Title of Invention

"A BRAKE SHOE ASSEMBLY FOR A VEHICLE"

Abstract A brake shoe assembly for a vehicle comprising: a brake lining having a predetermined thickness for gradually wearing away as the brake shoe assembly brakes the vehicle; and a sensor having a pair of spaced electrical conductors and an electrical resistance for indicating said thickness of said brake lining located across said pair of spaced conductors, said pair of spaced conductors being cohered to a substrate; said sensor positioned to wear away concurrently with said brake lining thereby continuously changing said electrical resistance to an infinite number of values across said pair of spaced conductors.
Full Text The present invention relates to a brake shoe assembly for a vehicle.
This application relates to a brake shoe assembly having a resistive brake lining wear sensor.
Most motor vehicles include a brake system having a set of brake shoe assemblies for retarding the rotation of the wheels of the vehicle when the brakes are applied. Typically, each brake shoe assembly includes a brake lining made of a friction material which gradually wears away during brake applications. After numerous brake applications, the brake lining wears below a critical material thickness and, therefore, must be replaced. As a result, the brake lining must be periodically inspected for excessive wear. To eliminate time-consuming and costly visual inspections of the brake lining, the prior art has taught several types of brake lining wear sensors for indicating when the brake lining must be replaced.
One type of brake lining wear sensor, sometimes referred to as a direct read sensor, directly monitors the material thickness of the brake lining. Although direct read sensors provide the most accurate indication of when replacement of the brake lining is necessary, prior art direct read sensors are expensive, complex, and prone to failure. Accordingly, it would be desirable to provide an inexpensive, simple, and robust direct read brake lining wear sensor.
SUMMARY OF THE INVENTION
In a disclosed embodiment of this invention, a brake shoe assembly includes a brake lining and a brake lining wear sensor. The brake lining has a predetermined thickness which gradually wears away as the brake shoe assembly is used to brake a vehicle. The brake lining wear sensor has a pair of spaced electrical conductors and an electrical resistance located across the pair of spaced conductors for indicating the thickness of the brake lining. The brake lining wear sensor is positioned to wear away concurrently with the brake lining, thereby continuously changing the electrical resistance
across the pair of spaced conductors. In this manner, the electrical resistance across the pair of spaced conductors is used to determine the thickness of the brake lining.
In a first embodiment of this invention, the brake lining wear sensor includes an insulating substrate, the pair of spaced electrical conductors cohered to one surface of the substrate, and a layer of material cohered to the substrate. In this first embodiment, the layer of material provides the electrical resistance across the pair of spaced conductors.
In a second embodiment of this invention, the brake lining wear sensor includes an insulating substrate, the pair of spaced electrical conductors cohered to one surface of the substrate, and a body of material supporting the substrate. In this second embodiment, the body of material provides the electrical resistance across the pair of spaced conductors.
In a third embodiment of this invention, the brake lining wear sensor includes a substrate and the pair of spaced electrical conductors cohered to one surface of the substrate. In this third embodiment, a resistive compound is mixed in the substrate to provide an electrical resistance across the pair of spaced conductors.
In a fourth embodiment of this invention, the brake lining wear sensor includes a. frame and a body of material supporting the frame. The frame includes the pair of spaced electrical conductors and a plurality of support pieces attached between the pair of spaced conductors. In this fourth embodiment, the body of material provides an electrical resistance across the pair of spaced conductors.
These and other features of the present invention will be best understood from the following specification and drawings, the following of which is a brief description.
According to the present invention there is provided a brake shoe assembly for
a vehicle comprising:
a brake lining having a predetermined thickness for gradually wearing away as
the brake shoe assembly brakes the vehicle; and
a sensor having a pair of spaced electrical conductors and an electrical
resistance for indicating said thickness of said brake lining located across said
pair of spaced conductors, said pair of spaced conductors are cohered to a
substrate;
said sensor positioned to wear away concurrently with said brake lining
thereby continuously changing said electrical resistance to an infinite number
of values across said pair of spaced conductors.
BRIEF-DESCRIPTION OF THE ACCOMPANYING DRAWINGS
Figure 1 is a side view of a drum brake system including a brake shoe assembly having a brake lining wear sensor in accordance with the present invention.
Figures 2A and 2B are perspective views of a first embodiment of a brake lining wear sensor in accordance with the present invention.
Figure 3 is a perspective view of a second embodiment of a brake lining wear sensor in accordance with the present invention.
Figure 4 is a perspective view of a third embodiment of a'brake lining wear sensor in accordance with the present invention.
Figure 5 is a perspective view of a fourth embodiment of a brake lining wear sensor in accordance with the present invention
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figure 1, a brake shoe assembly having a brake lining wear sensor in accordance with the present invention is shown installed in a vehicular brake system The inventive brake shoe assembly, as described below, may be incorporated into several different types of conventional brake systems including, but not limited to, drum brake systems and disc brake systems. Thus, the brake shoe assembly has been illustrated in a drum brake system in Figure 1 for descriptive purposes only and not to limit the scope of the present invention.
Figure 1 is a side view of a drum brake system 10 The drum brake system 10 includes a cylindrical brake drum 12, a first brake shoe assembly generally shown at 14, a second brake shoe assembly generally shown at 16, and an actuator 18 The general operation of the brake drum assembly 10 is known. The first and second brake shoe assemblies 14 and 16 are preferably identical such that a description of the first brake shoe assembly 14 or its components is also applicable to the second brake shoe assembly 16 The drum brake system 10 can be of various types of systems such as an s-cam brake, a wedge brake, or a drum brake actuated by a hydraulic cylinder The actuator 18, shown schematically in Figure 1, represents any known actuating mechanism for drum brake systems such as an s-cam mechanism, a wedge mechanism, or a hydraulic cylinder The actuator 18 moves the first and second brake shoe assemblies 14 and 16 into contact with the rotating brake drum 12 and can be controlled hydraulically or pneumatically
The brake drum 12, which rotates about an axis of rotation 20, has an inner surface ,22 and an outer surface 24. The first and second brake shoe assemblies 14 and 16, located adjacent to the inner surface 22 of the brake drum 12, include a brake lining 26 having a predetermined thickness The brake linings 26 are comprised of a known friction material attached to a backing plate 28 Each brake lining 26 presents a wear surface 32 which contacts the inner surface 22 of the rotating brake drum 12 and wears furthei and further away each time the actuator 18 moves the first and second brake shoe assemblies 14 and 16 against the brake drum 12 After numerous brake applications, the brake linings 26 wear below a critical thickness and, therefore, must be replaced Each
brake lining 26 also includes an interface surface 34 which contacts the backing plate 28
A brake lining wear sensor 36, shown schematically in Figure 1, is attached to the backing plate 28 of the first brake shoe assembly 14 The brake lining wear sensor 36 is positioned to wear away as the brake lining 26 gradually wears away during brake applications. In Figure 1, the brake lining wear sensor 36 is positioned adjacent to the brake lining 26 Alternatively, the brake lining wear sensor 36 may be embedded or encapsulated in the brake lining 26. The brake lining wear sensor 36 can be incorporated in either the first and/or the second brake shoe assemblies 14 and 16, but typically need only be incorporated in the leading brake shoe assembly which experiences the most brake lining wear.
The brake lining wear sensor 36 includes a pair of spaced electrical conductors and an electrical resistance located across the pair of spaced conductors As the length of the brake lining wear sensor 36 gradually wears away, the electrical resistance across the pair of spaced conductors continuously changes. In this manner, the electrical resistance across the pair of spaced conductors is used to determine the thickness of the brake lining 26 To accomplish this objeaive, the brake lining wear sensor 36 is comprised of components having wear properties similar to the wear properties of the brake lining 26
In accordance with the scope of the present invention, the brake lining wear sensor 36 can be assembled in alternative embodiments, wherein like numerals are increased by multiples of 100 to indicate like or corresponding parts
Figure 2A is a perspective view of a first embodiment of a brake lining wear sensor 136 in accordance with the present invention The brake lining wear sensor 136 includes an insulating substrate 138, a pair of spaced electrical conductors 140 cohered to one surface of the substrate 138, and a layer of material 142 cohered to the substrate 138 In this first embodiment, the layer of material 142 provides an electrical resistance across the pair, of spaced conductors 140. A body of material 144 supports the substrate 138 As described above, the brake lining wear sensor 136, including the substrate 138, the pair of spaced conductors 140, the strip of film material 142, and the body of material 144, is positioned to wear away concurrently with the brake lining 26, thereby continuously changing the resistance across the pair of spaced conductors 140
In this first embodiment, the substrate 138 consists of a glass epoxy or a high tempeiature ceramic A conductor, such as copper, tin, or tin plated copper, is applied to the substrate 138 and etched to produce the pair of spaced conductors 140 Alternatively,
a conductor may be screened or evaporated onto the substrate 138 and etched to produce the pair of spaced conductors 140 The layer of resistance matenal 142 consists of a carbon powder base, commonly referred to as a CERMET compound, which is silk-screened onto the substrate 138 A phenolic potting compound or high temperature cement is used to form the body 144
The pair of conductors 140 may be spaced parallel to each other One of ordinary skill in the art will recognize that the spacing of the pair of conductors 140 determines the rate of change in the resistance across the pair of conductors 140 as the length of the brake lining wear sensor 136 is worn away Accordingly, the spacing between the conductors 140 may be adapted to achieve a desired rate of change for different applications
Figure 2B is a perspective view of the substrate 138 covered with an alternative layer of material 142'. The alternative layer of material 142' includes a plurality of adjacent portions 146, 148, 150, 152, and 154, each having a unique resistance The adjacent portions 146, 148, 150, 152, and 154 may be arranged to achieve a desired rate of change in the resistance across the pair of spaced conductors 140 as the length of the. brake lining wear sensor 136 is worn away. Preferably, the adjacent portions 146, 148 150, 152, and 154 are positioned diagonal to the pair of spaced conductors 140, as illustrated in Figure 2B, to provide a linear rate of change in the resistance across the pair of spaced conductors 140 as the length of the brake lining wear sensor 136 is worn away
Figure 3 is a perspective view of a second embodiment of a brake lining wear sensor 236 in accordance with the present invention. The brake lining wear sensor 236 includes an insulating substrate 238, a pair of spaced electrical conductors 240 cohered to one surface of the substrate 238, and a body of material 244 supporting the substrate 238 In this second embodiment, the body of material 244 provides an electrical resistance across the pair of spaced conductors 240 As described above, the brake lining wear sensor 236, including the substrate 238, the pair of spaced conductors 240, and the body of resistive material 244, is positioned to wear away concurrently with the brake lining 26, thereby continuously changing the resistance across the pair of spaced conductors 240
In this second embodiment, the substrate 238 consists of a glass epoxy or a high temperature ceramic A conductor, such as copper, tin, or tin plated copper, is applied to the substrate 238 and etched to produce the pair of spaced conductors 240 Alternatively a conductor may be screened or evaporated onto the substrate 238 and etched to produce
the pair of spaced conductors 240 A compound consisting of approximately thirty percent carbon fiber and seventy percent phenolic resin is used to form the resistive body 244 Kevlar fibers may be added as an emulsifier Alternatively, a resistive potting compound, typically a mixture of carbon and an encapsulant such as epoxy, may be used to form the resistive body 244
Figure 4 is a perspective view of a third embodiment of a brake lining wear sensor 336 in accordance with the present invention The brake lining wear sensor 336 includes a substrate 338 and a pair of spaced electrical conductors 340 cohered to one surface of the substrate 338 In this third embodiment, a resistive compound is mixed in the substrate 338 to provide an electrical resistance across the pair of spaced conductors 340 A body of material 344 supports the substrate 338 As described above, the brake lining wear sensor 336, including the substrate 338, the pair of spaced conductors 340, and the body of material 344, is positioned to wear away concurrently with the brake lining 26, thereby continuously changing the resistance across the pair of spaced conductors 240
In this third embodiment, the substrate 338 consists of a glass epoxy or a high temperature ceramic mixed with a resistive carbon compound Copper is laminated to the substrate 338 and etched to produce the pair of spaced conductors 340 A phenolic potting compound is used to form the body 344
Figure 5 is a perspective view of a fourth embodiment of a brake lining wear sensor 436 in accordance with the present invention The brake lining wear sensor 436 includes a frame 456 and a body of material 444 supporting the frame 456 The frame 456 includes a pair of spaced electrical conductors 440 and a plurality of support pieces 458 attached between the pair of spaced conductors 440 In this fourth embodiment, the body of material 444 provides an electrical resistance across the pair of spaced conductors 440 As described above, the brake lining wear sensor 436, including the frame 456, the pair of spaced conductors 440, the plurality of support pieces 458, and the body of resistive material 444, is positioned to wear away concurrently with the brake lining 26, thereby continuously changing the resistance across the pair of spaced conductors 240
In this fourth embodiment, the frame 456 is made from copper wire Preferably, the surface of the frame 456 is abraded to form a strong electro-mechanical bond with the body of resistive material 444 A compound consisting of approximately thirty percent carbon fiber and seventy percent phenolic resin is used to form the resistive body 444 Kevlar fibers may be added as an emulsifier Alternatively, a resistive potting compound,
typically a mixture of carbon and an encapsulant such as epoxy, may be used to form the resistive body 444.
Preferred embodiments of this invention have been disclosed, however, a worker of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention. ,





We Claim:
1. A brake shoe assembly for a vehicle comprising:
a brake lining having a predetermined thickness for gradually wearing away as the brake shoe assembly brakes the vehicle; and a sensor having a pair of spaced electrical conductors and an electrical resistance for indicating said thickness of said brake lining located across said pair of spaced conductors, said pair of spaced conductors are cohered to a substrate;
said sensor positioned to wear away concurrently with said brake lining thereby continuously changing said electrical resistance to an infinite number of values across said pair of spaced conductors.
2. A sensor for detecting wear of a brake lining as claimed in claim 1
comprising:
a pair of spaced electrical conductors; and
an electrical resistance located across said pair of spaced
conductors;
said pair of spaced conductors, are cohered to a substrate and said
electrical resistance positioned to wear away concurrently with the
brake lining thereby continuously changing said electrical
resistance to an infinite number of values across said pair of
spaced conductors.
3. An assembly as claimed in claim 1 wherein said pair of conductors are spaced parallel to each other.
4. An assembly as claimed in claim 1 wherein said sensor having a said substrate and said pair of spaced conductors are cohered to said substrate.
5. An assembly as claimed in claim 4 wherein said sensor having a layer of material cohered to said substrate and providing said electrical resistance across said pair of spaced conductors.
6. An assembly as claimed in claim 4 wherein said sensor having a body of material supporting said substrate, said body of material providing said electrical resistance across said pair of spaced conductors.
7. An assembly as claimed in claim 5 wherein said layer of material having a plurality of adjacent portions each having a unique resistance arranged to provide a linear change in said electrical resistance across said pair of spaced conductors as said substrate, said pair of spaced conductors, and said strip of resistive material wear away.
8. An assembly as claimed in claim 7 wherein said plurality of adjacent portions are positioned diagonal to said pair of spaced conductors.
9. An assembly as claimed in claim 4 wherein said sensor having a resistive compound mixed in said substrate providing said electrical resistance across said pair of spaced conductors.
10. An assembly as claimed in claim 1 wherein said sensor having a plurality of support pieces attached between said pair of spaced conductors to form a frame.
11. An assembly as claimed in claim 10 wherein said sensor having a body of material supporting said frame, said body of material providing said electrical resistance across said pair of spaced conductors.
12. A brake shoe assembly substantially as herein described with the reference to the accompanying drawings.

Documents:

1268-del-1999-abstract.pdf

1268-del-1999-claims.pdf

1268-DEL-1999-Correspondence-Others-(22-09-2009).pdf

1268-del-1999-correspondence-others.pdf

1268-del-1999-correspondence-po.pdf

1268-del-1999-description (complete).pdf

1268-del-1999-drawings.pdf

1268-del-1999-form-1.pdf

1268-del-1999-form-13.pdf

1268-del-1999-form-19.pdf

1268-del-1999-form-2.pdf

1268-DEL-1999-Form-3-(22-09-2009).pdf

1268-del-1999-form-3.pdf

1268-del-1999-form-5.pdf

1268-del-1999-gpa.pdf

1268-del-1999-petition-137.pdf

1268-del-1999-petition-138.pdf

1268-del-1999-petition-others.pdf


Patent Number 240978
Indian Patent Application Number 1268/DEL/1999
PG Journal Number 25/2010
Publication Date 18-Jun-2010
Grant Date 11-Jun-2010
Date of Filing 21-Sep-1999
Name of Patentee MERITOR HEAVY VEHICLE SYSTEMS,LLC.
Applicant Address 2135 WEST MAPLE ROAD,TROY,MICHIGAN 48084,U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 DENNIS ALLAN KRAMER 1903 SPICEWAY,TROY,MICHIGAN 48098,U.S.A.
PCT International Classification Number F16D 66/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/169,527 1998-10-09 U.S.A.