Title of Invention

BIOREACTOR SYSTEM FOR MULTI-STAGE BIOLOGICAL WASTEWATER TREATMENT

Abstract A bioreactor system including at least one flexible substrate (10) for supporting biomass growth having a plurality of threads (50) an at least two cross support elements (52), wherein openings defined by adjacent threads and adjacent cross support openings have an aspect ratio exceeding 50:1.
Full Text

BIOREACTOR SYSTEM FOR MULTI-STAGE BIOLOGICAL
WASTEWATER TREATMENT
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to biological wastewater treatment systems, and more particularly, to a bioreactor system for multi-stage biological wastewater treatment based on spatial microorganisms successions and trophic hydrobionts chains.
It is known that a spatially segregated trophic microorganism chain provides conditions at which larger organisms consume smaller ones. Such a spatial microorganism succession forms a basis for purification processes by means of both aerobic and anaerobic destruction of microorganisms. The result of such a succession is an increased efficiency of biochemical treatment and a reduced quantity of surplus biomass. Such purification processes are suitable for both domestic and industrial wastewaters, even those containing high levels of organic and inorganic impurities.
Characteristically, systems for wastewater treatment by trophic microorganism chains include bioreactors having modular spatial aerobic and anaerobic units. Each bioreactor is provided with a controlled air supply that maintains the oxygen level needed for the activity of the microorganisms and enhances the biomass exchange.
Prior art bioreactors suffer from various drawbacks. Trickling filters require a large space, generate secondary pollution including bad odors, and attract flies. Activated sludge processes generate large amounts of biomass that need careful monitoring due to sudden changes in biomass loading and plugging. Rotational bioreactors are more compact, however, they are expensive and prone to mechanical problems.
It is known that bioreactors using fixed submerged biomass usually perform well at low biomass loadings, but are easily plugged by excessive buildup of biomass, therefore, demanding periodic cleaning or replacing of the submerged biomass. These prior art fixed submerged biomass bioreactors require many bioreactors to keep the loading low to maintain the purification efficiency. Consequently these

wastewater-treating facilities demand frequent monitoring, good control of flow and load, and are expensive to install, operate and maintain.
U.S. Patent No. 4,005,010 to Lunt describes a wastewater treatment system having mesh sacks containing a biological medium. The sacks are apparently designed to hold the microbes while allowing fluids to pass through. The biological medium is prone to clogging over the course of operation.
U.S. Patent No. 4,165,281 to Kuriyama, et al., describes a wastewater treatment system that includes a substrate designed to contain the microorganisms. A plurality of vertically disposed substrates is designed for wastewater to pass therethrough. The likelihood of plugging is greater in this unit than in the Lunt device, due to the orientation of the substrates and to the difficulty in maintaining and/or replacing them.
U.S. Patent No. 4,279,753 to Nielson, et al., describes the arrangement of a plurality of treatment reactors alternating from aerobic to anaerobic action. While Nielson indicates that it is necessary to address plugging problems, the technique for doing so is relatively crude and appears to be less than completely effective.
U.S. Patent No. 4,521,311 to Fuchs, et al, teaches the use of a filtering bed through which the wastewater passes and which includes support bedding to suspend the biological medium. The device has a rather complex recirculation process in order to ensure cleaning of the bedding and the microbes. This device may experience additional kinds of clogging problems, and the disclosed bedding particles are required to go through a costly maintenance operation.
U.S. Patent No. 5,221,470 to McKinney describes a wastewater treatment plant having a final filter made of a sheet of plastic. The sheet of plastic is wrapped about itself so as to form passageways designed for microbe growth. While this design may increase the surface area and, therefore, the dwell time available for microbial action, it is likely that plugging will occur as the passageway fills with dead microbes over a period of time.
In summary, prior-art bioreactor systems for multi-stage biological wastewater treatment are often plagued by inefficiency over a period of operation. When the wastewater to be treated requires the use of a considerable amount of biological mass,

there results a problem of plugging of the mass. As waste solids build up on the surface of the mass, or as microbes ingest the pollutants and die, such solids do not always fall to the bottom of the bioreaction tank. Instead, the solids become trapped at or near the surface of the mass. This plugging or blocking of the mass significantly reduces the pathways by which subsequent pollutants may pass through to underlying active microbes that are located below the surface of the mass. Consequently, the acceleration of pollutant decay caused by microbe ingestion is compromised, and water flow through the mass is reduced and may even be stopped. It is therefore necessary to either build a substantially larger bioreactor unit than would otherwise be required-in order to account for this plugging--or to regularly clean the clogged system.
There is therefore a recognized need for, and it would be highly advantageous to have a bioreactor system for multistage biological wastewater treatment that is robust and efficient, simple to operate, insusceptible to plugging, and inexpensive to install and maintain.
SUMMARY OF THE INVENTION
According to the teachings of the present invention there is provided a multiple stage bioreactor system for microbiological treatment of wastewater, the bioreactor system including: at least one highly-flexible substrate for providing a superficial environment conducive for supporting bion»ass growth, the substrate including: (a) a large plurality of threads, the threads disposed in a generally longitudinal direction and including a plurality of synthetic filaments, and (b) at least two cross-support elements disposed across and associated with the plurality of threads , so as to provide support for and loosely associate the threads, wherein openings defined by (i) adjacent threads of the threads, and (ii) adjacent cross-support elements of the elements, have an aspect ratio exceeding 50 to 1.
According to further features in the described preferred embodiments, the
aspect ratio exceeds 200 to 1.
According to still further features in the described preferred embodiments, the
aspect ratio exceeds 500 to 1.

According to still further features in the described preferred embodiments, the aspect ratio exceeds 2000 to 1.
According to still further features in the described preferred embodiments, the length extension of the threads in the substrate is in a range of 80% to 98%.
According to still further features in the described preferred embodiments, the length extension of the threads is in a range of 90% to 95%.
According to still further features in the described preferred embodiments, the threads include at least one synthetic material selected from the group consisting of polyamide, polypropylene, and cross-linked polyester.
According to still further features in the described preferred embodiments, the at least two cross-support elements are woven elements interwoven with the threads.
According to still further features in the described preferred embodiments, the woven elements include at least one synthetic material selected from the group consisting of polyamide, polypropylene, and cross-linked polyester.
According to still further features in the described preferred embodiments, the cross-support elements form an angle, with respect to the threads, in a range of 30° to 90°.
According to another aspect of the present invention there is provided a multiple stage bioreactor system for microbiological treatment of wastewater, the bioreactor system including: at least one substrate for providing a superficial environment conducive for culturation of microbes, the substrate including: (a) a large plurality of threads, the threads disposed in a generally longitudinal direction, and (b) at least two cross-support elements disposed across and associated with the plurality of threads, so as to provide support for and loosely associate the threads, wherein a length extension of the threads in the substrate is in a range of 80% to 98%.
According to yet another aspect of the present invention there is provided a multiple stage bioreactor system for microbiological treatment of wastewater, the bioreactor system including: at least one bioreactor including: (a) a feed inlet for receiving a stream of at least partially-untreated wastewater; (b) a plurality of substrate bundles, each bundle including a plurality of laminar substrates for

supporting biomass growth, each of the substrates having threads including a plurality of synthetic filaments, the substrates being juxtaposed in a substantially parallel manner with respect to each other, within the bioreactor, (c) an air supply manifold for fluidly connecting to an air source, the manifold including a plurality of diffusing elements, for forced rising and diffusion of air, the diffusing elements positioned with respect to the substrate bundles such that the air rises and diffuses through the laminar substrates, and wherein the diffusing elements are further positioned with respect to the plurality of substrates such that the rising of air creates a controlled hydrodynamic circulation within the bioreactor, the controlled hydrodynamic circulation being characterized by a linear velocity range bounded by an upper level that enables biomass to settle on the laminar substrates, and bounded by a lower level that provides a pre-determined minimum level of available oxygen throughout the substrates.
According to further features in the described preferred embodiments, the substrate bundle is disposed between adjacent elements of the diffusing elements, and wherein the diffusing elements are disposed substantially opposite to a large face of the substrates.
According to still further features in the described preferred embodiments, the single substrate bundle includes 2 to 12 of the substrates.
According to still further features in the described preferred embodiments, from 3 to 8 of the substrates are juxtaposed between adjacent elements of the diffusing elements.
According to still further features in the described preferred embodiments, from 4 to 7 of the substrates are juxtaposed between adjacent elements of the diffusing elements.
According to still further features in the described preferred embodiments, the distance between the diffusing elements and the substrates is between 10 and 30 cm, so as to achieve the controlled hydrodynamic circulation.
According to still further features in the described preferred embodiments, the distance between the substrates and a bottom of the bioreactor is between 50 and 80 cm, so as to achieve the controlled hydrodynamic circulation.

According to still further features in the described preferred embodiments, the diffusing elements are further positioned with respect to the plurality of substrates such that a major stream of oxygen-containing liquid flows down, through clearances between adjacent substrates of the substrates, towards a bottom of the bioreactor.
According to still further features in the described preferred embodiments, the threads are disposed in a generally longitudinal direction, and wherein each of the substrates further includes at least two cross-support elements, disposed across and associated with the plurality of threads, so as to provide support for and loosely associate the threads, and wherein the cross-support elements are positioned so as to effect turbulent flow of the wastewater between the substrates.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
In the drawings:
Figure 1 shows a multi-stage biological activated bioreactor system for wastewater treatment based on spatial microorganisms successions and trophic hydrobionts chains;
Figure 2a is a side view of a substrate for biomass buildup;
Figure 2b shows a flow regime of liquid within two adjacent substrates;
Figure 2c schematically describes the cross-support elements interwoven with threads of the substrates, and

Figure 3 illustrates the hydrodynamic circulation within a bioreactor, according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is a bioreactor system for treating wastewater, using fixed submerged substrates for the biomass. The bioreactor system is robust and efficient, simple to operate, and highly insusceptible to plugging.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawing. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
The principles and operation of the system according to the present invention may be better understood with reference to the drawings and the accompanying description.
Referring now to the drawings, Figure 1 shows a multi-stage biological activated bioreactor system 100 for wastewater treatment based on spatial microorganisms successions and trophic hydrobionts chains. Multi-stage bioreactor system 100 includes a plurality (six are shown) of associated bioreactors 40.
Air supply header 12, connected to an air supply source (not shown in the drawing) supplies the oxygen required in each bioreactor 40 by secondary air lines 14 and check valves 16. These air flows are controlled according to the oxygen demand in each specific bioreactor 40. Secondary air lines 14 deliver air to manifolds 20, disposed near or at a bottom 18 of each bioreactor 40. Manifolds 20 divide the air supply into yet smaller streams, from which emerge upward-flowing air streams via diffusing elements 22 (shown in Figure 3).
Generally, systems that employ such diffusing elements are superior in treating ability and treating efficiency to a conventional fixed-bed process. Fixed-bed processes, as disclosed, for example, in Sadao Kojima, Yosui To Haisui, Industrial

Water and Waste Water, 14, p. 960, (1972) and Y. Maeda, Journal of Fermentation Technology, 53, p. 875 (1975), suffer from excessive clogging of biomass on the supporting media or substrates and from excessive sloughing of falling biomass. Consequently, prior art systems deal mainly with this problem and do not deal with improving the hydrodynamics of the bioreactors.
In sharp contrast to the prior art, one aspect of the present invention focuses on, and appreciably improves, the hydrodynamics of bioreactor 40. Referring now to Figure 3, air diffused from diffusing elements 22 rises at a linear velocity so as to produce, in bioreactor 40, an "air-lift" effect in which the liquid is carried upwards by the rising air bubbles.
Hydrodynamic circulation within bioreactor 40 is achieved by positioning each diffusing element 22 with respect to substrates 10 such that a major stream of liquid flows up from diffusing element 22 between two substrates 10 that immediately surround diffusing element 22. This causes a hydrodynamic circulation 25 around the top of substrates 10, and down, through the clearances between substrates 10, and through a middle region of substrate bundle 90, towards bottom 18 of bioreactor 40. This hydrodynamic pattern can be advantageously controlled such that a predetermined minimum level of oxygen is delivered throughout substrates 10, and such that the linear velocity of liquid flowing up from diffusing element 22 is sufficiently low to avoid turbulence and to allow biomass to settle so as to achieve optimal buildup on substrates 10.
It has been found that in order to achieve the inventive hydrodynamic circulation pattern described hereinabove, the number of substrates 10 between adjacent diffusing elements 22 should be in the range of 2 to 14, preferably in the range of 2 to 12, more preferably in the range of 3 to 8, and most preferably, 5 or 6.
Additionally, as will be readily apparent to one skilled in the art, the circulation is influenced and controlled by the number of diffusing elements 22, the distance between them, the distance between diffusing elements 22 and the lower edge of substrates 10, the number of substrates 1C in bioreactors 40, the distance between adjacent substrates 10, and wastewater and air flows.

Multi-stage treatment system 100 is continuously fed with wastewater, or partially-treated wastewater, via inlet 26, which is disposed in an upper part of a first sidewall 28 of system 100. The effluent from the first bioreactor of bioreactors 40 overflows into an adjacent bioreactor through discharge opening 30, located at an opposite side of the first bioreactor, with respect to inlet 26. Similarly, the effluent of the second bioreactor of bioreactors 40 overflows to the third bioreactor of bioreactors 40 through discharge opening 32. Discharge openings 30 and 32 (as well as the discharge openings of all other bioreactors 40) are preferably disposed with respect to one another so as to minimize short-circuiting phenomena within each bioreactor 40.
The treated water produced is discharged from system 100 via outlet 44, which is disposed in an upper part of a second sidewall 46.
Referring now to Figure 2a, Figure 2a is a side view of a substrate 10 for biomass buildup. Substrate 10 is a loose, laminar, synthetic filter material for supporting biomass growth. Substrate 10, which normally has a height of 1.5 to 4.5 m, a width of 1 to 2 m, and a thickness of only 2 to 10 mm, includes longitudinal threads 50, having a linear density of 100 to 500 dtex, and preferably 200 to 400 dtex. Each thread 50 is typically made up of about 200 to about 500 filaments that provide an enhanced surface area for biomass growth.
Threads 50 are associated and held together by a small number of cross-support elements 52, typically disposed in transverse fashion with respect to threads 50. Each cross-support element 52 is preferably a strip having a width of 2 to 10 cm, and is advantageously formed of interwoven cross threads 80 as shown in Figure 2c.
The distance between cross-support elements 52 is at least 20 cm, and preferably, 20 to 50 cm.
In prior-art mesh substrates, the ratio of the length to the width of the mesh openings is 1:1 to 1:3 and more typically, about 1:1. By sharp contrast, the ratio of the length to the width of the openings formed by threads 50 and strips 52, according to the present invention, is greater than 1:50, preferably greater than 1:200, more preferably, greater than 1:500 and even more preferably, greater than 1:2000. Inventive substrate 10 is thus extremely flexible and has large openings with respect

to prior-art substrates. Consequently, the biomass has much less firm support, and biomass build-up - which leads to plugging — tends to significantly decrease.
As used herein in the specification and in the claims section that follows, the term "aspect ratio" refers to a ratio between the length and the width of an opening formed by adjacent threads 50 and adjacent cross-support elements 52 in a substrate.
Cross-support elements 52 are advantageously thicker than threads 50, so as to restrict water flow 74 between juxtaposed substrates 10, as shown in Figure 2b. Thus, instead of the laminar flow characteristic of prior-art systems, the inventive system is characterized by a turbulent flow regime 70 between substrates 10, which enhances the oxygen supply needed for biomass growth.
The length extension of the vertical threads 50 in substrate 10 has also been found to be of paramount importance in attaining optimal biomass build-up. As used herein in the specification and in the claims section that follows, the term "length extension" refers to a ratio, expressed in percent, between the length of a section of a substrate between adjacent cross-support elements (L in Figure 2a), and the average length of the threads forming that section. By way of example, in a substrate in which the direads are associated by cross-support elements at the top end and at the bottom end of the substrate, and in which (1) the substrate length L is 0.45 meters, and (2) the average length of the threads is 0.5 meters, the length extension would be equal to 100*0.45/0.5, or 90%.
The length extension of substrate 10 typically exceeds 80%, preferably lies within a range of 85% to 98%, more preferably, within a range of 90% to 95%, and most preferably, within a range of 92% and 95%. Within these narrow ranges of the length extension, adjacent threads 50 have a suitable flexibility, with respect to one another, so as to enable controlled biomass buildup on substrates 10.
Consequently, sloughing is greatly reduced and sloughing of falling biomass as a result of excessive biomass buildup is avoided, as well as excessive biomass loading of down stream bioreactors due to excessive biomass carryover as sloughing from former bioreactors of the multi-stage system.
Threads 50 and cross threads 80 are preferably made of synthetic materials such as polyamide, polypropylene, cross-linked polyester, or any combination thereof.

These water-resistant materials enable long-term fabric durability in the aqueous medium, while their low shrinkage properties allow the initial (i.e., at the time of installation) fabric tension of substrates 10 to be preserved.
Typical purification efficiencies of a multi-stage biological activated wastewater treatment system of the present invention are provided in Table 1.

Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification, including U.S. Patent Nos. 4,005,010, 4,165,281, 4,279,753, 4,521,311, and 5,221,470, are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.







we claim:
1. A bioreactor system for microbiological treatment of wastewater, the bioreactor
system comprising:
at least one bioreactor including:
(I) a feed inlet for receiving a stream of at least partially-untreated wastewater,
(II) at least one bundle having at least two flexible substrates, disposed within said bioreactor, said substrates disposed within said at least one bundle, for providing a superficial environment conducive for supporting biomass growth, said substrates respectively including:

(a) a large plurality of threads, said threads being generally disposed in a given direction, each of said threads including a plurality of filaments,, and
(b) at least two spaced apart cross-support elements disposed across said threads, in angular relationship with said given direction, and associated with said plurality of threads, so as to provide support for, and loose association of, adjacent threads of said threads between said element,
wherein openings defined by
(1) adjacent threads of said threads, and
(2) adjacent cross-support elements of said elements,
have an aspect ratio exceeding 50 to 1, and
(III) an air supply manifold for fluidly connecting a source of air with a
plurality of diffusing elements for forced discharge of air, said diffusing
elements positioned with respect to said at least one bundle such that said air
diffuses in said at least one bundle,
wherein said diffusing elements are further positioned with respect to said at least one
bundle such that rising of air creates a controlled hydrodynamic circulation within
said bioreactor,
and wherein said controlled hydrodynamic circulation is characterized by a linear velocity range bounded by an upper level that enables biomass to settle on said substrates, and bounded by a lower level that provides oxygen sufficient to meet an oxygen demand in said bioreactor.
2. The bioreactor system of claim 1, wherein said aspect ratio exceeds 200 to 1.
AMENDED SHEET (ARTICLE 19)

3. The bioreactor system of claim 1, wherein said aspect ratio exceeds 500 to 1.
4. The bioreactor system of claim 1, wherein said aspect ratio exceeds 2000 to 1,
5. The bioreactor system of claim 1, wherein, within said substrates, said threads have a length extension in a range of 80% to 98%,
6. The bioreactor system of claim 5, wherein said length extension is in a range of 85% to 95%.
7. The bioreactor system of claim 1, wherein said threads include at least one synthetic material selected from the group consisting of polyamide, polypropylene, and cross-linked polyester.
8. The bioreactor system of claim i, wherein said at least two cross-support elements are woven elements interwoven with said threads,
9. The bioreactor system of claim 8, wherein said woven elements include at least one synthetic material selected from the group consisting of polyamide, polypropylene, and cross-linked polyester.
10. The bioreactor system of claim 1, wherein said cross-support elements form an angle, with respect to said threads, in a range of 30° to 90°.
11. The bioreactor system of claim 1, wherein said at least one bundle of flexible substrates includes at least two bundles of flexible substrates.
12. The bioreactor system of claim 117 wherein a particular diffusing element of said plurality of diffusing elements is positioned between said at least two bundles of substrates, each of said bundles having an end substrate disposed proximally to said particular diffusing element, such that a stream of liquid flows between said end substrates to effect said hydrodynamic circulation.
13. The bioreactor system of claim 11, wherein a single bundle of said bundles is disposed between adjacent elements of said diffusing elements, and wherein said diffusing elements are disposed substantially opposite to a large face of said substrates.

14. The bioreaotor system of claim 1, wherein a single bundle of said at least one bundle Includes 2 to 12 of said substrates.
15. The bioreaotor System of claim 1, wherein from 3 to 8 of said substrates are juxtaposed between adjacent diffusing elements of said diffusing elements.
16. The bioreaotor system of claim 1, wherein from 4 to 7 of said substrates are juxtaposed between adjacent diffusing elements of said diffusing elements.

17. The bioreactor system of claim 19 wherein a distance between said diffusing elements and said substrates is between 10 and 30 cm, so as to achieve said controlled hydrodynamic circulation,
18. The bioreactor system of claim 1, wherein a distance between said substrates and a bottom of said bioreactor is between 50 and 80 cm, so as to achieve said controlled hydrodynamic circulation.
19- The bioreactor system of claim 1, wherein said diffusing elements are further positioned with respect to said plurality of substrates such that a stream of oxygen-containing liquid flows down, through clearances between adjacent substrates of said substrates, towards a bottom of said bioreactor, and takes part in said hydrodynamic circulation.
20. The bioreactor system of claim 1, wherein said substrates are disposed in a substantially parallel manner with respect to each other.
21. A bioreactor system for microbiological treatment of wastewater, the bioreactor system comprising:
at least one bioreactor including:
(I) a feed ialet for receiving a stream of at least partially-untreated wastewater;
(II) at least one bundle having at least two flexible substrates, disposed within said bioreactor, said substrates disposed within said at least one bundle, for providing a superficial environment conducive for supporting biomass growth, said substrates respectively including;

(a) a large plurality of threads, said threads being generally disposed in a given direction, each of said threads including a plurality of filaments, and
(b) at least two spaced apart cross-support elements disposed across said threads, in angular relationship with said given direction, and associated with said plurality of threads, so as to provide support for, and loose association of, adjacent threads of said threads between said element, and
(HI) an air supply manifold for ftuidly connecting a source of air with a plurality of diffusing elements for forced discharge of air, said diffusing elements positioned with respect to said at least one bundle such that said air diffuses in said at least one bundle,
wherein said diffusing elements are further positioned with respect to said at least one
bundle such that rising of air creates a controlled hydrodynamic circulation within
said bioreacto*,
and wherein said controlled hydrodynamic circulation is characterized by a linear velocity range bounded by an upper level that enables biomass to settle on said substrates, and bounded by a lower level that provides oxygen sufficient to meet an oxygen demand in said bioreactor,
and wherein, within said substrates, said threads have a length extension in a range of 80% to 98%.
22, The bioreactor system of claim 21, wherein said length extension is in a range of 85% to 95%.
23, The bioreactor system of claim 21, wherein said length extension is in a range of 90% to 95%,
24, The bioreactor system of claim 21 wherein openings defined by;
(i) adjacent threads of said threads and
(ii) adjacent cross-support elements of said elements, have an aspect ratio exceeding 200 to 1.

25. The bioreactor system of claim 24, wherein said aspect ratio exceeds 500 to 1.
26. The bioreactor system of claim 21, wherein said threads indude at least one
synthetic material selected from the group consisting of polyamide, polypropylene,
and cross-linked polyester.
27. The bioreactor system of claim 21, wherein a distance between said diffusing
elements and said substrates is between 10 and 30 cm7 so as to achieve said controlled
hydrodynaxflic circulation.
28. The bioreactor system of claim 2l, wherein a distance between said substrates
and a bottom of said bioreactor is between 50 and 80 cm, so as to achieve said
controlled hydrodynamic circulation,
29. The bioreactor system of claim 21, wherein said diffusing elements are further
positioned with respect to said plurality of substrates such that a stream of oxygen-
containing liquid flows down, through clearances between adjacent substrates of said
substrates, towards a bottom of said bioreactor, and takes part in said hydrodynamic
drculation.
30. The bioreactor system of claim 21, wherein each of said substrates further
includes at least two cross-support elements, disposed across and associated with said
plurality of threads, so as to provide support for and loosely associate said threads,
and wherein said cross-support elements are positioned so as to effect turbulent flow of the wastewater between said substrates.


Documents:

2543-CHENP-2007 AMANDED CLAIMS 15-04-2010.pdf

2543-CHENP-2007 OTHER PATENT DOCUMENT 15-04-2010.pdf

2543-CHENP-2007 EXAMINATION REPORT REPLY RECIEVED 15-04-2010.pdf

2543-CHENP-2007 FORM-3 15-04-2010.pdf

2543-CHENP-2007 IPRB 19-10-2009.pdf

2543-chenp-2007-abstract.pdf

2543-chenp-2007-claims.pdf

2543-chenp-2007-correspondnece-others.pdf

2543-chenp-2007-description(complete).pdf

2543-chenp-2007-drawings.pdf

2543-chenp-2007-form 1.pdf

2543-chenp-2007-form 3.pdf

2543-chenp-2007-form 5.pdf

2543-chenp-2007-pct.pdf


Patent Number 242638
Indian Patent Application Number 2543/CHENP/2007
PG Journal Number 37/2010
Publication Date 10-Sep-2010
Grant Date 03-Sep-2010
Date of Filing 13-Jun-2007
Name of Patentee AQUARIUS ENVIRONMENTAL TECHNOLOGIES LTD
Applicant Address 1103, MINERAL SPRINGS DRIVE, SUITE 300, PORT WASHINGTON, WI 53074.
Inventors:
# Inventor's Name Inventor's Address
1 NIKOLEVSKY, Roman Shimon Avidan 8/45, 58100 Holon
2 PUZIY, VLADIMIR Pica 37/2, 34975 Haifa Israel
3 MONOSOV, MARIA 10 HARUV, ARIEL 44837, ISRAEL
4 MONOSOV, EFIM 20 MIVZA HAREL, ARIEL 44837.
PCT International Classification Number C02F 3/06
PCT International Application Number PCT/IL05/01332
PCT International Filing date 2005-12-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/008,922 2004-12-13 U.S.A.