Title of Invention

NOZZLE ARRANGEMENT FOR RELEASING A TREATMENT FLUID

Abstract A nozzle arrangement is described which may in particular be used as a flow nozzle in galvanization systems with horizontal throughput of printed-circuit boards. The nozzle arrangement comprises a longitudinal housing (2) with at least one fluid feed opening to feed a treatment fluid for treating a work piece, for example a printed- circuit board, and preferably a plurality of slotted fluid delivery openings (8) for releasing the treatment fluid. In the housing (2) a fluid channel (5) is formed for feeding the treatment fluid from the fluid feed opening to the fluid delivery openings (8). In order to achieve the most even possible flow speed of the treatment fluid at the fluid delivery openings (8), (a) the throughput of the fluid channel (5) for the treatment fluid reduces continuously from the fluid feed opening in the longitudinal direction of the housing (2) and/or (b) before the delivery of the fluid from the fluid delivery openings (8) a storage chamber is provided.
Full Text NOZZLE ARRANGEMENT FOR RELEASING A TREATMENT FLUID
The present invention concerns a nozzle arrangement, as may be applied in the
treatment of a work piece with a treatment fluid or in the flooding of a corresponding
treatment bath with a treatment fluid. In particular the present invention concerns a
flow nozzle arrangement which can, for example, be applied in continuous systems
for wet-chemical treatment of printed-circuit boards.
Nozzle arrangements of the type mentioned are widely known. Thus, for example,
such nozzle arrangements are used in continuous systems for wet-chemical
treatment of printed-circuit boards in order to achieve the fastest and most even
possible treatment of the printed-circuit boards passing through. For this purpose in a
known fashion various such nozzle arrangements are arranged above and/or below
the level at which the printed-circuit boards pass through as well as diagonally to this
direction of flow of the printed-circuit boards, from which the corresponding treatment
fluid is sprayed onto the surface of the printed-circuit board or is sucked from it, in
order to achieve a constant and even exchange of the treatment fluid along the
surface of the printed-circuit boards.
In EP 1 187 515 A2 a number of different nozzle arrangements are proposed in this
connection. Here essentially round tubes are used that have various nozzle forms.
Thus these nozzle arrangements may, for example, have slot nozzles arranged
diagonally, round nozzles arranged alongside each other in rows or also a number of
slot nozzles arranged alongside each other and running in an axial direction.

DE 37 08 529 A1 also proposes the use of slot nozzles, whereby by means of a
variable slot width of the corresponding nozzle the flow quantity and the spray
pressure of the respective medium can be adjusted.
In DE 35 28 575 A1 for cleaning, activation and/or metallization of bore holes in
printed-circuit boards passing through horizontally a nozzle below the level at
which these pass through and vertically to the direction of flow is used, from which
a fluid treatment means in the form of a constant wave is delivered onto the
underside of each printed-circuit board that passes through. The nozzle is
arranged in the top part of a nozzle housing, which comprises a pre-chamber with
inlet nozzle, whereby the pre-chamber is, in turn, separated from an upper part of
the inner area of the nozzle by means of a shadow mask. With the help of the
shadow mask a distribution of the flow of the fluid treatment means to the nozzle is
achieved. The inner area of the nozzle before the actual (slot) nozzle serves as the
pre-chamber for an even build-up of the flow of the fluid treatment means.
EP 0 280 078 B1 reveals a nozzle arrangement for cleaning or chemical treatment
of work pieces, in particular printed-circuit boards, by means of a corresponding
treatment fluid. The nozzle arrangement comprises a lower admission box and a
housing box, whereby via the lower admission box the treatment fluid is passed
via bore holes in the floor of the housing box into the inside of the housing box. The
housing box, in turn, has a central separating wall in combination with two
perforation levels and slots arranged on this, which allows the treatment fluid to
flow to both slots and via these to form two even, sinusoidal surge wave profiles,
which the work pieces, in particular the bore holes of printed-circuit boards, pass
through, and by means of the Venturi effect ensure an intensive mass transfer.
In the known flow nozzle arrangements the speed of flow at the inlest is at a
maximum, since it is here that the greatest flow volume passes through. With
increasing distance from the inlet the flow speed drops accordingly, since via each

of the individual nozzle openings only part of the treatment fluid discharges. Apart
from the existing static pressure, this leads to banking-up pressure and uneven flow
speeds at the nozzle openings. A further consequence is unevenness in the
quantities of the treatment fluid discharged.
The object of the present invention is therefore to provide a nozzle arrangement for
releasing a treatment fluid, in which an extensively even flow speed and flow quantity
of the treatment fluid in the longitudinal direction of the nozzle arrangement can be
achieved. Further requirements that are preferably to be met are a high level of
compactness of the nozzle section, in order to use the smallest possible amount of
space in systems of the abovementioned type. Apart from this, the number of
components and the production costs should be kept low. In addition the spray or flow
geometry and the spray direction should preferably be the same at all discharge
openings.
Accordingly, the present invention provides a nozzle arrangement for releasing a
treatment fluid, with a longitudinal housing with at least one fluid feed opening for
feeding the treatment fluid and at least one fluid delivery opening formed in the
housing for releasing the treatment fluid, whereby in the housing a fluid channel is
formed for feeding the treatment fluid from the fluid feed opening to the at least one
fluid delivery opening, and whereby the section of the fluid channel reduces from the
fluid feed opening in the longitudinal direction of the housing, characterized in that the
housing is made from plastic, and at or in the nozzle arrangement at least one
stiffening member made from metal and extending in the longitudinal direction of the
nozzle arrangement is provided, and in the nozzle arrangement a longitudinal insert,
in which a plurality of distribution openings spaced from one another in the
longitudinal direction is formed, is arranged so that the fluid channel defined by the
insert is in communication with the at least one fluid delivery opening via the
distribution openings, in order to feed the treatment fluid from the fluid channel via the
distribution openings to the at least one fluid delivery opening.

Preferably, the section of the fluid channel reduces continuously from the fluid feed
opening in the longitudinal direction of the housing. Preferably, the distribution
openings of the insert are positioned congruent to the fluid delivery openings in the
housing. Preferably, the section of the fluid channel reduces from the fluid feed
opening in the longitudinal direction of the housing from a number of sides.
Preferably, all the distribution openings have the same diameter. Preferably, the
length of the distribution openings increases from the fluid feed opening in the
longitudinal direction of the housing. Preferably, the length of the distribution openings
of the fluid feed opening in the longitudinal direction of the housing is the same.
Preferably, the distribution openings have a differing diameter. Preferably, the
diameter of the distribution openings reduces from the fluid feed opening in the
longitudinal direction of the housing. Preferably, the distribution openings are provided
with countersinkings on their side turned towards the fluid channel. Preferably, the
countersinkings of the distribution openings have a different depth. Preferably, the
depth of the countersinkings of the distribution openings increases from the fluid feed
opening in the longitudinal direction of the housing. Preferably, the housing is
essentially parallelepiped in shape and the stiffening member is essentially U-shaped.
Preferably, between the at least one fluid delivery opening and the fluid channel and
immediately before the at least one fluid delivery opening a storage chamber is
formed for pressure distribution. Preferably, the storage chamber is in the form of a
recess provided in the longitudinal insert on the side of the distribution openings
turned towards the at least one fluid delivery opening. Preferably, all distribution
openings are arranged spatially at an offset to the at least one fluid delivery opening
in such a way that the treatment fluid flows out of the fluid delivery openings via the
storage chamber only after at least two changes in direction. Preferably, the at least
one fluid feed opening is provided at a longitudinal end of the housing. Preferably, the
at least one fluid feed opening is provided at a middle section of the housing.
Preferably, the housing has a plurality of fluid delivery openings spaced from one
another in the longitudinal direction of the housing. Preferably, the fluid delivery
openings are slotted or round. Preferably, the fluid delivery openings have the same

dimensions. Preferably, the fluid delivery openings have a reducing width from the
fluid feed opening over the length of the housing or a reducing diameter over the
length of the housing. Preferably, the slotted fluid delivery openings are formed in a
plurality of rows offset from one another in the housing. Preferably, in the housing a
plurality of connecting channels spaced from one another and extending widthways in
the housing are formed in the longitudinal direction of the housing, which
communicate at one end with the fluid channel in the housing and at the other with
the at least one fluid delivery opening. Preferably, the connecting channels are
formed in a cover which is positioned on the housing. Preferably, the cover is
positioned with a fluid-tight seal at the housing. Preferably, the connecting channels
are arranged evenly spaced in the longitudinal direction of the housing. Preferably,
the connecting channels are distributed essentially over the entire length of the
housing. Preferably, each connecting channel extends essentially in a straight line
transversely to the longitudinal direction of the housing. Preferably, each connecting
channel opens out into one of the fluid delivery openings at either side of the housing.
Preferably, a further longitudinal insert, which is conical in its longitudinal direction, is
arranged in the housing and defines together with the longitudinal insert having the
distribution openings the fluid channel.
The nozzle arrangement according to the invention has an elongated housing with at
least one fluid feed opening for the feeding of a treatment fluid and with at least one
fluid delivery opening formed in the housing for releasing the treatment fluid onto the
work piece to be treated. In the housing a fluid channel is formed for feeding the
treatment fluid from the fluid feed opening to the at least one fluid delivery opening.
The minimum of one delivery opening can be slotted or be designed as a row of
round bore holes arranged behind one another with an even spacing.

According to a first embodiment of the present invention the section of the fluid
channel reduces from the fluid feed opening in the longitudinal direction of the
housing, whereby a continuous reduction in the section of the fluid channel in the
longitudinal direction and along the minimum of one fluid delivery opening can be
provided. By means of this adaptation of the flow section of the fluid channel to the
distance from the fluid feed opening or from the fluid inlet, where the greatest fluid
quantity passes through, balancing of the flow speed along the entire length of the
nozzle arrangement and thus along the at least one fluid delivery opening can be
achieved.
In a housing with the same section in the longitudinal direction a longitudinal insert
can be provided, the section of which reduces in the longitudinal direction from the
fluid feed opening, so that it reduces according to the section of the fluid channel.
The insert is preferably arranged in relation to the fluid delivery openings in such a
way that all fluid delivery openings have delivery channels of the same length.
It is also equally possible, however, for the thickness of the housing wall to
increase at one or more points in the longitudinal direction of the housing from the
fluid feed opening.
The insert in the inside of the nozzle arrangement can, for example, also comprise
a large number of individual sections or segments. These may be displacers or
perforated bodies. In this way, for example, 60 parts per nozzle arrangement,
depending on the required length, with differing section, or for discs with a differing
inside diameter, are arranged in a row. The individual sections can be glued,
welded, or held together with tie rods or with a stiffener. The flow cross section for
the fluid decreases constantly here from section to section from the first segment at
the fluid entry to the end of the nozzle arrangement. If, for example, one of the
sections has a delivery opening, the storage chamber in the section can be

cylindrical and not conical. This results in a stepped fluid channel with very low
production costs.
According to a second embodiment of the present invention the fluid channel
communicates via several distribution openings separated from one another in the
longitudinal direction of the housing, and which differ in length. If the length of
these distribution openings is increasingly altered starting from the fluid feed
opening in the longitudinal direction of the housing, then likewise balancing of the
speed of flow of the treatment fluid over the entire length of the nozzle
arrangement at the nozzle or fluid delivery openings can be achieved. The differing
lengths of the bore holes or distribution openings result in differing flow resistances
which lead to a balancing of the flow speed.
The abovementioned distribution openings can all have the same diameter.
Similarly, however, it is also conceivable for the distribution openings to be
designed with differing diameters. The decisive factor for the change in diameter is
a differing flow speed in the feed channel and the associated differing overall
pressure conditions.
According to a further variant, therefore, it is proposed that the distribution
openings have differing diameters at the fluid delivery and that these are provided
with countersinkings with the same diameters. If the diameter of the
countersinkings is selected to be identical, then a further evening out of the volume
flow and the delivery speed takes place.
The above distribution openings can be fashioned in an insert of the
abovementioned type in the form of corresponding bore holes. The insert can be
retained with the help of a preferably U-shaped stiffener in the housing.

It has been observed that through the dynamic forces of the flowing fluid the jet is
not delivered at the fluid delivery openings in the angle of the opening channel, but
diagonally in the direction of flow of the treatment fluid. With increasing length of
the delivery channel this effect reduces. This likewise leads to an uneven treatment
result on the sensitive treatment product.
It is therefore particularly advantageous if between the at least one fluid delivery
opening and the fluid channel a storage chamber is provided, for example in the
form of a corresponding milling or recess of the aforementioned insert, which
serves to further distribute the pressure and to reduce the dynamic forces. The
distribution openings are arranged in a preferred embodiment in such a way that
the jet of fluid delivered bounces against the wall in which the fluid delivery
openings are arranged. Then the jet is deflected diagonally and bounces against
the wall of the milled-out insert, before flowing against the treatment product or
work piece once it has been deflected again by the fluid delivery opening.
The fluid delivery opening or the inlet for the treatment fluid can be arranged on a
longitudinal side of the housing. It is, of course, conceivable for this fluid delivery
opening to be arranged in a central section of the housing however.
The fluid delivery openings are preferably in the form of several slots arranged at
intervals in the longitudinal direction of the housing which can all have identical
dimensions or also different dimensions. It is particularly advantageous if the fluid
delivery openings are designed in the form of several rows of slots offset against
each other, which each run in the longitudinal direction of the housing. In place of
the offset rows of slots, however, rows of bore holes can also be used. In both
cases an even flow against the treatment product takes place.
It is also important that the distance from the fluid delivery openings and the
treatment product is always the same. This should avoid the nozzle arrangement

bending under the build-up or jet pressure of the treatment fluid. High temperatures
or deformations caused by the production process (e.g. those brought about by
welding) should also be avoided. The required stability can in particular be
achieved by having longitudinally arranged metal stiffeners on or in the nozzle
arrangement.
According to a further embodiment, the nozzle arrangement according to the
invention can also have a preferably bilaterally continuously reducing section of the
fluid channel, whereby on one side of the housing a fluid-tight lid or covering is
arranged on the housing which together with the housing defines the fluid delivery
openings. According to this embodiment the fluid delivery openings, in particular,
comprise a plurality of slots arranged in the longitudinal direction of the nozzle
arrangement at intervals and which run diagonally to the longitudinal direction, i.e.
in the width direction of the nozzle arrangement, whereby the fluid delivery
openings are arranged bilaterally on the nozzle arrangement. Each slot or
connecting channel thus communicates at one end with the fluid channel of the
housing and at the other flows into each of two fluid delivery openings.
This embodiment is particularly well suited to the totally even flooding of treatment
baths with a treatment fluid or a treatment medium. In certain processes where
there is a danger of substances being absorbed from the environment, such as for
example oxygen from the air, the flooding must be carried out as far as possible
without the formation of jets or vortexes that could increase the surface area of the
treatment fluid. This object is achieved by the nozzle arrangement according to the
embodiment described above by an even, slow flow speed over the entire effective
length of the nozzle arrangement.
The last embodiment given can be combined with the features of the embodiments
described before it. Of course the last embodiment given may also be constructed

without the features described above concerning the creation of a storage chamber or
the use of distribution openings, etc.
The nozzle arrangement according to the invention is preferably suited to use as a
flow nozzle in wet-chemical systems with a horizontal throughput of the printed-circuit
boards. The present invention is not, of course, limited to this preferred range of
application, however. It can be used wherever a work piece has to have a flow
against it from a nozzle arrangement of a treatment fluid, for example also for
cleaning or chemical treatment etc. of the work piece or wherever the most even
possible flooding of a treatment bath with a treatment fluid of this kind has to be
possible. In its most generalized form, therefore, the invention can be used wherever
the most even possible release of a treatment fluid is desired.
The present invention is explained in more detail in the following with reference to the
accompanying drawings on the basis of a preferred embodiment.
Figure 1 shows a side view of a nozzle arrangement according to the invention in a
simple form in partial section along a line of intersection B-B' illustrated in Figure 4.
Figure 2 shows a side view of a nozzle arrangement according to the invention as an
alternative to Figure 1 in the partial section along the line of intersection B-B'
illustrated in Figure 4.
Figure 3 shows a side view of a nozzle arrangement according to the invention in a
preferred embodiment with additional storage chamber for pressure distribution in the
partial section along the line of intersection B-B' illustrated in Figure 4.
Figure 4 shows a top view of the nozzle arrangement illustrated in Figure 3 in the
partial section along a line of intersection A-A' illustrated in Figure 3.

Figure 5 shows a side view of an insert illustrated in Figure 3 and Figure 4 as well
as a stiffener for retaining this insert in the nozzle arrangement.
Figure 6 shows a side view of a nozzle arrangement according to the invention in
an alternative design to Figure 3 or Figure 4 in the partial section along the line of
intersection B-B' illustrated in Figure 4.
Figure 7 shows a cross-sectional view of the nozzle arrangement of Figure 3 along
a line of intersection C-C illustrated in Figure 3.
Figure 8 shows a side view of a nozzle arrangement according to the invention
according to a further embodiment in the form of a partial section.
Figure 9 shows a top view of the nozzle arrangement illustrated by Figure 8 in
partial section, and
Figure 10 shows a sectional view of the nozzle arrangement from Figure 8 and
Figure 9 along a line of intersection C-C illustrated in Figure 8.
The nozzle arrangement illustrated in Figure 1, which is particularly suited as a flow
nozzle for galvanisation systems with a horizontal throughput of printed-circuit
boards, comprises an essentially parallelepiped-shaped housing 2. On a rear face
of the housing 2 a connecting sleeve 1 coupled to a fluid feed opening of the
housing is arranged for the feeding of a treatment fluid. On a side face of the
housing 2 arranged opposite the work piece to be treated or the treatment product
rows of slots or of bore holes offset from one another are arranged that form the
delivery openings 8 for the treatment fluid. In the embodiments illustrated all slotted
delivery openings or bore holes 8 have the same dimensions and accordingly the
same length and width or diameter. Differing dimensions can also be selected,
however, in order to generate a predefined spray or flow picture.

In the inside of the housing 2 a wedge-shaped insert 3, which is preferably made
from plastic is arranged, along with a U-shaped stiffener 4 for stabilising this insert
3 that is made from a metal that is resistant to the chemicals used, such as special
steel, titanium, niobium or similar.
As described in more detail in the following, the purpose of the insert 3 is to
balance the flow speed in the fluid channel and thus to evenly distribute the
treatment fluid over the entire length of the nozzle arrangement.
As can be seen from Figure 1, in particular, the insert 3 runs conically in the
longitudinal direction, so that at its end arranged adjoining the connecting sleeve 1
it has the lowest thickness and at its opposite end the greatest thickness. Between
the insert 3 and the stiffener 4 there is a hollow space that serves as the fluid
channel 5 for the treatment fluid. At the end coupled to the connecting sleeve 1, the
flow section of this fluid channel 5 is accordingly at its greatest and decreases
continuously towards the opposite end, where the flow section is at its least.
The nozzle arrangement has, on the surface opposite to the treatment product and
along its length the preferably evenly spaced delivery openings 8 in the form of
through holes, which in the embodiment illustrated all have the same diameter. In
place of the bore holes illustrated slotted delivery opening can also be used.
As can be seen, again, from Figure 1, the length of these delivery openings 8 is the
same over the entire length of the nozzle arrangement. The treatment fluid is
passed through the nozzle arrangement in the direction of the arrow via the
connecting sleeve 1 into the fluid channel 5 and in the longitudinal direction to the
delivery openings 8.

Since on account of the wedge-shaped insert 3 the flow speed at all points of the
fluid channel 5 is the same and all delivery openings 8 have the same dimensions,
a very even spray picture results.
According to Figure 2, the wedge-shaped insert is arranged in the top part of the
nozzle arrangement. The delivery openings 8 are present in the housing 2 and in
the insert 3 identically. This results in delivery channels of differing lengths but with
the same diameter of delivery openings. The differing length delivery channels can
be used for a further balancing of the spray picture. In the longer bore holes at a
greater distance from the fluid inlet there is an increased flow resistance towards
the end, which provides a further balancing of the flow conditions.
According to Figure 3 in an insert 3 there is a milling or a recess and in the
longitudinal direction of the insert 3 distribution openings 7 are formed at intervals
from each other. The milling or the recess on the insert 3 creates between the
distribution openings 7 of the insert 3 and the slotted delivery openings 8 formed in
the housing 2 (not illustrated in this figure) a storage chamber 6 for the treatment
fluid, which serves to further distribute the pressure. The fluid jet emitted from each
distribution opening 7 is initially emitted against the housing wall, diverted
diagonally downwards from here against the wall of the insert 3 before, following a
further change of direction, emerging from the slotted delivery opening 8 onto the
treatment product 10. This deviation is intended to release the dynamic force of the
moving fluid.
Figure 7 shows as section C-C, illustrated in Figure 3, further details of the nozzle
arrangement.
The distribution openings 7 have differing lengths due to the wedge-shaped insert
3. If this difference in length proves troublesome the bore holes can be provided

with countersinkings 9 of differing length in accordance with detail D (illustrated in
Figure 3) in order to adjust the flow conditions.
A combination of the continuously reducing fluid channel 5 from the feed opening
to the opposite end of the nozzle arrangement communicating with the storage
chamber 6 and the multiple deviations of the fluid flow before delivery from the
delivery openings 8 (e.g. a row of slots) ensures that the same quantity of fluid
emerges from each slot and at the same discharge speed.
As can be seen from Figure 5, the stiffener 4 essentially runs along the entire
length of the insert 3. At the outer end of the stiffener the thickness of the insert 3 is
increased by the wall thickness of the stiffener. This ensures a tight seal on the
fluid channel 5 in the inside of the housing 2 of the nozzle arrangement (see also
Figure 3). The insert 3 is also thicker by the same amount along its top side, so
that it sits securely on the U-shaped stiffener 4, as can be seen from Figure 7. It is
also possible, however, to position the U-shaped stiffener on the outside of the
housing 2. To this end the additional thickness on the insert 3 can be dispensed
with. The stiffener can also be secured to the housing by means of screws, for
example. The screws should not, however, protrude into the fluid channel 5.
In the embodiments illustrated in Figures 3 - 7 an even flow speed of the treatment
fluid at the outlet openings 8 is in principle achieved by two measures. Firstly, the
throughput section for the treatment fluid decreases continuously inside the nozzle
arrangement, that is in the fluid channel 5, from the connecting sleeve 1 to the end
of the nozzle arrangement due to the insert 3 that runs diagonally. Secondly, the
distribution openings 7 do not carry the treatment fluid directly to the treatment
product. Instead it is twice diverted and only then is it delivered via the fluid delivery
openings 8, in this example rows of slots.

The flow resistance in the distribution openings 7 increases continuously because
of their increasing length. In order that this does not have any effect on the fluid
distribution, the inclination of the insert 3, illustrated in Figures 2, 3 and 5, is
preferably selected to be somewhat flatter so that a gap still remains at the end of
the nozzle arrangement. In the example in Figure 3 the gap height at the end is
approximately 4 mm.
A combination of the two measures (inclined or tapered insert and fluid deviation in
the additional storage chamber) leads to the best results, since the reduction in
section of the fluid channel 5 alone can possibly only bring about an inadequate
pressure equalisation and the jets emerge diagonally. Since with this combination
the delivery openings 8 preferably all have the same widths or diameters, the same
volume of fluid per unit of time flows from all the delivery openings.
Figure 6 shows a further example of a nozzle arrangement with a storage chamber
6. Here two inserts 3, 3' are present. Insert 3 is, as already described, wedge-
shaped and fitted in the bottom section of the nozzle arrangement. Insert 3' in the
top part of the nozzle arrangement has the same section along its entire length. In
insert 3' there are distribution bore holes 7. These all have the same length.
Accordingly, the wedge-shaped fluid channel is steeper at the end than illustrated
in Figures 2, 3 and 5.
Nevertheless, by taking just one of the two measures described above it may be
possible in a particular application to achieve a sufficiently even flow speed of the
treatment fluid to the delivery openings 8.
Of course, a number of modifications to the embodiments illustrated in the figures
are conceivable, without deviating from the basic ideas of the invention. Thus, for
example, the connecting sleeve 1 could be moved to the middle of tine housing 2 of
the nozzle arrangement, so that the feed of the treatment fluid takes place

centrally. With this variant the throughput section of the fluid channel 5 inside the
housing 2 from the central connecting sleeve 1 to both ends of the housing 2, i.e.
bilaterally, would decrease and the thickness of the insert 3, correspondingly from
the central connecting sleeve 1 to the two ends would increase in width, so that the
length of the distribution openings 7 in the insert 3 also increases bilaterally.
Furthermore, in the embodiments illustrated the continuously reducing throughput
section of the fluid channel 5 is achieved solely through the increasing width of the
insert 3. It is, of course, also conceivable for several side faces of the fluid channel
5 to be increasingly broadened in the longitudinal direction of the housing 2. On top
of this it may be possible to dispense with the storage chamber 6 for further
pressure distribution.
In order to improve the evenness of the flow speed the slotted delivery openings 8
may also have a different width, whereby the width, in particular in the longitudinal
direction of the housing 2, can decrease from the inlet sleeve 1. This generally
leads to differing volume flows that may cause varying results on the treatment
product.
Notwithstanding the embodiments illustrated the distribution openings 7 may also
be designed with differing diameters, whereby in order to create a continuously
increasing flow resistance in particular a continuous reduction in the diameter of
the distribution openings 7 is conceivable, since towards the end of the nozzle
arrangement the overall pressure is at its highest.
On the side of the distribution openings 7 bordering the fluid channel 5 the former
can be provided with countersinkings 9 with a larger diameter (see Figure 3). In
order to create a continuously increasing flow resistance in the longitudinal
direction of the housing 2 these countersinkings can have a different depth, in

particular a depth that continuously increases in the longitudinal direction of the
housing 2.
It may also be possible to dispense with the stiffener 4 illustrated in the drawing. It
is also conceivable that the insert 3 and the housing 2 are built as a single piece.
Finally, it should be mentioned that with the embodiment illustrated a number of
delivery openings 8 are in fact provided at intervals in the longitudinal direction of
the housing 2, which are in particular evenly spaced and arranged in two rows of
slots that are arranged with an offset to one another, whereby in principle,
however, a proper and satisfactory operability of the nozzle arrangement is also
guaranteed with simply an, in particular, longitudinal delivery opening 8, for
example with just a slotted delivery opening 8 extending in the longitudinal
direction of the housing 2.
Figures 8-10 illustrate a further nozzle arrangement according to an embodiment of
the present invention, whereby Figure 8 illustrates a side view of the nozzle
arrangement on the partial section, Figure 9 a top view of the nozzle arrangement
in the partial section and Figure 10 a sectional view of the nozzle arrangement
along a line of intersection C-C shown in Figure 8.
The nozzle arrangement shown in Figures 8-10 concerns an embodiment which is
particularly well-suited to the even flooding of treatment baths with a treatment
fluid. In certain processes where there is a danger of substances being absorbed
from the environment, such as oxygen from the air, the flooding must be carried
out as far as possible without the formation of jets or vortexes that could increase
the surface area of the treatment fluid. The nozzle arrangement illustrated in
Figures 8-10 achieves this by an even, slow flow speed over the entire effective
length of the nozzle arrangement.

The nozzle arrangement illustrated in Figures 8-10 comprises, like the
embodiments described previously, a connecting sleeve 1 and a longitudinal,
essentially parallelepiped housing 2, in which an insert 3 is fitted, which defines a
fluid channel 5 with a section that reduces continuously in the longitudinal direction
of the nozzle arrangement or the housing 2. In this connection, it can be seen in
particular from Figure 9 that the insert 3 bilaterally reduces the section of the fluid
channel 5, whereby the section of the fluid channel 5 is continuously and evenly
reduced from the connecting sleeve 1 to the end of the nozzle arrangement, so
that in the fluid channel 5 itself approximately the same flow speed of the treatment
fluid always exists.
On one side of the housing 2 a fluid-tight lid or covering 11 is arranged on the
housing by means of a suitable jointing method such as welding or gluing. As can
be seen from Figure 8 and Figure 9, on its underside the covering 11 has a number
of slots or connecting channels running diagonally to the longitudinal direction of
the nozzle arrangement, which in particular are spaced evenly along the entire
effective length of the nozzle arrangement. These slots in the lid 11, together with
the housing 2, from fluid delivery openings 8 for the treatment fluid.
As can be seen from Figure 10, with this embodiment the treatment fluid fed via the
connecting sleeve 1 of the nozzle arrangement, from the fluid channel 5 via the
slots formed in the lid 11 can be delivered at the fluid delivery openings 8 provided
bilaterally on the nozzle arrangement or the housing 2.
Of course, the nozzle arrangement illustrated in Figures 8-10 can also be
combined with the features of the nozzle arrangement described previously using
Figures 1-7.
The description of the nozzle arrangement according to the invention involves, in
all the embodiments, the transport of the treatment fluid from the nozzle

arrangement to the treatment product. The nozzle arrangement functions in the
same way as well for the sucking of the treatment fluid from the treatment product
into the nozzle arrangement. If during the treatment decomposition products result
or solid matter is applied, this form of electrolyte transport is particularly
advantageous. By sucking the treatment liquid into the nozzle arrangement the
decomposition products or solid matter are entrained and thus reach a
regeneration unit or a filter that removes the solid matter, as quickly as possible.
Interference with the treatment results by this matter is thus virtually excluded.

Reference list
1. Connecting sleeve
2. Housing
3. Insert
4. Stiffener
5. Fluid channel
6. Storage chamber
7. Distribution openings (distribution bore holes)
8. Fluid delivery openings
9. Countersinkings
10. Treatment product
11. Lid

WE CLAIM :
1. Nozzle arrangement for releasing a treatment fluid,
with a longitudinal housing (2) with at least one fluid feed opening for feeding the
treatment fluid and at least one fluid delivery opening (8) formed in the housing (2) for
releasing the treatment fluid,
whereby in the housing (2) a fluid channel (5) is formed for feeding the treatment fluid
from the fluid feed opening to the at least one fluid delivery opening (8), and
whereby the section of the fluid channel (5) reduces from the fluid feed opening in the
longitudinal direction of the housing (2),
characterized in that
the housing (2) is made from plastic, and at or in the nozzle arrangement at least one
stiffening member (4) made from metal and extending in the longitudinal direction of
the nozzle arrangement is provided, and
in the nozzle arrangement a longitudinal insert (3, 3'), in which a plurality of
distribution openings (7) spaced from one another in the longitudinal direction is
formed, is arranged so that the fluid channel (5) defined by the insert (3, 3') is in
communication with the at least one fluid delivery opening (8) via the distribution
openings (7), in order to feed the treatment fluid from the fluid channel (5) via the
distribution openings (7) to the at least one fluid delivery opening (8).
2. Nozzle arrangement as claimed in claim 1,
wherein
the section of the fluid channel (5) reduces continuously from the fluid feed opening in
the longitudinal direction of the housing (2).
3. Nozzle arrangement as claimed in claim 1 or 2,
wherein
the distribution openings (7) of the insert (3, 3') are positioned congruent to the fluid
delivery openings (8) in the housing (2).

4. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
the section of the fluid channel (5) reduces from the fluid feed opening in the
longitudinal direction of the housing (2) from a number of sides.
5. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
all the distribution openings (7) have the same diameter
6. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
the length of the distribution openings (7) increases from the fluid feed opening in the
longitudinal direction of the housing (2).
7. Nozzle arrangement as claimed in any one of claims 1-5,
wherein
the length of the distribution openings (7) of the fluid feed opening in the longitudinal
direction of the housing (2) is the same.
8. Nozzle arrangement as claimed in any one of claims 1-4,
wherein
the distribution openings (7) have a differing diameter.
9. Nozzle arrangement as claimed in claim 8,
wherein
the diameter of the distribution openings (7) reduces from the fluid feed opening in
the longitudinal direction of the housing (2).
10. Nozzle arrangement as claimed in any one of the preceding claims,
wherein

the distribution openings (7) are provided with countersinkings (9) on their side turned
towards the fluid channel (5).
11. Nozzle arrangement as claimed in claim 10,
wherein
the countersinkings (9) of the distribution openings (7) have a different depth.
12. Nozzle arrangement as claimed in claim 11,
wherein
the depth of the countersinkings (9) of the distribution openings (7) increases from the
fluid feed opening in the longitudinal direction of the housing (2).
13. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
the housing (2) is essentially parallelepiped in shape and the stiffening member (4) is
essentially U-shaped.
14. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
between the at least one fluid delivery opening (8) and the fluid channel (5) and
immediately before the at least one fluid delivery opening (8) a storage chamber (6) is
formed for pressure distribution.
15. Nozzle arrangement as claimed in claim 14,
wherein
the storage chamber (6) is in the form of a recess provided in the longitudinal insert
(3, 3') on the side of the distribution openings (7) turned towards the at least one fluid
delivery opening (8).
16. Nozzle arrangement as claimed in claim 15,
wherein

all distribution openings (7) are arranged spatially at an offset to the at least one fluid
delivery opening (8) in such a way that the treatment fluid flows out of the fluid
delivery openings (8) via the storage chamber only after at least two changes in
direction.
17. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
the at least one fluid feed opening is provided at a longitudinal end of the housing (2).
18. Nozzle arrangement as claimed in any one of claims 1-16,
wherein
the at least one fluid feed opening is provided at a middle section of the housing (2).
19. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
the housing (2) has a plurality of fluid delivery openings (8) spaced from one another
in the longitudinal direction of the housing (2).
20. Nozzle arrangement as claimed in claim 19,
wherein
the fluid delivery openings (8) are slotted or round.
21. Nozzle arrangement as claimed in claim 19 or 20,
wherein
the fluid delivery openings (8) have the same dimensions.
22. Nozzle arrangement as claimed in claim 19 or 20,
wherein
the fluid delivery openings (8) have a reducing width from the fluid feed opening over
the length of the housing (2) or a reducing diameter over the length of the housing (2).

23. Nozzle arrangement as claimed in any one of claims 19-22,
wherein
the slotted fluid delivery openings (8) are formed in a plurality of rows offset from one
another in the housing (2).
24. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
in the housing (2) a plurality of connecting channels spaced from one another and
extending widthways in the housing (2) are formed in the longitudinal direction of the
housing (2), which communicate at one end with the fluid channel (5) in the housing
(2) and at the other with the at least one fluid delivery opening (8).
25. Nozzle arrangement as claimed in claim 24,
wherein
the connecting channels are formed in a cover (11) which is positioned on the
housing (2).
26. Nozzle arrangement as claimed in claim 25,
wherein
the cover (11) is positioned with a fluid-tight seal at the housing (2).
27. Nozzle arrangement as claimed in any one of claims 24-26,
wherein
the connecting channels are arranged evenly spaced in the longitudinal direction of
the housing (2).
28. Nozzle arrangement as claimed in any one of claims 24-27,
wherein
the connecting channels are distributed essentially over the entire length of the
housing (2).

29. Nozzle arrangement as claimed in any one of claims 24-28,
wherein
each connecting channel extends essentially in a straight line transversely to the
longitudinal direction of the housing (2).
30. Nozzle arrangement as claimed in any one of claims 24-29,
wherein
each connecting channel opens out into one of the fluid delivery openings (8) at either
side of the housing (2).
31. Nozzle arrangement as claimed in any one of the preceding claims,
wherein
a further longitudinal insert (3), which is conical in its longitudinal direction, is
arranged in the housing (2) and defines together with the longitudinal insert (3')
having the distribution openings (7) the fluid channel (5).

A nozzle arrangement is described which may in particular be used as a flow
nozzle in galvanization systems with horizontal throughput of printed-circuit boards.
The nozzle arrangement comprises a longitudinal housing (2) with at least one fluid
feed opening to feed a treatment fluid for treating a work piece, for example a printed-
circuit board, and preferably a plurality of slotted fluid delivery openings (8) for
releasing the treatment fluid. In the housing (2) a fluid channel (5) is formed for
feeding the treatment fluid from the fluid feed opening to the fluid delivery openings
(8). In order to achieve the most even possible flow speed of the treatment fluid at the
fluid delivery openings (8), (a) the throughput of the fluid channel (5) for the treatment
fluid reduces continuously from the fluid feed opening in the longitudinal direction of
the housing (2) and/or (b) before the delivery of the fluid from the fluid delivery
openings (8) a storage chamber is provided.

Documents:

690-KOLNP-2005-CORRESPONDENCE.pdf

690-KOLNP-2005-FORM 27.pdf

690-kolnp-2005-granted-abstract.pdf

690-kolnp-2005-granted-assignment.pdf

690-kolnp-2005-granted-claims.pdf

690-kolnp-2005-granted-correspondence.pdf

690-kolnp-2005-granted-description (complete).pdf

690-kolnp-2005-granted-drawings.pdf

690-kolnp-2005-granted-examination report.pdf

690-kolnp-2005-granted-form 1.pdf

690-kolnp-2005-granted-form 18.pdf

690-kolnp-2005-granted-form 3.pdf

690-kolnp-2005-granted-form 5.pdf

690-kolnp-2005-granted-gpa.pdf

690-kolnp-2005-granted-reply to examination report.pdf

690-kolnp-2005-granted-specification.pdf


Patent Number 226179
Indian Patent Application Number 690/KOLNP/2005
PG Journal Number 50/2008
Publication Date 12-Dec-2008
Grant Date 08-Dec-2008
Date of Filing 20-Apr-2005
Name of Patentee ATOTECH DEUTSCHLAND GMBH.
Applicant Address ERASMUSSTRASSE 20, 10553 BERLIN
Inventors:
# Inventor's Name Inventor's Address
1 KUNZEE HENRY FARNSTRASSE 17, 90530, WENDELSTEIN
2 WIENER FERDINAND HOLSTEINER STRASSE 6A, 90559, BURGTHANN
3 KOPP LORENZ ZUR STEINSCHNEIDERIN 2, 90518, ALTDORF
PCT International Classification Number B05B 1/20
PCT International Application Number PCT/EP2003/013421
PCT International Filing date 2003-11-28
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 102 55 884.1 2002-11-29 Germany