Title of Invention

PERSONAL CARE COMPOSITIONS WITH SALTS OF DIHYDROXYPROPYLTRI (C1-C3 ALKYL) AMMONIUM MONOSUBSTITUTED POLYOLS

Abstract N/A
Full Text J6918/C
FORM - 2
THE PATENTS ACT, 1970
(39 of 1970)
&
The Patents Rules, 2003
COMPLETE SPECIFICATION
(See Section 10 and Rule 13)
PERSONAL CARE COMPOSITIONS WITH SALTS OF DIHYDROXYPROPYLTRI (C1-C3 ALKYL) AMMONIUM MONOSUBSTITUTED POLYOLS
HINDUSTAN LEVER LIMITED, a company incorporated under the Indian Companies Act, 1913 and having its registered office at Hindustan Lever House, 165/166, Backbay Reclamation, Mumbai -400 020, Maharashtra, India
The following specification particularly describes the invention and the manner in which it is to be performed

WO 2006/045364 PCT/EP2005/008497
.-1-
PERSONAL CARE COMPOSITIONS WITH SALTS OF DIHYDROXYPROPYLTRI(C1-C3 ALKYL) AMMONIUM MONOSUBSTITUTED POLYOLS
5 BACKGROUND OF THE INVENTION
Field of the Invention
The invention concerns personal care compositions providing moisturization both in high and low 10 relative humidity environments.
The Related Art
Dry skin is a problem in varying degree to most humans. This condition is particularly evident in
15 winter. Personal care products such as skin creams/lotions, shampoos/conditioners, toilette bars/shower gels and antiperspirant/deodorants are normally formulated with at least one material to address dry skin. Symptoms such as itching, flaking and a visually displeasing dermal appearance can all to some extent be modulated.
2 0 There are three classes of materials employed against the problem. Occlusives such as petrolatum
or silicone oils serve to inhibit loss of natural moisture. They form a barrier between the epidermis and the environment. Another approach is the use of keratolytic agents to enhance rate of dermal exfoliation. Alpha-hydroxy acids are the most common agents for achieving exfoliation.
25 A third approach to dry skin is topical application of humectants. Hydroxylated monomeric and polymeric organic substances are generally used for this purpose. Glycerin known also as glycerol is one of the most effective humectants.
There are several shortcomings in the performance of known humectants. Even the best such as
3 0 glycerin requires to be formulated at relatively high levels to achieve good moisturization. Secondly,
known humectants perform well in high relative humidity environments; however, hardly any of these substances provide effectiveness at low relative humidity (i.e. less than 20% moisture at 20°C). Average indoor relative humidity during winter is approximately 13% in areas such as the Northeast U.S. It is quite evident that a real need exists for an improved moisturization technology.
35
WO 2006/045364 PCT/EP2005/008497
-2-
A moisturizer known as Honeyquat 50 with INCI name of Hydroxypropyltrimonium Honey has been reported to be a better humectant than glycerin (see the Arch/Brooks brochure entitled "Cosmetic Ingredients & Ideas®, Issue No. 2, August 2001). Honeyquat 50 is described as being derived from the reaction of pendent hydroxy! groups (on the disaccharide) of a "light" deodorized grade of
5 honey with a chlorohydroxytrimethylammonium derivative. Although this substance has excellent humectancy, moisturization at low relative humidity still remains to be conquered.
Accordingly, the present invention seeks to identify humectants which are operative not only at high but also low relative humidity, for application in personal care products.
10
SUMMARY OF THE INVENTION
In a first aspect a personal care composition is provided which includes:
(i) from 0.1 to 30% by weight of a quaternary ammonium compound which is a salt of
15 hydroxypropyltr(C1- C3alkyl) ammonium monosubstituted polyol, the cation having an
average molecular weight no higher than 450 and the salt having a Tg no higher than
10°C; and (ii) a cosmetically acceptable carrier.
2 0 In a second aspect of the invention a method for moisturizing skin is provided comprising applying to the skin such a composition.
DETAILED DESCRIPTION OF THE INVENTION
25 Now it has been found that salts wherein a cation is a hydroxypropyltri(C1-C3 alkyl)annmonium
monosubstituted polyol are excellent moisturizers providing humectancy in both high and low relative humidity environments. Amounts of these salts may range from about 0.1 to about 30%, preferably from about 0.5 to about 20%, optimally from about 1% to about 12% by weight of the composition.
30
Salts of hydroxypropyl tri(C1-C3 alkyl) ammonium monosubstituted polyols can be formed in a variety of procedures. Most preferred is via reaction of 2-hydroxy-3-chloropropyl trimethyl ammonium chloride with a polyol, particularly a linear polyol in an approximately 1:1 molar ratio in an alkaline medium. By typical Williamson synthesis, sodium chloride is eliminated thereby forming an
3 5 ether linkage between the hydroxypropyl end of the quaternary ammonium reactant and the polyol.

WO 2006/045364 PCT/EP2005/008497
-3-
Typica! polyols are sorbitol, pentaerythritol, neopentyl glycol, propylene glycol, dipropylene glycol and isoprene glycol.
The cation should have an average molecular weight no higher than about 450, preferably no
5 higher than about 400, and optimally between about 300 and 400. Further, the salt advantageously is liquid at 23°C. Thus, the glass transition temperature (Tg)preferably is no higher than about 10°C, more preferably no higher than about 0°C. The Tgcan be measured in a Differential Scanning Calorimeter.
10 Ordinarily the C1-C3 alkyl constituent on the quaternized ammonium group will be methyl, ethyl, n-propyl, isopropyl or hydroxyethyl and mixtures thereof. Particularly preferred is a trimetriyl ammonium group known through INCI nomenclature as a "trimonium" group. Any anion can be used in the quat salt. The anion may be organic or inorganic with the proviso that the material is cosmetically acceptable. Typical inorganic anions are halides, sulfates, phosphates, nitrates and
15 borates. Most preferred are the halides, especially chloride. Organic anionic counter ions include methosulfate, toluoyl sulfate, acetate, citrate, tartrate, lactate, gluconate, and benzenesulfonate.
A particularly preferred salt is a chloride of hydroxypropyl trimonium sorbitol.
20 Advantageously compositions of the present invention will be formulated with a quaternary ammonium salt where the polyol is only mono-substituted with hydroxypropyltri(C1-C3 alkyl) ammonium groups. However, smaller amounts of di- and tri- substituted polyol may also be present These amounts normally may range from 0 to 20%, possibly from about 2 to about 10% by weight based on the weight of the quaternary ammonium compound present More specifically,
25 the multi-substituted polyol may be di-[hydroxypropyltri(C1-C3 alkyl) ammonium] polyol, tri-[hydroxypropyltri(C1-C3 alkyl) ammonium] polyol and mixtures thereof.
By the term personal care composition is meant any substance applied to a human body for improving appearance, cleansing, odor control or general aesthetics. Non-limiting examples of
30 personal care compositions include leave-on skin lotions and creams, shampoos, hair conditioners, shower gels, toilette bars, antiperspirants, deodorants, dental products, shave creams, depilatories, lipsticks, foundations, mascara, sunless tanners and sunscreen lotions.
Compositions of this invention will also include a cosmetically acceptable carrier. Amounts of tine 3 5 carrier may range from about 1 to about 99.9%, preferably from about 70 to about 95%, optimally

WO 2006/045364

PCT/EP2005/008497

-4-
from about 80 to about 90% by weight of the composition. Among the useful carriers are water, emollients, fatty acids, fatty alcohols, thickeners and combinations thereof. The carrier may be aqueous, anhydrous or an emulsion. Preferably the compositions are aqueous, especially water and oil emulsions of the W/O or O/W or triplex W/O/W variety. Water when present may be in
5 amounts ranging from about 5 to about 95%, preferably from about 20 to about 70%, optimally from about 35 to about 60% by weight
Emollient materials may serve as cosmetically acceptable carriers. These may be in the form of silicone oils, natural or synthetic esters and hydrocarbons. Amounts of the emollients
10 may range anywhere from about 0.1 to about 95%, preferably between about 1 and about 50% by weight of the composition.
Silicone oils may be divided into the volatile and non-volatile variety. The term "volatile" as used herein refers to those materials which have a measurable vapor pressure at ambient temperature.
15 Volatile silicone oils are preferably chosen from cyclic (cyclomethicone) or linear polydimethylsiloxanes containing from 3 to 9, preferably from 4 to 5, silicon atoms.
Non-volatile silicone oils useful as an emollient material include polyalkyl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers. The essentially non-volatile polyalkyl siloxanes useful
20 herein include, for example, polydimethyl siloxanes with viscosities of from about 5 x 10"6 to 0 _ 1 m2/s at 25°C. Among the preferred non-volatile emollients useful in the present compositions are the polydimethyl siloxanes having viscosities from about 1 x 10"5 to about 4 x 104 m2/s at 25°C.
Another class of non-volatile silicones are emulsifying and non-emulsifying silicone elastomers.
2 5 Representative of this category is Dimethicone/Vinyl Dimethicone Cnosspolymer available as Dow Coming 9040, General Electric SFE 839, and Shin-Etsu KSG-18. Silicone waxes such as Silwax WS-L (Dimethicone Copolyol Laurate) may also be useful.
Among the ester emollients are:
30
a) Alkyl esters of saturated fatty acids having 10 to 24 carbon atoms. Examples thereof include behenyl neopentanoate, isononyl isonanonoate, isopropyl myristate and octyl stearate.
b) Ether-esters such as fatty acid esters of ethoxylated saturated fatty alcohols.

WO 2006/045364

PCT/EP2005/008497

-5-

c) Polyhydric alcohol esters. Ethylene glycol mono and di-fatty acid esters, diethylene aglycolmono- and di-fatty acid esters, polyethylene glycol (200-6000) mono- and di-fatty acid
esters, propylene glycol mono- and di-fatty acid esters, polypropylene glycol 2000
monostearate, ethoxylated propylene glycol monostearate, glyceryl mono- and di-fatty acid
5 esters, polyglycerol poly-fatty esters, ethoxylated glyceryl mono-stearate, 1,3-butyler»e
glycol monostearate, 1,3-butylene glycol distearate, polyoxyethylene polyol fatty acid ester, sorbitan fatty acid esters, and polyoxyethylene sorbitan fatty acid esters are satisfactory polyhydric alcohol esters. Particularly useful are pentaerythritol, trimethylolpropane and neopentyl glycol esters of C1-C30 alcohols.
10 d) Wax esters such as beeswax, spermaceti wax and tribehenin wax.
e) Sugar esters of fatty acids such as sucrose polybehenate and sucrose polycottonseedate.
Natural ester emollients principally are based upon mono-, di- and tri- glycerides. Representative glycerides include sunflower seed oil, cottonseed oil, borage oil, borage seed oil, primrose oil, castor
15 and hydrogenated castor oils, rice bran oil, soybean oil, olive oil, safflower oil, shea butter, jojoba oil and combinations thereof. Animal derived emollients are represented by lanolin oil and lanolin derivatives. Amounts of the natural esters may range from about 0.1 to about 20% by weight of the compositions.
20 Hydrocarbons which are suitable cosmetically acceptable earners include petrolatum, mineral oil, C11-C13 isoparaffins, polybutenes, and especially isohexadecane, available commercially as Permethyl 101A from Presperse Inc.
Fatty acids having from 10 to 30 carbon atoms may also be suitable as cosmetically acceptable
2 5 carriers. Illustrative of this category are pelargonic, lauric, myristic, palmitic, stearic, isostearic, oleic,
linoleic, linolenic, hydroxystearic and behenic acids.
Fatty alcohols having from 10 to 30 carbon atoms are another useful category of cosmetically acceptable carrier. Illustrative of this category are stearyl alcohol, lauryl alcohol, myristyl alcohol,
3 0 oleyl alcohol and cetyl alcohol.
Thickeners can be utilized as part of the cosmetically acceptable earner of compositions according to the present invention. Typical thickeners include crosslinked acrylates (e.g. Carbopol 982®), hydrophobically-modified acrylates (e.g. Carbopol 1382®), polyacrylamides (e.g. Sepigel 305(D),
35 acryloylmethylpropane sulfonic acid/salt polymers and copolymers (e.g. Aristoflex HMB® and AVC®), cellulosic derivatives and natural gums. Among useful cellulosic derivatives are sodium

WO 2006/045364 PCT/EP2005/008497
-6-
carboxymethylcellulose, hydroxypropyl methocellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, ethyl cellulose and hydroxymethyl cellulose. Natural gums suitable for the present invention include guar, xanthan, sclerotium, carrageenan, pectin and combinations of these gums. Inorganics may also be utilized as thickeners, particularly clays such as bentonites and hectorites,
5 fumed silicas, talc, calcium carbonate and silicates such as magnesium aluminum silicate (Veegum®). Amounts of the thickener may range from 0.0001 to 10%, usually from 0.001 to 1%, optimally from 0.01 to 0.5% by weight of the composition.
Adjunct humectants may be employed in the present invention. These are generally polyhydric
10 alcohol-type materials. Typical polyhydric alcohols include glycerol, propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol, sorbitol, hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, isoprene glycol, 1,2,6-hexanetriol, ethoxylated glycerol, propoxylated glycerol and mixtures thereof. The amount of adjunct humectant may range anywhere from 0.5 to 50%, preferably between 1 and 15% by weight of the composition.
15
Personal care compositions of the present invention may be in any form. These forms may include lotions, creams, roll-on formulations, sticks, mousses, aerosol and non-aerosol sprays and fabric (e.g. non-woven textile)-applied formulations.
2 0 Surfactants may also be present in compositions of the present invention. Total concentration of the
surfactant when present may range from 0.1 to 90%, preferably from 1 to 40%, optimally from 1 to 20% by weight of the composition, and is highly dependent upon the type of personal care product The surfactant may be selected from the group consisting of anionic, nonionic, cationic and amphoteric actives. Particularly preferred nonionic surfactants are those with a C10-C2o fatty alcohol
25 or acid hydrophobe condensed with from 2 to 100 moles of ethylene oxide or propylene oxide per mole of hydrophobe; C2-C10 alkyl phenols condensed with from 2 to 20 moles of alkylene oxide; mono- and di-fatty acid esters of ethylene glycol; fatty acid monoglyceride; sorbitan, mono- and di-C8-C20 fatty acids; and polyoxyethylene sorbitan as well as combinations thereof. Alkyl polyglycosides and saccharide fatty amides (e.g. methyl gluconamides) and trialkylamine oxides
3 0 are also suitable nonionic surfactants.
Preferred anionic surfactants include soap, alkyl ether sulfates and sulfonates, alkyl sulfates and sulfonates, alkylbenzene sulfonates, alkyl and dialkyl sulfosuccinates, C8-C20 acyl isethionates, C8-C20 alkyl ether phosphates, C8-C20 sarcosinates, C8-C20 acyl lactylates, sulfoacetates and
3 5 combinations thereof.

WO 2006/045364

PCT/EP2005/008497

:7-
Useful amphoteric surfactants include cocoamidopropyl betaine, C12-C20 trialkyl betaines, sodium lauroamphoacetate, and sodium laurodiamphoacetate.
Sunscreen agents may also be included in compositions of the present invention. Particularly
5 preferred are such materials as ethylhexyl p-methoxycinnamate, available as Parsol MCX®,
Avobenzene, available as Parsol 1789® and benzophenone-3, also known as oxybenzone.
Inorganic sunscreen actives may be employed such as microfine titanium dioxide and zinc oxide.
Amounts of the sunscreen agents when present may generally range from 0.1 to 30%, preferably
from 2 to 20%, optimally from 4 to 10% by weight of the composition.
10
Antiperspirants and deodorant compositions of the present invention ordinarily will contain astringent
actives. Examples include aluminum chloride, aluminum chlorhydrex, aluminum-zirconium
chlorhydrex glycine, aluminum sulfate, zinc sulfate, zirconium and aluminum chlorohydroglycinate,
zirconium hydroxychloride, zirconium and aluminum lactate, zinc phenolsulfonate and combinations, . 15 thereof. Amounts of the astringents may range anywhere from about 0.5 to about 50% by weight of
the composition.
Dental products formulated according to the present invention will generally contain a fluoride source to prevent dental caries. Typical anti-caries actives include sodium fluoride, stannous
20 fluoride and sodium monofluoro phosphate. Amounts of these materials will be determined by the amount of fluoride releasable which should range between about 500 to about 8800 ppm of the composition.- Other components of dentifrices can include desensitizing agents such as potassium . nitrate and strontium nitrate, sweeteners such as sodium saccharine, aspartame, sucralose, and potassium acesulfam. Thickeners, opacifying agents, abrasives and colorants will normally also be
2 5 present
Preservatives can desirably be incorporated into the personal care compositions of this invention to protect against the growth of potentially harmful microorganisms. Particularly preferred preservatives are phenoxyethanol, methyl paraben, propyl paraben, imidazolidinyl urea,
3 0 dimethyloldimethylhydantoin, ethylenediaminetetraacetic acid salts (EDTA), sodium
dehydroacetate, methylchloroisothiazolinone, methylisothiazolinone, iodopropynbutylcarbamate and benzyl alcohol. The preservatives should be selected having regard for the use of the composition and possible incompatibilities between the preservatives and other ingredients. Preservatives are preferably employed in amounts ranging from 0.01% to 2% by weight of the
35 composition.

WO 2006/045364 PCT/EP2005/008497
-8-
Compositions of the present invention may include vitamins. Illustrative vitamins are Vitamin A (retinol), Vitamin B2, Vitamin B3 (niacinamide), Vitamin B6, Vitamin C, Vitamin E, folic acid and biotin. Derivatives of the vitamins may also be employed. For instance, Vitamin C derivatives include ascorbyl tetraisopalmitate, magnesium ascorbyl phosphate and ascorbyl glycoside. Derivatives of
5 Vitamin E include tocopheryl acetate, tocopheryl palmitate and tocopheryl linoleate. DL-panthenol (Pro Vitamin B5) and derivatives may also be employed. For purposes of this invention, vitamins where present are not considered as unsaturated materials. Total amount of vitamins when present in compositions according to the present invention may range from 0.001 to 10%, preferably from 0.01% to 1%, optimally from 0.1 to 0.5% by weight of the composition.
10
Another type of useful substance can be that of an enzyme such as amylases, oxidases, proteases, lipases and combinations. Particularly preferred is superoxide dismutase, commercially available as Biocell SOD from the Brooks Company, USA
15 Skin lightening compounds may be included in the compositions of the invention. Illustrative substances are placental extract, lactic acid, niacinamide, arbutin, kojic acid, ferulic acid, resorcinol and derivatives including 4-substituted resorcinols and combinations thereof. Amounts of these agents may range from about 0.1 to about 10%, preferably from about 0.5 to about 2% by weight of the composition.
20
Desquamation promoters may be present Illustrative are the alpha-hydroxycarboxylic acids and beta-hydroxycarboxylic acids. The term "acid" is meant to include not only the free acid but also salts and C1-C30 alkyl or aryl esters thereof and lactones generated from removal of water to form cyclic or linear lactone structures. Representative acids are glycolic, lactic and malic acids. Salicylic
25 acid is representative of the beta-hydroxycarboxylic acids. Amounts of these materials when present may range from about 0.01 to about 15% by weight of the composition.
A variety of herbal extracts may optionally be included in compositions of this invention. The extracts may either be water soluble or water-insoluble carried in a solvent which respectively is
30 hydrophilic or hydrophobic. Water and ethanol are the preferred extract solvents. Illustrative extracts include those from green tea, chamomile, licorice, aloe vera, grape seed, citrus unshui (mandarin peel extract), willow bark, sage, thyme and rosemary.
Also included may be such materials as lipoic acid, retinoxytrimethylsilane (available from Clariant
35 Corp. under the Silcare™ 1M-75 trademark) dehydroepiandrosterone (DHEA) and combinations
thereof. Ceramides (including Ceramide 1, Ceramide 3, Ceramide 3B and Ceramide 6) as well as

WO 2006/045364 PCT/EP2005/008497
-9-
pseudoceramides may also be useful. Amounts of these materials may range from about 0.000001 to about 10%, preferably from about 0.0001 to about 1 % by weight of the composition.
Colorants, opacifiers and abrasives may also be included in compositions of the present invention.
5 Each of these substances may range from about 0.05 to about 5%, preferably between 0.1 and 3% by weight of the composition.
The compositions of the present invention can also be, optionally, incorporated into an insoluble substrate for application to the skin such as in the form of a treated wipe.
10
A wide variety of packaging can be employed to store and deliver the personal care compositions. Packaging is often dependent upon the type of personal care end-use. For instance, leave-on skin lotions and creams, shampoos, conditioners and shower gels generally employ plastic containers with an opening at a dispensing end covered by a closure. Typical closures are screw-caps, non-
15 aerosol pumps and flip-top hinged lids. Packaging for antiperspirants, deodorants and depilatories may involve a container with a roll-on ball on a dispensing end. Alternatively these types of personal care products may be delivered in a stick composition formulation in a container with a propel-repel mechanism where the stick moves on a platform towards a dispensing orifice. Metallic cans pressurized by a propellant and having a spray nozzle serve as packaging for antiperspirants,
20 shave creams and other personal care products. Toilette bars may have packaging constituted by a cellulosic or plastic wrapper or within a cardboard box or even encompassed by a shrink wrap plastic film. All of the aforementioned are considered packaging within the context of the present invention.
2 5 The term "comprising" is meant not to be limiting to any subsequently stated elements but rather to
encompass non-specified elements of major or minor functional importance. In other words the listed steps, elements or options need not be exhaustive. Whenever the words "including" or "having" are used, these terms are meant to be equivalent to "comprising" as defined above.
30 All documents referred to herein, including all patents, patent applications, and printed publications, are hereby incorporated by reference in their entirety in this disclosure.
The following examples will more fully illustrate the embodiments of this invention. All parts, percentages and proportions referred to herein and in the appended claims are by weight unless
3 5 otherwise illustrated.

WO 2006/045364 PCT/EP2005/008497
-.10-
EXAMPLE 1
A representative personal care composition of the present invention in the form of a cosmetic lotion is outlined under Table I.
5 TABLE I

INGREDIENT WEIGHT %
PHASE A
Water Balance
Disodium EDTA 0.05
Methyl paraben 0.15
Magnesium aluminum silicate 0.60
Triethanolamine 1.20
Chloride salt of hydroxypropyltrimonium sorbitol 1.00
PHASE B
Xanthan gum 0.20
Natrosol® 250HHR (ethyl cellulose) 0.50
Butylene glycol 3.00
Glycerin 2.00
PHASE C
Sodium stearoyl lactylate 0.10
Glycerol monostearate 1.50
Stearyl alcohol 1.50
Isostearyl palmitate 3.00
Silicone fluid 1.00
Cholesterol 0.25
Sorbitan stearate 1.00
Butylated hydroxy toluene 0.05
Vitamin E acetate 0.01
PEG-100 stearate 2.00
Stearic acid 3.00
Propyl paraben 0.10
Parsol MCX® 2.00
Caprylic/capric triglyceride 0.50
Hydroxycaprylic acid 0.01
C12-15 Alkyl octanoate 3.00
PHASE D
Vitamin A palmitate 0.10
Bisabolol 0.01
Vitamin A acetate 0.01
Fragrance 0.03
Retinol 50C 0.02
Conjugated linoleic Icid 0.50

WO 2006/045364 PCT/EP2005/008497
-11-
EXAMPLE 2
A water-in-oil topical liquid make-up foundation according to invention is described in Table II below.
5
TABLE II

INGREDIENT WEIGHT %
PHASE A
Cyclomethicone 9.25
Oleyl oleate 2.00
Dimethicone copolyol 20.00
PHASE B
Talc 3.38
Pigment (iron oxides) 10.51
Spheron L-1500 (silica) 0.50
PHASE C
Synthetic Wax Durachem 0602 0.10
Arachidyl behenate 0.30
PHASE D
Cyclomethicone 1.00
Trihydroxystearin 0.30
PHASE E
Laureth-7 0.50
Propyl paraben 0.25
PHASE F
Fragrance 0.05
PHASE G
Water balance
Chloride salt of hydroxypropyltrimonium sorbitol 3.00
Methyl paraben 0.12
Propylene glycol 8.00
Niacinamide 4.00
Glycerin 3.00
Sodium chloride 2.00
Sodium dehydroacetate 0.30

WO 2006/045364 PCT/EP2005/008497
-12-
EXAMPLE 3
Illustrated herein is a skin cream incorporating a quaternary ammonium salt of the present invention.
5
TABLE III

INGREDIENT WEIGHT %
Glycerin 6.93
Niacinamide 5.00
Chloride salt of hydroxypropyltrimonium sorbitol 5.00
Permethyl 101 A1 3.00
Sepigel 3052 2.50
Q2-14033 2.00
Linseed oil 1.33
Aiiatone 21214 1.00 .
Cetyl alcohol CO-1695 0.72 I
SEFA Cottonate5 0.67
Tocopherol acetate 0.50
Panthenol 0.50
Stearyl alcohol 0.48
Titanium dioxide 0.40
Disodium EDTA 0.10
Glydant Plus6 0.10
PEG-100 Stearate 0.10
Stearic acid 0.10
Purified water Balance
10
1 lsohexadecane (Presperse Inc., South Plainfield, NJ)
2 Polyacrylamide (and) C13-14 Isoparaffin (and) Laureth-7 (Seppic Corporation, Fairfield, NJ)
3 Dimethicone (and) dimethiconol (Dow Coming Corp. Midland, Ml)
4 Sorbitan monostearate and sucrococoate (ICI Americas Inc., Wilmington, DE)
15 5 Sucrose ester of fatty acid
6 DMDM Hydantoin (and) iodopropynyl bulylcarbamate (Lonza Inc., Fairlawn, NJ)

WO 2006/045364 PCT/EP2005/008497
-13-
EXAMPLE 4
Illustrative of another cosmetic composition incorporating a quaternary ammonium salt according to
5 the present invention is the formula of Table IV.
TABLE IV

INGREDIENT WEIGHT %
Polysilicone-11 29
Cyclomethicone 59
Petrolatum 11
Chloride salt of hydroxypropyltrimonium sorbitol 0.2
Dimethicone copolyol 0.3
Sunflowerseed oil 0.5
10
EXAMPLE 5
A relatively anhydrous composition incorporating a quaternary ammonium salt of the present
15 invention is reported in Table V.
TABLE V

INGREDIENT WEIGHT %
Cyclomethicone 80.65
Dimethicone 9.60
Squalane 6.00
Isostearic acid 1.90
Borage seed oil 0.90
Chloride salt of hydroxypropyltrimonium sorbitol 0.50
Retinyl palmitate 0.25
Ceramide 6 0.10
Tocopherol 0.10

WO 2006/045364 PCT/EP2005/008497
- 14 -
EXAMPLE 6
An aerosol packaged foaming cleanser with a quaternary ammonium salt suitable for the present invention is outlined in Table VI.
TABLE VI

INGREDIENT WEIGHT %
Sunflower seed oil 20.00
Maleated soybean oil 5.00
Silicone urethane 1.00
Polyglycero-4 oleate 1.00
Sodium C14-16 olefin sulfonate 15.00
Sodium lauryl ether sulphate (25% active) 15.00
Cocoamidopropylbetaine 15.00
DC 1784® (silicone emulsion 50%) 5.00
Polyquatemium-11 1.00
Chloride salt of hydroxypropyltrimonium sorbitol 1.00
Water Balance
EXAMPLE 7
10
A disposable, single use personal care towelette product is described according to the present invention. A 70/30 polyester/rayon non-woven towelette is prepared with a weight of 1.8 grams and dimensions of 15 cm by 20 cm. Onto this towelette is impregnated a composition with a quaternary ammonium salt as outlined in Table VII below.
L5
TABLE VII

INGREDIENT WEIGHT %
Chloride salt of hydroxypropyltrimonium sorbitol 7.50
Glycerin 2.00
Hexylene glycol 2.00
Disodium capryl amphodiacetate 1.00
Gluconolactone 0.90
Silicone microemulsion 0.85
Witch hazel 0.50
PEG-40 hydrogenated castor oil 0.50
Fragrance (terpenoid mixture) 0.20
Vitamin E acetate 0.001
Water Balance

WO 2006/045364 PCT/EP2005/008497
- 15-
EXAMPLE 8
A toilette bar illustrative of the present invention is outlined under Table VIII.
TABLE VIII

5


INGREDIENT WEIGHT %
Sodium soap (85/15 tallow/coconut) 77.77
Chloride salt of hydroxypropyltrimonium sorbitol 3.50
Glycerin 2.50
Sodium chloride 0.77
Titanium dioxide 0.40
Fragrance 1.50
Disodium EDTA 0.02
Sodium etidronate 0.02
Fluorescer 0.024
Water Balance

EXAMPLE 9
A shampoo composition useful in the context of the present invention is described in Table IX .... below.
TABLE IX

10


Ingredient Weight %
Ammonium laureth sulfate 12.00
Ammonium lauryl sulfate 2.00
Cocoamidopropyl betaine 2.00
Sodium lauroamphoacetate 2.00
Chloride salt of hydroxypropyltrimonium neopentyl glycol 5.50
Ethylene glycol distearate 1.50
Cocomonoethanolamide 0.80
Cetyl alcohol 0.60
Poryquatemium-10 0.50
Dimethicone 1.00
Zinc pyridinethione 1.00
Sodium citrate 0.40
Citric acid 0.39
Sodium xylene sulfonate 1.00
Fragrance 0.40
Sodium benzoate 0.25
Kathon CG® 0.0008
Benzyl alcohol 0.0225
Water Balance

WO 2006/045364 PCT/EP2005/008497
-16-
EXAMPLE 10
This Example illustrates an antiperspirant/deodorant formula incorporating the moisturizing actives according to the present invention.
TABLE X

Ingredient Weight %
Cyclopentacycloxane 44
Dimethicone 20
Aluminum zirconium trichlorohydrex glycinate 15
Chloride salt of hydroxpropyltrimonium isoprene glycol 5.0
C18-C36 Acid triglyceride 5.0
Microcrystalline wax 3.0
Glycerin 3.0
Silica 2.5
Dimethicone crosspolymer 1.0
Fragrance 0.5
Disodium EDTA 0.4
Butylated hydroxytoluene 0.3
Citric Acid 0.3
5
EXAMPLE 11
A toothpaste according to the present invention can be formulated with the ingredients listed under Table XI.
TABLE XI

10


Ingredients Weight %
Zeodent 115® 20.00
Glycerin 18.00
Xanthan gum 7.00
Sodium carboxymethyl cellulose 0.50
Sodium bicarbonate 2.50
Acetate salt of hydroxypropyltrimonium sorbitol 2.00
Sodium laurylsulfate 1.50
Sodium fluoride 1.10
Sodium saccharin 0.40
Titanium dioxide 1.00
Pluronic F-127® 2.00
FD&C Blue No. 1 3.30
Menthol 0.80
Potassium nitrate 5.00
Water balance

WO 2006/045364

PCT/EP2005/008497

-17-
EXAMPLE 12
This Example provides the results of moisturization efficacy tests. These tests involved evaluation on porcine epidermis utilized as a human skin model. The equipment and protocol are outlined below.
5 An environmental microbalance (Model MB-300W, VTI Corp., 2708 W 84th Street, Hialeah, FL 33016) was programmed to measure the change in weight of porcine skin as a function of relative humidity at a constant temperature and air flow. The porcine skin was evaluated before and after treatment with aqueous solutions of humectants to determine adsorption and retention of moisture.
Sample preparation was done as follows:
10 Epidermal sections of porcine skin were cut to approximately 4 cm X1 cm.
The skin was washed in a 10% detergent solution and dried in a dessicator to a constant weight
This represents the Untreated material.
The skin was soaked in a 1 % by weight aqueous solution of the test sample for 15 minutes, excess
fluid was blotted off and the skin was dried to constant weight in a dessicator. This represents the 15 Treated material.
Sequence of conditions for the microbalance was as follows:
30 minutes at 0% relative humidity. (Insures that sample is dry.)
90 minutes at 80% relative humidity. (Determines amount of water picked up.)
90 minutes at 20% relative humidity. (Determines amount of water retained.)
2 0 The experiments were conducted as follows:
The weight of a piece of untreated skin was recorded continuously during the sequence.
The piece of untreated skin was treated with the test sample.
The weight of the treated piece of skin was recorded continuously during the sequence.
Data reduction consisted of calculating the percent weight change from the initial weight for the 2 5 untreated and treated pieces of skin.
The reported data was the difference between each treated piece and its corresponding untreated
piece. Results are recorded in Table XII.

WO 2006/045364

-18-

TABLE XII

PCT/EP2005/008497


Sample* From 0 through 80% Relative Humidity From 0 to 80 to 20% Relative Humidity
Sorbitol monoquata 1.98 3.00
Honeyquat® 0.31 0.70
Honey 0.24 0.02
Quat®188D 0.21 0.10
Glycerin 0.21 0.10
5 * All samples tested at 1 % active material in water solution. Data points represent the difference in weight of treated skin minus untreated skin.
a Chloride salt of hydroxypropyltrimonium sorbitol
b 3-Chloro-2-hydroxypropyl trimethylammonium chloride
10 Evident from the results is that the sorbitol monoquat was not only effective for moisturizing at relatively high humidity but also exceptional at relatively low humidity. These results were especially significant relative to glycerin which is normally used for moisturization purposes in cosmetic formulations.
15
EXAMPLE 13
Herein is provided a synthesis procedure for the chloride salt of hydroxypropyltrimonium sorbitol (also referred to as 'Sorbitol Monoquat’). A round bottom 250 ml flask was fitted with a mechanical
20 stirrer. Into the flask was charged a mixture of sorbitol (10 g, 55.0 mmol) and 3-chloro-2-hydroxypropyl trimethylammonium chloride (Quat 188®) (15 ml, 55.0 mmol). One molar sodium hydroxide (55.0 ml, 55.0 mmol) was then added to the charged mixture. The resultant solution was stirred at room temperature for 18 hours. Water was then removed under reduced pressure at 50°C yielding a heterogeneous colorless syrup. Filtration through glass wool afforded sorbitol
2 5 hydroxypropyltrimethylammonium chloride as a homogeneous clear syrup: m/z (ESI; M+ CI") 298.

WO 2006/045364 PCT/EP2005/008497
-19-
CLAIMS:
1. A personal care composition comprising:
(i) from 0.1 to 30% by weight of a quaternary ammonium salt wherein a cation of the salt
5 is a hydroxypropyltri (C1-C3 alkyl) ammonium monosubstituted polyol, the cation having
an average molecular weight no higher than 450 and the salt having a Tg no higher than 10°C; and
(ii) a cosmetically acceptable carrier.
10 2. The composition according to claim 1 wherein the average molecular weight is no higher than about 400.
3. The composition according to claim 1 or claim 2 wherein the quaternary ammonium salt is
present in an amount from 1 % to 12% by weight of the composition.
4. The composition according to any one of the preceding claims which is selected from the
15 group consisting of leave-on skin lotions and creams, shampoos, hair conditioners, shower
gels, toilette bars, antiperspirants, deodorants, dental products, shave creams, depilatories, lipsticks, foundations, mascara, sunless tanners and sunscreen lotions.
5. The composition according to any one of the preceding claims wherein the polyol is
selected from the group consisting of sorbitol, pentaerythritol, neopentyl glycol, propylene
20 glycol, dipropylene glycol and isoprene glycol.
6. The composition according to claim 1 wherein the salt is a chloride of hydroxypropyl trimonium sorbitol.
7. A method for moisturizing skin comprising applying to the skin a composition comprising:
2 5 (i) from 0.1 to 30% by weight of a quaternary ammonium salt wherein a cation of the salt
is a hydroxypropyltri (C1-C3 alkyl) ammonium monosubstituted polyol, the cation having an average molecular weight no higher than 450 and the salt having a Tg no higher than 10°C; and
(ii) a cosmetically acceptable carrier.
30

WO 2006/045364 PCT/EP2005/008497
-20-
8. The method according to claim 7 wherein the salt is a chloride of hydroxypropyl trimonium sorbitol.
9. The method according to claim 7 wherein the average molecular weight is no higher than
5 about 400.
10. The method according to claim 7 wherein the polyol is selected from the group consisting of sorbitol, pentaerythritol, neopentyl glycol, propylene glycol, dipropylene glycol and isoprene glycol.
Dated this 12th day of April 2007


Documents:

528-MUMNP-2007-ANNEXURE TO FORM 3(20-10-2008).pdf

528-mumnp-2007-assignment.pdf

528-MUMNP-2007-CANCELLED PAGES(20-10-2008).pdf

528-MUMNP-2007-CLAIMS(12-4-2007).pdf

528-MUMNP-2007-CLAIMS(20-10-2008).pdf

528-MUMNP-2007-CLAIMS(GRANTED)-(29-12-2008).pdf

528-mumnp-2007-claims(gtranted)-(12-04-2004).doc

528-mumnp-2007-claims(gtranted)-(12-04-2004).pdf

528-mumnp-2007-claims.doc

528-mumnp-2007-claims.pdf

528-MUMNP-2007-CORRESPONDENCE(20-10-2008).pdf

528-mumnp-2007-correspondence(ipo)-(14-10-2008).pdf

528-MUMNP-2007-CORRESPONDENCE(IPO)-(30-1-2009).pdf

528-mumnp-2007-correspondence-others.pdf

528-mumnp-2007-correspondence-received.pdf

528-mumnp-2007-correspondence1(29-08-2007).pdf

528-mumnp-2007-correspondence2(20-10-2008).pdf

528-mumnp-2007-description (complete).pdf

528-MUMNP-2007-DESCRIPTION(COMPLETE)-(12-4-2007).pdf

528-MUMNP-2007-DESCRIPTION(COMPLETE)-(20-10-2008).pdf

528-MUMNP-2007-DESCRIPTION(GRANTED)-(29-12-2008).pdf

528-mumnp-2007-form 1(12-04-2007).pdf

528-MUMNP-2007-FORM 1(12-4-2007).pdf

528-mumnp-2007-form 13(03-10-2007).pdf

528-MUMNP-2007-FORM 13(3-10-2007).pdf

528-mumnp-2007-form 18(29-08-2007).pdf

528-mumnp-2007-form 2(20-10-2008).pdf

528-MUMNP-2007-FORM 2(COMPLETE)-(12-4-2007).pdf

528-mumnp-2007-form 2(granted)-(12-04-2007).doc

528-mumnp-2007-form 2(granted)-(12-04-2007).pdf

528-MUMNP-2007-FORM 2(GRANTED)-(29-12-2008).pdf

528-MUMNP-2007-FORM 2(TITLE PAGE)-(12-4-2007).pdf

528-MUMNP-2007-FORM 2(TITLE PAGE)-(20-10-2008).pdf

528-MUMNP-2007-FORM 2(TITLE PAGE)-(GRANTED)-(29-12-2008).pdf

528-MUMNP-2007-FORM 3(12-4-2007).pdf

528-MUMNP-2007-FORM 3(20-10-2008).pdf

528-mumnp-2007-form 5(12-04-2007).pdf

528-mumnp-2007-form-1.pdf

528-mumnp-2007-form-2.doc

528-mumnp-2007-form-2.pdf

528-mumnp-2007-form-3.pdf

528-mumnp-2007-form-5.pdf

528-mumnp-2007-form-pct-ib-311.pdf

528-mumnp-2007-form-pct-isa-237.pdf

528-mumnp-2007-form-pct-separate sheet-237.pdf

528-MUMNP-2007-GENERAL POWER OF ATTORNEY(20-10-2008).pdf

528-MUMNP-2007-OTHER DOCUMENT(20-10-2008).pdf

528-mumnp-2007-pct-search report.pdf

528-mumnp-2007-power of attorney(20-10-2008).pdf

528-MUMNP-2007-WO INTERNATIONAL PUBLICATION REPORT(12-4-2007).pdf


Patent Number 226876
Indian Patent Application Number 528/MUMNP/2007
PG Journal Number 10/2009
Publication Date 06-Mar-2009
Grant Date 29-Dec-2008
Date of Filing 12-Apr-2007
Name of Patentee HINDUSTAN UNILEVER LIMITED
Applicant Address HINDUSTAN LEVER HOUSE, 165/166 BACKBAY RECLAMATION, MUMBAI
Inventors:
# Inventor's Name Inventor's Address
1 MCMANUS RICHARD LOREN UNILEVER HOME & PERSONAL CARE USA, 40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT 06611.
2 CHENEY MICHAELCHARLES UNILEVER HOME & PERSONAL CARE USA, 40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT 06611
3 SPADINI ALESSANDRO LUIGI 4 OPHIR DRIVE, PURCHASE, NEW YORK 10577.
4 HARICHIAN BIJAN UNILEVER HOME & PERSONAL CARE USA, 40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT 06611
5 MINER PHILIP EDWARD UNILEVER HOME & PERSONAL CARE USA, 40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT 06611
PCT International Classification Number A61K8/41 A61Q19/00
PCT International Application Number PCT/EP2005/008497
PCT International Filing date 2005-08-04
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/973023 2004-10-25 U.S.A.