Title of Invention

"A COPOLYMER COMPOSITION FOR THE USE IN OR AS POLYMERIC BINDER IN INTUMESCENT COATINGS"

Abstract A copolymer composition for the use in or as polymeric binder in intumescent coatings, comprising a blend of a Newtonian copolymer and of a reticulated copolymer, said Newtonian and reticulated copolymers consisting of substituted styrene and substituted acrylate and comprising at least p— methylstyrene (PMS) and 2-ethylhexylacrylate (2EHA), wherein the ratio of p— methylstyren and 2EHA is of 100/0 to 50/50, preferably of 90/10, preferably of 80/20 and more preferably of 75/25; optionally comprises p-tert-butylstyrene (PTBS) and/or isobutylmethacrylate (IBMA).
Full Text The present invention relates to a copolymer composition for the use in or as polymeric binder in intumescent coatings.
The present invention relates to copolymers for use in or as polymeric binders for fire retardants coatings, more particularly intumescent coatings providing excellent fire proofing performance.
Intumescent coating compositions are well-known in the art. An outstanding feature of intumescent coatings is that they may be applied on substrates, such as metal, wood, plastics, graphite and other materials, in the manner of a coating having relatively low film thickness. Upon exposure to fire, heat or flames, the intumescent coatings expand considerably in terms of thickness to produce an insulative layer of char and char foam.
The most commonly used intumescent coatings contain four basic components, sometimes called "reactive pigments", dispersed in a binder matrix. The reactive pigments include
(1) an inorganic acid or a material which yields an acid at temperatures between 10.0 and 250°C, such as for example, ammonium polyphosphate which yields phosphoric acid;
(2) carbon source such as a polyhydric material rich in carbon, also referred to as a carbon hydrate, for example, pentaerythritol or dipentaerythritol;
(3) an organic amine or amide, such as for example, a melamine; and optionally
(4) a halogenated material which releases hydrochloric acid gas on decomposition.




The basic intumescent mechanism is proposed to involve the formation of a carbonaceous char by the dehydration reaction of the generated acid with the polyhydric material. The amine may participate in char formation, but is described primarily as a blowing agent for insulating char foam formation. Because the insulating char stops fire and remains on the substrate, it offers better fire and thermal protection under severe fire conditions than non-flammable type coatings.
Numerous patents and publications, have disclosed intumescent compositions containing one or more polymeric materials in combination with phosphate containing materials and carbonific or carbonic yielding materials.
In the patent EP 0 902 062, the intumescent coating compositions can comprise vinyltoluene/acrylate copolymers or styrene/acrylate polymers as a film-forming binder.
In the patent US 3 654 190, the intumescent coating contains a solid vinyltoluene/butadiene copolymer associated to a chlorinated natural rubber acting as a char former.
In the patent EP 0 342 001, polymeric binder for intumescent coatings comprise copolymers formed of a first monomer in a predominant amount and of a second monomer in a minor amount, said second monomer being a thermally labile co-monomer which is preferably a monomeric aledhyde such as acroleine.
In the international patent WO 01/05886, a polymeric binder in an emulsion form is operative to form a film when the composition is allowed to dry; the polymeric binder can be a styrene/acrylate copolymer.

The coatings industry seeks fire retardant coatings which not only meet fire retardancy requirements, but which also possess desirable coating properties. The reactive pigments utilised in the formulation of an intumescent coating are not sufficient in and of themselves to provide desirable coating properties. For example, an intumescent coating must provide all the performance characteristics expected of a conventional coating plus the added benefit of fire retardancy. Incorporating both fire retardance and good coating properties in one system is not straightforward. The combinations of additives such as for formulating an intumescent; coating can often result in a formulation possessing both poor coating and poor fire retardancy properties.
It was found that the chemical and physical properties of the binder are critical to the functioning of an intumescent coating. In one hand, the binder should not soften or melt too quickly to permit the formation of a stable char. On the other hand, the viscosity of the binder is correlated with the diffusion and the char formation.
It is therefore desired to provide a polymer binder for intumescent coatings which reduces flame spread during the early stages of a fire and which contributes to improve the char formation and intumescence during the last stage of the fire.
It was shown that the combination of a linear polymer and of a cross-linked polymer as a binder for intumescent coating allows to optimise the char formation and increase the insulating properties of the coatings.

Moreover the inventors have discovered that the more the copolymer contains styrene, the more the interactions with the phosphorus are negative. On the contrary, the more the copolymer contains p-methylstyrene (PMS), the more the interactions with the phosphorus are positive, thus providing a good intumescence.
They have further discovered that the properties of the intumescent compositions according to the invention are correlated with the capacity of the copolymer to react with the phosphor and to the presence of p-methylstyren (PMS) and 2-ethylhexylacrylate (2EHA).
Accordingly the invention provides a copolymer for the use in or as polymeric binder in intumescent coatings, comprising a blend of a newtonian copolymer and of a reticulated copolymer, said newtonian and reticulated copolymers consisting of substituted styrene and substituted acrylate and comprising at least p-methylstyrene (PMS) and 2-ethylhexylacrylate (2EHA) .
The invention also provides in another aspect an intumescent fire retardant coating containing the above polymeric binder and a method of forming such a coating.
The reticulated copolymers are chosen in the group comprising the thixotropic copolymers and the pseudo-plastic copolymers.
In the sense of the instant invention, newtonian copolymers refers to copolymers which give a newtonian viscosity profile when dissolved in a solvent, i.e. the viscosity is not shear dependent; thixotopic copolymers refers to copolymers giving a shear thining solvent solutions, returning to their original state upon standing with time dependency, pseudo-plastic copolymers are copolymers which give a shear thinning solution when dissolved in a solvent.
It was found that the ratio between PMS and 2EHA should be of from 100/0 to 50/50, preferably of 90/10, preferably of 80/20 and more preferably of 75/25.
The copolymers used as polymeric binder according to the invention may further contain other substituted styrene like p-tert-butylstyrene (PTBS) and/or other substituted acrylates like isobutylmethacrylate (IBMA).
The examples of suitable Newtonian copolymers include Pliolite VTAC-L, Pliolite VTAC-H, Plioway ECH, Plioway Ultra 200, Plioway EC1, all trademarks from ELIOKEM.
The examples of suitable reticulated copolymers include Pliolite AC3H, Plioway ECL, Plioway Ultra G20, Plioway EC-T, all trademarks from ELIOKEM.
The Newtonian and reticulated copolymers are prepared by polymerisation, said polymerisation being effected in a bulk, in a solution, in a suspension or in an emulsion. The best mode is by a conventional emulsion polymerisation.
The polymeric binder may then be formulated by conventional techniques, such as for example by mixing,
with conventional reactive pigments systems, dispersants, plasticizers, defoamers, thickeners, chlorinated paraffin solvents and other additives conventionally employed to prepare the type of desired intumescent coatings (waxes, fillers, fibers, anti-settling agents and the like).
According to the invention, the best mode of forming said polymeric binder comprises the step of (a) dissolving the Newtonian and/or the reticulated copolymers in the solvent or in water, (b) optionally adding the chlorinated paraffin, (c) homogenizing the mixture and adding the additives.
The intumescent coatings according to the invention preferably contain as foam-forming substances ammonium salts of phosphoric acid and/or polyphosphoric acid, more preferably ammonium polyphosphate.
The intumescent coatings according to the invention preferably contain carbohydrides as carbon forming substances, preferably pentaerythritol, dipentaerythritol, tripentaerythritol and/or polycondensate of pentaerythritol.
The intumescent coatings according to the invention may contain halogen or may be halogen free.
The intumescent coatings according to the invention are used in the form of a brushable, sprayable or reliable coating material for protecting .different surfaces, preferably steel, wood, electric cables and pipes.
The intumescent coatings according to the invention may be water-based or solvent-based compositions.
The intumescent coatings according to the present invention may be employed in roofing applications to prevent ignition and flame spread, for application onto non-combustible substrates, such as structural steel as in buildings, girders, and the like, vessels, or storage tanks to protect them from weakening upon encountering very high temperatures in fire.
The following examples and the figures are presented to illustrate the invention utilising intumescent coating formulations containing a binder according to the instant invention.
Figure 1 shows the thermal stability of a Newtonian copolymer containing PMS/2EHA (75/25) alone, of ammonium polyphosphate (APP) alone, or of a 60/40 mixture of both (calculated and experimental values).
Figure 2 shows the thermal stability of a Newtonian copolymer containing a styrene/acrylic copolymer alone, of ammonium polyphosphate (APP) alone, or of a 60/40 mixture of both (calculated and experimental values).
Figure 3 shows the thermal stability of a copolymer containing a cross-linked copolymer containing PMS/2EHA (75/25) alone, of ammonium polyphosphate (APP) alone, or of a 60/40 mixture of both (calculated and experimental values).
Figure 4 shows the thermal stability of a copolymer containing a cross-linked styrene/acrylic copolymer alone, of ammonium polyphosphate (APP) alone, or of a 60/40 mixture of both (calculated and experimental values).
Figure 5 illustrates the differences between theoretical and experimental weight loss in TGA for 60/40
blends of various PMS/2EHA (50/50, 75/25 and 100/0) copolymers and APP (A(T) curves)
Figure 6 shows thermal insulation on aluminium plates with intumescent coatings prepared with Newtonian or cross-linked copolymers, said copolymers containing PMS/2EHA (75/25) alone, or PMS/2EHA/acrylic or styrene/acrylic.
Figure 7 illustrates thermal insulation on aluminium plates with intumescent coatings prepared with copolymer containing a blend of Newtonian and cross-linked polymers or with a commercial styrene/acrylic copolymer.
Figure 8 illustrates the values of Rate of Heat Release (RHR) measured with a cone calorimeter after exposition to 35 kW/m2 of intumescent coatings prepared with coating 1, coating 2 or coating 4 of example 2.
Example 1: Thermal stability of the polymeric binder
1.1. Measurements
The thermal stability of various compositions is measured by thermogravimetric analysis.
Thermogravimetric analyses (TGA) were carried out at 10°C/min under synthetic air or nitrogen (flow rate: 5 x 10"7 m3/s, Air Liquide grade) using a Setaram MTB 10-8 microbalance. In each case, the mass of the sample used was fixed at 10 mg and the samples (powder mixtures) were positioned in open vitreous silica pans. The precision of the temperature measurements was 1.5°C over the whole range of temperatures. The curves of weight differences between the experimental and theoretical TGA curves are computed as follows:
TGA curve of copolymers
: TGA curve of APP,
Mexp(T): TGA curve of copolymer/APP,
Mthe(T): TGA curve computed by linear combination between the TGA curves of copolymer and APP,
Mthe(T): x Mpoly(T) + y MAPP(T),
A(T): curve of weight difference:
A(T) = Mexp(T) - Mthe(T).
The A(T) curve enables the observation of an eventual increase or decrease in the thermal stability of the polymer related to the presence of the additive.
1.2. Results
The TGA curves are illustrated in figures 1 to 5.
An increase of the thermal stability is obtained with the PMS/2EHA copolymer (figure 1) when compared with the styrene/acrylic (S/A) copolymer (figure 2).
Similar results are obtained with the cross-linked copolymers (figures 3 and 4).
The difference between theoretical and experimental
weight loss (A(T) curves in figure 5 obtained with PMS/2EHA copolymers of various ratios show that the stability increases as the level of substituted styrene (PMS) increases.
Example 2: Preparation of intumescent paints
Different compositions have been prepared. The first series of paints was prepared without chlorinated paraffin to visualise the effect of the nature of the polymeric binder on the fire performance. The second series of paints were prepared with chlorinated paraffin.
Paints were prepared with linear polymer PMS/2EHA, cross-linked polymer PMS/2EHA, linear S/A polymer, cross-linked S/A polymer or comparative commercial S/A copolymer.
The copolymers were dissolved under high shear in the .solvent, then the chlorinated paraffin was added where necessary and after homogenisation the pigments were dispersed in the order described.
The compositions are illustrated in Table 1.
2.1. Paints without chlorinated paraffin:
Paint Al: Newtonian PMS/2EHA (75/25) copolymer
Paint A2: Newtonian cross-linked PMS/2EHA (75/25)
copolymer
Paint Bl: Newtonian PMS/2EHA/acrylic copolymer (50/14/36)
Paint B2: Newtonian cross-linked PMS/2EHA/acrylic
copolymer (50/14/36)
Paint Cl: Newtonian styrene/2EHA/acrylic copolymer
(50/14/36)
Paint C2: Newtonian cross-linked styrene/2EHA/acrylic
copolymer (50/15/36).
2.2. Paints with chlorinated paraffin
The compositions are illustrated in Table 2.
Example 3: Evaluation of thermal insulation
3.1. Measurements
The temperature profiles are established by
measurement of fire resistance with a cone calorimeter.
The insulating property of the intumescent coating was
;ested by measuring the temperature of the coated

substrate submitted to a heat flux of 35 or 75 kW/m2. 100 x 100 x 4 mm aluminium panels were coated with the intumescent coatings (800 g/m2) and allowed to dry 48h at 50 °C. Samples were exposed to a Stanton Redcroft Cone Calorimeter according to ASTM 1356-90 and ISO 5660 under a heat flux of 35 or 75 kW/m2 (50 kW/m2 corresponds to the heat evolved during a fire: from V. Babrauskas in Fire and Mat (1984), 8(2), 81).
The rate of heat release (RHR) represents the evolution of calorific flow versus time for a given sample surface and is measured using oxygen consumption calorimetry. The data (TCO, TC02, TSV and THR) were computed using a home-developed software.
3.2. Results
They are illustrated in figures 6 and 7.
The graphs in figure 6 show that the thermal insulation is better when the binder is composed of a combination of linear and cross-linked polymers (paint A2, B2 and C2) . When using this combination of polymer, the temperature measured at the back of the coated plate is significantly lower than with the linear polymer as a sole binder. The coatings are particularly efficient when the polymers are prepared from PMS and 2EHA alone (coating A2) or associated to a further substituted acrylate (B2).
Figure 7 shows that after 30 minutes exposure at 35 kW/m2, the temperature at the back of the plate remains stabilized at about 310°C when the coating is prepared with the combination of Newtonian and cross-The low values for smoke, CO and C02 emissions obtained with the copolymers as binders according to the invention lead to the protection of the environment.
linked polymers, i.e. about 110°C below the temperature measured with the comparative S/A binder.
Example 4 : Fire performance of the intumescent coatings
They are measured with paints with chlorinated paraffin and are illustrated in figure 8.
All the curves look similar with a first major peak corresponding to the formation of the intumescent structure, followed by a second minor peak or a plateau corresponding to the degradation of the foam and to the formation of a residue, which is stable at high temperature.
The rate of heat release (RHR) is maximal for the composition comprising the comparative commercial styrene/acrylic copolymer (200 kW/m2) . It is low for the composition comprising the substituted styrene/2EHA copolymers, respectively 139 kW/m2 for the PMS/2EHA copolymer and 54 kW/m2 for the PMS/PTBS/2EHA copolymer. The RHR obtained with the commercial solvent based paint Unitherm 38091 was measured for comparison and is 186 kW/m2.
The smoke volumes, CO and C02 emission and the total heat release are given in table 2, where the good performance of the substituted styrene/2EHA polymers (paints 1 to 3) as compared to Unitherm 38091.
The low values for smoke, CO and C02 emissions obtained with the copolymers as binders according to the invention lead to the protection of the environment.






WE CLAIM:
1. A copolymer composition for the use in or as polymeric binder in
intumescent coatings, comprising a blend of a Newtonian copolymer and of a
reticulated copolymer, said Newtonian and reticulated copolymers consisting of
substituted styrene and substituted acrylate and comprising at least p—
methylstyrene (PMS) and 2-ethylhexylacrylate (2EHA), wherein the ratio of p—
methylstyren and 2EHA is of 100/0 to 50/50, preferably of 90/10, preferably of
80/20 and more preferably of 75/25;
optionally comprises p-tert-butylstyrene (PTBS) and/or isobulylmethacrylate (IBMA).
2. A copolymer composition as claimed in claim 1, wherein the reticulated
copolymer is chosen from the group comprising the thixotropic copolymers and the
pseudo-plastic copolymers.
3. A copolymer composition as claimed in anyone of the preceding claim, wherein the copolymers are obtained by emulsion polymerization.
4. A copolymer as claimed in any of the preceding claim, whenever used in a water based or solvent based intumescent coating, which comprises optionally foam forming substances which is an ammonium salt of phosphoric acid, carbon forming substance which is chosen in the group comprising pentaerythritol, dipentaerythritol, tripentaerythritol and polycondensate of pentaerythritol and other conventional additives, such as herein described.

.



Documents:

2476-DELNP-2005-Abstract-(20-03-2008).pdf

2476-DELNP-2005-Abstract-(23-07-2008).pdf

2476-DELNP-2005-Abstract-(30-07-2008).pdf

2476-delnp-2005-abstract.pdf

2476-DELNP-2005-Claims-(13-03-2009).pdf

2476-DELNP-2005-Claims-(20-03-2008).pdf

2476-DELNP-2005-Claims-(23-07-2008).pdf

2476-DELNP-2005-Claims-(30-07-2008).pdf

2476-delnp-2005-claims.pdf

2476-delnp-2005-complete specification (granted).pdf

2476-DELNP-2005-Correspondence-Others-(09-10-2009).pdf

2476-DELNP-2005-Correspondence-Others-(20-03-2008).pdf

2476-DELNP-2005-Correspondence-Others-(23-07-2008).pdf

2476-delnp-2005-correspondence-others.pdf

2476-DELNP-2005-Description (Complete)-(13-03-2009).pdf

2476-DELNP-2005-Description (Complete)-(20-03-2008).pdf

2476-DELNP-2005-Description (Complete)-(30-07-2008).pdf

2476-DELNP-2005-Description (Complete)-23-07-2008.pdf

2476-delnp-2005-description (complete).pdf

2476-DELNP-2005-Drawings-(20-03-2008).pdf

2476-DELNP-2005-Drawings-(23-07-2008).pdf

2476-delnp-2005-drawings.pdf

2476-DELNP-2005-Form-1-(13-03-2009).pdf

2476-DELNP-2005-Form-1-(20-03-2008).pdf

2476-DELNP-2005-Form-1-(30-07-2008).pdf

2476-delnp-2005-form-1.pdf

2476-delnp-2005-form-18.pdf

2476-DELNP-2005-Form-2-(13-03-2009).pdf

2476-DELNP-2005-Form-2-(20-03-2008).pdf

2476-DELNP-2005-Form-2-(23-07-2008).pdf

2476-DELNP-2005-Form-2-(30-07-2008).pdf

2476-delnp-2005-form-2.pdf

2476-DELNP-2005-Form-3-(09-10-2009).pdf

2476-delnp-2005-form-3.pdf

2476-delnp-2005-form-5.pdf

2476-DELNP-2005-GPA-(20-03-2008).pdf

2476-delnp-2005-gpa.pdf

2476-delnp-2005-pct-101.pdf

2476-delnp-2005-pct-210.pdf

2476-delnp-2005-pct-301.pdf

2476-delnp-2005-pct-304.pdf

2476-delnp-2005-pct-308.pdf

2476-DELNP-2005-Petition-137-(20-03-2008).pdf

2476-DELNP-2005-Petition-138-(20-03-2008).pdf


Patent Number 237951
Indian Patent Application Number 2476/DELNP/2005
PG Journal Number 4/2010
Publication Date 22-Jan-2010
Grant Date 14-Jan-2010
Date of Filing 08-Jun-2005
Name of Patentee ELIOKEM
Applicant Address ZA DE COURTABOEUF 2, 14, AVENUE DES TROPIQUES 91140 VILLEJUST, FRANCE
Inventors:
# Inventor's Name Inventor's Address
1 RENE DELOBEL 100, AVENUE DE COURTRAI, 59650 VILLENEUVE D'ASCQ, FRANCE
2 CHARAF JAMA 8, RUE DU LIEUTENANT COLPIN, 59650 VILLENEUVE D'ASCQ, FRANCE
3 SERGE MAGNET 6, RUE ALBERT CALMETTE, 78530 BUC, FRANCE
4 SOPHIE DUQUESNE 416 AVENUE DU MARECHAL DE LATTRE DE TASSIGNY, 59350 SAINT ANDRE, FRANCE
PCT International Classification Number C09D 5/18
PCT International Application Number PCT/IB2003/006398
PCT International Filing date 2003-12-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 02293183.6 2002-12-20 EUROPEAN UNION