agent may also be used, they are available commercially as Carbopol 910, Carbopol 934, Carbopol 940, Carbopol 941 and Carbopol 980. An example of a suitable copolymer of a carboxylic acid containing a monomer and acrylic acid esters 10 is Carbopol 1342. All Carbopol (trade mark) materials are available from Goodrich.
Suitable cross-linked polymers of acrylic acid and acrylate esters are Pemulen TR1 or Pemulen TR2. A suitable 15 heteropolysaccharide gum is xanthan gum, for example that available as Kelzan mu.
Further Conditioning Agents
20 Hair treatment compositions according to the invention such as shampoos and conditioners suitably contain further conditioning agents such as silicone conditioning agents and non-silicone oily conditioning agents.
25 Suitable silicone conditioning agents include
polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone. Also suitable for use in compositions of the invention (particularly shampoos and conditioners) are polydimethyl siloxanes having
30 hydroxyl end groups, which have the CTFA designation
dimethiconol. Also suitable for use in compositions of the

WO 2006/097193

PCT/EP2006/001825

- 26 -
invention are silicone gums having a slight degree of cross-linking, as are described for example in WO 96/31188. These materials can impart body, volume and stylability to hair, as well as good wet and dry conditioning. Also suitable are 5 functionalised silicones, particularly amino-functionalised silicones.
Suitable non-silicone oily conditioning agents are selected from hydrocarbon oils, fatty esters and mixtures thereof.
10
The further conditioning agent is suitably present in shampoo or conditioner compositions at a level of from 0.05 to 10, preferably from 0.2 to 5, more preferably from about 0.5 to 3 percent by total weight of further conditioning
15 agent based on total weight of the composition.
Hair treatment compositions of the invention may contain other optional ingredients for enhancing performance and/or consumer acceptability, such as fragrance, dyes and 20 pigments, pH adjusting agents, pearlescers or opacifiers, viscosity modifiers, preservatives, and natural hair nutrients such as botanicals, fruit extracts, sugar derivatives and amino acids.
25 The invention is further illustrated with reference to the following, non-limiting examples, in which all percentages are by weight based on total weight unless otherwise specified.
30

WO 2006/097193

PCT/EP2006/001825

- 27 -EXAMPLES
Example 1
5 An amino-oxo-indole-ylidene compound of formula (I) was
evaluated for its ability to activate Cannabinoid Receptor 1 (CBlR) and Cannabinoid Receptor 2 (CB2R). Its ClogP value were also measured.
10 CBIR experiments were performed using membranes from HEK293 cells over-expressing human recombinant CBi, as described by the manufacturer (Perkin-Elmer) and using [3H]CP-55,490 as the radioligand.
15 CB2R experiments were performed using membranes from HEK293 cells over-expressing human recombinant CB2, as described by the manufacturer (Perkin-Elmer), and using [3H]CP-55,495 as the radioligand.
20 Data of the active compound is expressed in Ki (mM) and are means±SEM of n=3 determinations.
The value stated is an EC50 value. This is defined as the molar concentration of an agonist, which produces 50% of the 25 maximum possible response for that agonist. The values documented are in micromolar units.
The absence of a value in the table indicates that greater than 25 micromolar concentration was required for 50% 30 binding of the ligand to the receptor.

WO 2006/097193

PCT/EP2006/001825

- 28 -
Also, the ClogP values of the compound was calculated using SYBYL v6.8 (Tripos Inc., Missouri).
The results are shown in the following Table: 5

Examp Compound CB1R CB2R ClogP
le Activity Activity
1 (Naphthalen-1-ylamino)-acetic acid (2-oxo-l-phenethyl-1,2-dihydro-indol-3-ylidene)-hydrazide 21.10 6.25

WO 2006/097193

PCT/EP2006/001825

- 29 -Example 2
The following is an example of a shampoo composition according to the invention:

Ingredient Example 2
Chemical Name a.i. weight %
SLES 2EO 14
Cocoamidopropylbetaine 2
Guar hydroxypropyltrimonium chloride 0.1
Dimethiconol 1
Crosslinked polyacrylic acid 0.4
Zinc pyrithione 0.5
(Naphthalen-1-ylamino)-acetic acid (2-oxo-l-phenethyl-1,2-dihydro-indol-3-ylidene)-hydrazide 0.6
Mica + titanium dioxide 0.2
Sodium benzoate 0.5
Water to 100

WO 2006/097193

PCT/EP2006/001825

- 30 -
Claims:
1. A hair and/or scalp care composition comprising an
amino-oxo-indole-ylidene compound of general formula (I):
(I)



10
in which:

15

Rir &2r R3 and R4 are each, independently, hydrogen or a monovalent organic group selected from alkyl, alkenyl, alkynyl, aryl, alkylenearyl, cycloalkyl, cycloalkenyl, and heterocyclyl.



20

A composition according to claim 1 characterised in that the amino-oxo-indole-ylidene compound of general formula (I) is naphthalen-1-ylamino)-acetic acid (2-oxo-l-phenethyl-1,2-dihydro-indol-3-ylidene)-hydrazide.

WO 2006/097193

PCT/EP2006/001825

-31-
3. A composition according to claim 1 or claim 2
characterised in that it comprises from 0.01 to 30% by weight of an antidandruff agent.
5 4. A composition according to Claim 3 characterised in that the antidandruff agent comprises a compound selected from zinc pyrithione, climbazole, ketoconazole, octopirox and mixtures thereof.
10 5. A composition according to any preceding claim
characterised in that it is a shampoo composition comprising an anionic cleansing surfactant in an amount of from 5 to 30wt%.
15 6. A composition according to any one of claims 1 to 4
characterised in that it is a conditioner composition comprising a cationic conditioning surfactant in an amount of from 0.01 to 10wt%.
20 7. A composition according to any one of claims 1 to 4 characterised in that it is a hair oil or lotion.
8. A composition according to any preceding claim
characterised in that the amount of the amino-oxo-
25 indole-ylidene compound of general formula (I) is from 0.05 to 20% by weight and preferably from 0.1 to 10% by weight.
9. A method of treating and/or preventing inflammatory
30 skin conditions such as the scalp skin itching and
flaking associated with dandruff, which method

WO 2006/097193 PCT/EP2006/001825

10

-32-
comprises topically applying a composition according to any one of claims 1 to 8 to the hair and/or skin, preferably to the hair and/or scalp.
10. Use of an amino-oxo-indole-ylidene compound of general formula (I) in the manufacture of a composition for treating and/or preventing inflammatory skin conditions such as the scalp skin_ itching and flaking associated with dandruff.
11. Use as claimed in claim 10, wherein the composition is a composition according to any one of claims 1 to 9.



Documents:

1381-mumnp-2007-annexure to form 3(30-11-2009).pdf

1381-mumnp-2007-cancelled pages(16-10-2009).pdf

1381-MUMNP-2007-CANCELLED PAGES(8-4-2009).pdf

1381-mumnp-2007-claims(10-9-2007).pdf

1381-MUMNP-2007-CLAIMS(8-4-2009).pdf

1381-MUMNP-2007-CLAIMS(AMENDED)-(16-10-2009).pdf

1381-mumnp-2007-claims(granted)-(10-1-2011).pdf

1381-mumnp-2007-claims.doc

1381-mumnp-2007-claims.pdf

1381-mumnp-2007-correspondence 1(2-7-2008).pdf

1381-MUMNP-2007-CORRESPONDENCE 2-7-2008.pdf

1381-MUMNP-2007-CORRESPONDENCE(10-5-2010).pdf

1381-mumnp-2007-correspondence(16-1-2008).pdf

1381-MUMNP-2007-CORRESPONDENCE(30-11-2009).pdf

1381-MUMNP-2007-CORRESPONDENCE(30-9-2009).pdf

1381-MUMNP-2007-CORRESPONDENCE(8-2-2012).pdf

1381-MUMNP-2007-CORRESPONDENCE(8-4-2009).pdf

1381-mumnp-2007-correspondence(ipo)-(11-1-2011).pdf

1381-mumnp-2007-correspondence-received.pdf

1381-mumnp-2007-description (complete).pdf

1381-mumnp-2007-description(complete)-(10-9-2007).pdf

1381-MUMNP-2007-DESCRIPTION(COMPLETE)-(8-4-2009).pdf

1381-mumnp-2007-description(granted)-(10-1-2011).pdf

1381-MUMNP-2007-FORM 1(10-9-2007).pdf

1381-mumnp-2007-form 18(16-1-2008).pdf

1381-mumnp-2007-form 2(8-4-2009).pdf

1381-mumnp-2007-form 2(complete)-(10-9-2007).pdf

1381-mumnp-2007-form 2(granted)-(10-1-2011).pdf

1381-mumnp-2007-form 2(title page)-(10-9-2007).pdf

1381-MUMNP-2007-FORM 2(TITLE PAGE)-(8-4-2009).pdf

1381-mumnp-2007-form 2(title page)-(granted)-(10-1-2011).pdf

1381-mumnp-2007-form 3(10-9-2007).pdf

1381-MUMNP-2007-FORM 3(24-2-2010).pdf

1381-MUMNP-2007-FORM 3(30-11-2009).pdf

1381-MUMNP-2007-FORM 3(4-8-2010).pdf

1381-mumnp-2007-form-1.pdf

1381-mumnp-2007-form-2.doc

1381-mumnp-2007-form-2.pdf

1381-mumnp-2007-form-3.pdf

1381-mumnp-2007-form-5.pdf

1381-mumnp-2007-form-pct-ib-311.pdf

1381-mumnp-2007-form-pct-isa-237.pdf

1381-mumnp-2007-form-pct-separate sheet-237.pdf

1381-MUMNP-2007-GENERAL POWER OF ATTORNEY(8-4-2009).pdf

1381-MUMNP-2007-OTHER DOCUMENT(16-10-2009).pdf

1381-mumnp-2007-pct-search report.pdf

1381-MUMNP-2007-REPLY TO EXAMINATION REPORT(16-10-2009).pdf

1381-mumnp-2007-wo international publication report(10-9-2007).pdf

abstract1.jpg


Patent Number 245239
Indian Patent Application Number 1381/MUMNP/2007
PG Journal Number 02/2011
Publication Date 14-Jan-2011
Grant Date 10-Jan-2011
Date of Filing 10-Sep-2007
Name of Patentee HINDUSTAN UNILEVER LIMITED
Applicant Address HINDUSTAN LEVER HOUSE 165/166,Backbay Reclamation, Mumbai
Inventors:
# Inventor's Name Inventor's Address
1 BHOGAL RANJIT UNILEVER R&D COLWORTH, SHARNBROOK, BEDFORD, MK44 1LQ
2 CHUGH JASVEEN 5 CANTERBURY CLOSE, CHIGWELL, ESSEX IG76HG
3 MELDRUM HELEN CONOPCO INC.D/B/A UNILEVER,40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT, 06611
PCT International Classification Number A61Q5/00 A61K8/49
PCT International Application Number PCT/EP2006/001825
PCT International Filing date 2006-02-27
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 EP05251512 2005-03-12 EUROPEAN UNION