Title of Invention | PIPE WITH RIBS ON ITS INNER SURFACE FORMING A MULTIPLE THREAD AND STEAM GENERATOR FOR USING THE PIPE |
---|---|
Abstract | A pipe includes a pipe wall having an inner wall surface. Ribs are disposed on the inner wall surface forming a multiple thread. The ribs define a mean inside pipe diameter and the ribs have a pitch (h) being approximately equal to 0.9 times the root of the mean inside pipe diameter (d). Such pipes may be used in a fossil-fuel steam generator, a solar-heated steam generator, or a heated steam generator service as a waste-heat steam generator. |
Full Text | PIPE WITH RIBS ON ITS INNER SURFACE FORMING A MULTIPLE THREAD AND STEAM GENERATOR FOR USING THE PIPE Specification; The invention relates to a pipe having ribs on its inner surface forming a multiple thread, and steam generators and heat transfer systems using the pipe. Pipes that are ribbed on the inner surface have been used for ' some time in steam generators, in order to control major thermal strains in the combustion chamber. For instance, an article entitled "Zwangdurchlaufkessel fur Gleitdrpckbetrieb mit Vertikaler Brennkammerberohrung" (Forced Circulation Boiler for Sliding Pressure Operation with Vertical Combus- tion Chamber Piping] by H. Juzi, A. Salem and W. Stocker, published in VGB Kraftwerkstechnik [VGB Power Plant Industry] 64, pages 292-302, describes on page 294 thereof, among other things, that on one hand in a region of high combustion chamber thermal strain with smooth evaporator pipes, film evaporation must be expected within a wide range of subcritical pressures, yet on the other hand with pipes which are ribbed on the inner surface, the film evaporation is limited to a pressure range between approximately 206 bar and the critical pressure. Due to the film of vapor between the metal pipe wall and the liquid phase of the heat absorption medium, the film evaporation hinders the heat transfer, so that the pipe wall temperature rises sharply in the region of the film evaporation. In steam generators with forced circulation of a coolant, the film evaporation occurs practically only in the region in which both the liquid and the vapor phase of the coolant occur simultaneously. Tests have confirmed that with smooth-walled pipes, film evaporation must be expected even with low steam content, and that the evaporation shifts to higher steam contents when pipes that are ribbed on the inner surface are used. This shift simultaneously reduces the extent of the undesired temperature increase in the metal pipe wall. As can be found both in the above-cited article and in a report presented to the International Heat Transfer Conference in Tokyo, September 1974, paper PGTP 73-54, pages 14-21. the desired shift in the film boiling in commercially available internally grooved pipes, occurs only at relatively high mass flow densities and high coolant speeds. A patent is known to have been provided, for which reference may be made to FR- A-1288755. However, it does not have disclosure regarding the interconnection of the pitch within the tubes with a tube diameter by a relationship as proposed in the present application. It is accordingly an object of the invention to provide a pipe with ribs on its inner surface forming a multiple thread and a steam generator for using the pipe, which overcome the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and which have an improved geometry that enables their use independently of the mass flow rate density. With the foregoing and other objects in view, there is provided, in accordance with the invention, a pipe, comprising a pipe wall having an inner wall surface, and ribs disposed on the inner wall surface forming a multiple thread, the ribs defining a mean inside pipe diameter, and the ribs having a pitch being at most equal to substantially 0.9 times the root of the mean inside pipe diameter. In accordance with another feature of the invention, the ribs have a radial height being at least substantially 0.04 times the mean inside pipe diameter. In accordance with a further feature of the invention, the mean inside pipe diameter is greater than substantially 27 mm. In accordance with an added feature of the invention, the pipe wall defines a pipe axis, the ribs have sides, as seen in radial direction, and the sides form an angle of substantially from 80 to 90o with the pipe axis. In accordance with an additional feature of the invention, the pipe wall has an interior, the ribs have sides as seen in radial direction, the ribs have free surfaces facing the interior, the ribs have a rounded transition from the sides to the inner wall surface, and the free surfaces have sharp edges. In accordance with yet another feature of the invention, the pipe wall encloses a space having a circular cross section except for the ribs, and the pipe wall has an outer jacket with an elliptical or polygonal cross section or an outer jacket with at least one longitudinal rib to be welded to a neighboring pipe or to a longitudinal rib of a neighboring pipe or to another structural part. In accordance with yet a further feature of the invention, the pipe wall is formed of ferritic material. In accordance with yet an added feature of the invention, the pipe wall has a pipe axis, the ribs have sides as seen in radial direction, and the sides form a pitch angle of less than substantially 60' with a plane perpendicular to the pipe axis. In accordance with yet an additional feature of the inven- tion, the mean inside pipe diameter is substantially from 30 to 40 mm. In accordance with again another feature of the invention, the mean inside pipe diameter is substantially 40 mm, the pipe wall has a pipe axis, the ribs have sides as seen in radial direction, and the sides form a pitch angle of substantially 55o with a plane perpendicular to the pipe axis. With the objects of the invention in view, there is also provided a fossil-fuel steam generator/ comprising a plurality of pipes being constructed according to the invention, functioning the same and being welded to walls of a combustion chamber. In accordance with again a further feature of the invention/ the pipes are disposed vertically. With the objects of the invention in view, there is additionally provided a solar-heated steam generator/ comprising pipes being constructed according to the invention and being disposed horizontally or at an incline. Pipes which are constructed and used in accordance with the invention are highly advantageous/ because they permit low axial flow speeds without the harmful occurrence of film boiling, so that the pressure loss of the coolant in the pipe from friction is quite low, with a virtually unchanged geodetic pressure loss. As a result, in an unexpectedly advantageous way, there is a simultaneous reduction in the temperature differences at the end of the pipe occurring between spatially parallel pipes from the unavoidably unequal With the objects of the invention in view, there is also provided a fossil-fuel steam generator, comprising a plurality of pipes being constructed according to the invention, functioning the same and being welded to walls of a combustion chamber. In accordance with again a further feature of the invention, the pipes are disposed vertically. With the objects of the invention in view, there is additionally provided a solar-heated steam generator, comprising pipes being constructed according to the invention and being disposed horizontally or at an incline. With the objects of the invention in view, there is furthermore provided a heated steam generator serving as a waste- heat steam generator, a heat exchanger or a steam generator for absorbing after-heat in a nuclear power plant. Pipes which are constructed and used in accordance with the invention are highly advantageous, because they permit low axial flow speeds without the harmful occurrence of film boiling, so that the pressure loss of the coolant in the pipe from friction is quite low, with a virtually unchanged geodetic pressure loss. As a result, in an unexpectedly advantageous way, there is a simultaneous reduction in the temperature differences at the end of the pipe occurring between spatially parallel pipes from the unavoidably unequal -5- thermal output. As tests have shown, this effect ensues to a satisfactory extent if a coolant which ideally follows the rib shape and flows at a slow axial speed of 1 m/s, is exposed on its outside to a calculated centrifugal acceleration that is twice as high as the acceleration due to gravity, because of the swirl motion imposed upon it. Other features which are considered as characteristic for the invention are set forth in the appended claims. Although the invention is illustrated and described herein as embodied in a pipe with ribs on its inner surface forming a multiple thread and a steam generator for using the pipe, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings. Fig. 1 is a diagrammatic, longitudinal-sectional view of a short length of a pipe according to the invention; and Figs. 2-6 are cross-sectional views of pipes according to the invention. Referring now to the figures of the drawing in detail and first, particularly, to Fig. 1 thereof, there is seen a pipe, preferably of ferritic steel, which is provided with ribs on its inner surface. Each of the ribs is disposed along a helical line. The ribs form an angle a with planes that are perpendicular to the longitudinal axis of the pipe. As seen in Figs. 2-6, the ribs also have a height H in the radial direction, which is equal to 0.04 tiroes a mean inside diameter d of the pipe. The mean diameter d intersects the ribs at approximately half the radial height. The helical lines that the ribs follow along have a pitch h. In the exemplary embodiment of Fig. 2, both the transition from the inner surface of the pipe wall to the sides of the ribs and the transition from the sides of the ribs to the surface or edge thereof oriented toward the free interior of the pipe, are virtually sharp-edged or sharp-cornered. In this version, both the outer jacket of the pipe and the inner wall surface are of circular cross section, so that the pipe wall forms a circular ring as seen in cross section. The exemplary embodiment of Fig. 3 departs from that of Fig. 2 only due to the fact that the transition from the inner pipe wall surface to the sides of the ribs is rounded in each case. on one hand, the exemplary embodiments of Figs. 4-6 have a sharp-edged construction of the ribs, corresponding to the exemplary embodiment of Fig. 2. On the other hand, in the exemplary embodiment of Fig. 4 the outer jacket is elliptical in cross section, while in Fig. 5 the outer jacket is a heptagonal in cross section. The deviation from the circular shape on the part of the outer jacket is advantageous in certain applications, in which vertical or horizontal pipes that are located side by side are welded tightly together over their entire length. In the embodiment of Fig. 6, the outer jacket therefore has at least one longitudinal rib that can be welded to a neighboring pipe or to a longitudinal rib of as neighboring pipe or to some other structural part. Practical embodiments of the pipes that are constructed according to the invention have diameters d > 27 mm, and in the radial direction the sides of the ribs preferably enclose an angle of 80 to 90° with the pipe axis. In pipes according to the invention, the angle a is about 60°, which is excluded and at a mean inside diameter d of 40 mm it is preferably approximately 55° in size. When the pipes according to the invention are used to construct a forced circulation boiler, in which a plurality of identically functioning pipes are welded to walls of a combustion chamber and form part of a steam generator, the pipes are disposed vertically side by side and are welded to one another in gas-tight fashion over their entire length. In order to absorb a substantial portion of the heat produced in the combustion chamber, the pipes conduct a flow of water through them, as a coolant. This water is intended to be evaporated according to given specifications, so that a region is necessarily created inside the pipes, in which water and water vapor exist side by side, at the same temperature and at the same pressure. The steam content in the mixture then rises from 0 up to 100%. Due to the ribs provided on the inner surface of the pipes, a swirling pulse is imparted to the flowing water, and as a result a rotation of the body of water about its own axis is superimposed on the axial flow. In previously conventional applications, the axial flow speed of the coolant was set at several meters per second, and due to that provision the development of a film of vapor between the inner pipe wall surface and the body of water was shifted in the direction of high steam content of the mixture. At these high axial flow speeds, such vapor films, that are also known as wfilm boiling", occur approximately in the region in which the coolant mixture includes 80% steam and 20% liquid. However, due to the high axial flow speed, a correspondingly high friction of the coolant against the pipe walls causes high pressure losses between where the coolant is fed into the pipes and where the steam emerges from the pipes. Such an occurrence has proved to be very disadvantageous, because the pressure loss caused by friction increases the temperature differences in the flows of steam emerging from the various pipes. It has been surprisingly discovered that at comparatively low axial flows speeds and with a calculated centrifugal acceleration of the flowing medium on the order of magnitude of 21 times the acceleration due to gravity, which occurs at a calculated flow speed of 1 m/s, the pressure losses due to friction in the pipes become so small that with virtually unchanged geodetically dictated pressure losses, the temperature differences among the vapor flows emerging from the various pipes are unexpectedly small. Assuming a speed of v = 1 m/s and a centrifugal acceleration a of approximately 2.5 g, a certain proportional range for the pitch h can be ascertained as a function f(d), with the following terms having the meanings given below: If pipes are used in which the pitch/lead h of the ribs is approximately equal to 0.9 times the root of the mean inside pipe diameter d, then at an axial flow speed of 1 m/s, a calculated centrifugal acceleration az on the order of magnitude of 25 m/s2 can be expected, so that if this relationship defined by the pitch and the pipe diameter is adhered to, the above-described positive effect ensues. This structure of the pipes also enables their use in fossil-fueled steam generators, with low flow speeds of the coolant in the evaporator. The advantageous properties of the pipes according to the invention can moreover be exploited on solar-heated steam generators as well, although in that case the pipes are typically disposed horizontally or, in an inclined manner. WE CLAIM: 1. Pipe with ribs forming a multiple thread on its inner side, characterized in that the lead h [m] of the ribs is approximately equal to 0.9 times the root of the average pipe inner diameter d [m], whereby an angle of lead a between a plane perpendicular to the pipe axis and the sides of the ribs of about 60° is excluded. 2. Pipe according to claim 1, wherein the radial height H of the ribs is at least 0.04 times the average pipe inner diameter d. 3. Pipe according to claim 1 or 2, wherein the average pipe inner diameter d is larger than 27 mm. 4. Pipe according to one of claims 1 to 3, wherein the sides of the ribs in the radial direction form with the pipe axis an angle of 80 to 90°. 5. Pipe according to one of claims 1 to 4, wherein the transition from the sides of the ribs to the pipe wall is in each case rounded and the ribs edges exposed in the interior of the pipe are sharp-edged. 4 6. Pipe according to one of claims 1 to 5, wherein the pipe, apart from the ribs, encompasses an area which is circular in cross section and in that the outer wall of the pipe is elliptical or polygonal in cross section or in that the outer wall of the pipe supports at least one longitudinal rib which can be welded to an adjacent pipe or its longitudinal rib or another component. 7. Pipe according to one of claims 1 to 6, wherein it consists of ferritic material. 8. Pipe according to one of claims 1 to 7, wherein an angle of lead a between a plane perpendicular to the pipe axis and the sides of the ribs is smaller than 60°. 4 9. Pipe according to one of claims 1 to 8, wherein the average inner diameter d is 30 to 40 mm. 10. Pipe according to one of claims 1 to 9, wherein with an average inner diameter of 40 mm the angle of lead is a = 55°. 11. Pipes ribbed on the inside according to one of claims 1 to 10, with a fossil-heated steam generator, characterized in that a plurality of pipes operating in the same way are welded to walls of a combustion chamber and form a part of a steam generator. 12. Pipes ribbed on the inside with a fossil-heated steam generator according to claim 11, wherein the pipes are arranged vertically. 13. Pipe ribbed on the inside according to one of claims 1 to 10 with a solar-heated steam generator, wherein the pipes are arranged horizontally or at an angle. 14. Pipes ribbed on the inside according to one of claims 1 to 10 with a steam generator, wherein it serves as a waste-heat steam generator or heat-exchanger or is provided to absorb afterheat in a nuclear power station. A pipe includes a pipe wall having an inner wall surface. Ribs are disposed on the inner wall surface forming a multiple thread. The ribs define a mean inside pipe diameter and the ribs have a pitch (h) being approximately equal to 0.9 times the root of the mean inside pipe diameter (d). Such pipes may be used in a fossil-fuel steam generator, a solar-heated steam generator, or a heated steam generator service as a waste-heat steam generator. |
---|
113-CAL-1992-CORRESPONDENCE 1.1.pdf
113-cal-1992-correspondence.pdf
113-cal-1992-description (complete).pdf
113-cal-1992-examination report.pdf
113-CAL-1992-FOR ALTERATION OF ENTRY.pdf
113-cal-1992-reply to examination report.pdf
113-cal-1992-specification.pdf
Patent Number | 235986 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 113/CAL/1992 | ||||||||||||
PG Journal Number | 37/2009 | ||||||||||||
Publication Date | 11-Sep-2009 | ||||||||||||
Grant Date | 10-Sep-2009 | ||||||||||||
Date of Filing | 19-Feb-1992 | ||||||||||||
Name of Patentee | SIEMENS AKTIENGESELLSCHAFT | ||||||||||||
Applicant Address | WITTELSBACHERPLATZ 2, D-8000, MUNCHEN | ||||||||||||
Inventors:
|
|||||||||||||
PCT International Classification Number | F22B, 37/10 | ||||||||||||
PCT International Application Number | N/A | ||||||||||||
PCT International Filing date | |||||||||||||
PCT Conventions:
|