Title of Invention

"PHARMACEUTICAL COMPOSITION FOR THE ORAL ADMINISTRATION OF AN N-PIPERIDINOPYRAZOLE-3-CARBOXAMIDE DERIVATIVES, ITS SALTS AND THEIR SOLVATES"

Abstract The pharmaceutical compositions for oral administration according to the invention contain 0.5% to 20% of N-piperidino-5-(4-chlorophenyl)-l-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide in microcrystalline form, and pharmaceutical excipients; they are formulated by wet granulation.
Full Text The present invention relates to a pharmaceutical composition for the oral administration of an N-piperidinopyrazole-3-carboxamide derivatives, its salts and their solvates.
The present invention relates to a pharmaceutical composition or the oral administration of N-piperidino-5-(4-chlorophenyl)_l-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide of the formula
(Formula Removed)
its pharmaceutically acceptable salts and their solvates, which are hereafter referred to as compounds of formula (I).
The compound of formula (I) and their method of preparation are described in European Patent application EP 656 354.
N-Piperidino-5-(4-chlorophenyl)-l-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide, which is also known by the code name SR 141716 and is called compound A in the following description, is very particularly preferred for the pharmaceutical composition according to the present invention.
The pharmacological properties of the compounds of formula (I), which are selective antagonists of the CBI central cannabinoid receptors, have been recorded, especially in the publication by M. Rinaldi-Carmona et al., FEBS Letters, 1994, 240-244.
The oral administration of such compounds requires them to have a good absorption, which entails both a good solubility in aqueous media and a good ability to pass through the intestinal membrane (M. Rowland, and T.N. Tozer in Clinical Pharmacokinetics, concepts and applications, published by Lea and Fehiger, 1989, 2nd edition, pp. 113-130).
The permeability of the epithelium to the compounds is evaluated using the Caco-2 cell line, which has the characteristics of undergoing differentiation in vityro to form an epithelial monolayer (Crit. Rev. Ther. Drug Carrier System, 1991, 8 (4), 105-330). In this model the permeability to compound A dissolved in dimethyl sulfoxide (DMSO) is high, showing that it has a good ability to be absorbed by the intestine when it is in solution.
Furthermore, the hydrophobic character of the compounds of formula (I) is very strongly pronounced. Thus it has been observed that compound A is not wettable in water and that this compound and its salts are practically insoluble in water, irrespective of the pH. These compounds are soluble in alcohols and glycols and more particularly in polyethylene glycols (PEG).
However, when the solutions obtained with an alcohol or a glycon are diluted in an aqueous medium, the compound of formula (I) precipitates because of its strongly hydrophobic character.
The compound of formula (I), and particularly compound A, are not very electrostatic,. Micronization can be carried out with a good yield (about 85%) and affords particles of about 1 micron. Analytical controls performed after micronization show that there is no modification of the crystalline form.
On studying the wettability, it was found that the rate of penetration of water into a bed of powder formulated by wet granulation is much higher than that measured in a bed of powder obtained by dry mixing. A study of the effects of incorporating wetting agents showed that a low concentration of a sodium alkylsulfate considerably increase the wettability.
It was further found that the presence of a disintegrating agent, such as crosslinked sodium carboxymethyl cellulose, in the formulation makes it possible to improve the kinetics of dissolution.
Surprisingly it was found that by associating a sodium alkylsufate with a disintegrating agent in the same formulation, the formulation dissolves rapidly and completely and with a good reproducibility of the results.
Thus, the present composition is a synergistic mixture having unexpected properties.
Thus, according to one of its aspects, the present invention relates to a pharmaceutical composition for the oral administration of a compound of formula (I), comprising:
-0.5% to 20% by weight of a compound of formula (I) in micronized form,
-0.05% to 0.5% by weight of a sodium alkylsufate,
-2.5% to 10% by weight of disintegrating agent,
and pharmaceutical excipients,
said composition being formulated by wet granulation.
Accordingly, there is provided a pharmaceutical composition for the oral administration of an N-piperidinopyrazole-3-carboxamide derivatives, its salts and their solvates. of the formula comprising:
(Formula Removed)

of one of its pharmaceutically acceptable salts or of one of their solvates (active principle hereafter), comprising:
0.5% to 20% by weight of active principle in micronized form; 0.05% to 0.5% by weight of a sodium alkylsulfate, 2.5% to 10% by weight of a disintegrating agent, and pharmaceutical excipients,
said composition being formulated by wet granulation.
Wet granulation is understood as meaning the pharmaceutical operation by which a mixture of powders containing the active principle can be densified with the aid of a granulating liquid, said mixture constituting the internal phase of the_
formulation, the resulting wet mass being dried and then graded before the ingredients constituting the external phase of said formulation are added.
According to the present invention, sodium alkylsulfate is understood as meaning a sodium (C8-C12)alkylsulfate, for example sodium octylsulfate or, preferably, sodium laurylsulfate.
According to the present invention, disintegrating agent is understood as meaning cellulose or a cellulose derivative such as sodium carboxymethyl cellulose or crosslinked sodium carboxymethyl cellulose, crospovidone, pregelatinized starch or sodium carboxymethyl starch, crosslinked sodium carboxymethyl cellulose being a preferred disintegrating agent.
The pharmaceutical compositions according to the present invention can be presented in the form of gelatin capsules, tablets, sachets or powders, preferably in the form of gelatin capsules.
The pharmaceutical excipients which can be used for the pharmaceutical composition according to the present invention include especially a diluent, a binder and a lubricant. A flow promoter, an antiadhesive and, optionally, a color and/or a flavoring can also be added.
The diluent used in the composition of the present invention can be one or more compounds which are capable of densifying the active principle to give the desired mass. The preferred diluents are inorganic phosphates such as calcium phosphates; sugars such as hydrated or anhydrous lactose, or mannitol; and cellulose or cellulose derivatives such as, for example, microcrystalline cellulose, starch, corn starch or pregelatinized starch. Lactose monohydrate, mannitol, microcrystalline cellulose and corn starch, used by themselves or in a mixture, for example a mixture of lactose monohydrate and corn starch, are very particularly preferred.
The binder employed in the composition of the present invention can be one or more compounds which are capable of densifying a compound of formula (I) by converting it to larger and denser particles with better flow properties. The preferred binders are alginic acid or sodium alginate; cellulose and cellulose derivatives such as sodium carboxymethyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose or methyl cellulose; gelatin; acrylic acid polymers; and povidone, for example povidone K 30, which is a very particularly preferred binder. The binder is present in a proportion of 1% to 10% by weight in the pharmaceutical composition according to
the invention.
The lubricant employed in the composition of the present invention can be one or more compounds which are capable of preventing the problems associated with the preparation of dry forms, such as the sticking and/or seizing problems which occur in the machines during compression or filling. The preferred lubricants are fatty acids or fatty acid derivatives such as calcium stearate, glyceryl monostearate, glyceryl palmitostearate, magnesium stearate, sodium laurylsulfate, sodium stearylfumarate, zinc stearate or stearic acid; hydrogenated vegetable oils, for example hydrogenated castor oil; polyalkylene glycols, especially polyethylene glycol; sodium benzoate; or talcum. Magnesium stearate is preferred according to the present invention. The lubricant is present in a proportion of 0.2% to 5% by weight in the pharmaceutical composition according to the invention.
The antiadhesive which may be employed in the composition of the present invention can be one or more compounds which are capable of reducing the sticky character of the formulation, for example of preventing adhesion to metal surfaces. The preferred antiadhesives are compounds containing silicon, for example silica or talcum. The antiadhesive can be present in a proportion of 0 to 5% by weight in the pharmaceutical composition according to the invention.
The flow promoter which may be employed in the composition of the present invention can be one or more compounds which are capable of facilitating the flow of the prepared formulation. The preferred flow promoters are compounds containing silicon, for example anhydrous colloidal silica or precipitated silica. The flow promoter can be present in a proportion of 0 to 15% by weight in the pharmaceutical composition according to the invention.
According to the present invention, the pharmaceutical compositions are prepared by a wet granulation process. Thus, for the internal phase, the active principle, the diluent, the binder, the disintegrating agent, the sodium alkylsulfate and, optionally, the color are mixed at room temperature and then wetted with the granulating liquid. The wet mass obtained is dried and then graded. The ingredient or ingredients of the external phase, namely the lubricant, possibly the antiadhesive, the flow promoter and, if appropriate, the color and/or the flavoring, are then added to the graded dry grains.
Purified water is used as the granulating liquid.
In one preferred embodiment, the sodium alkylsulfate is added to the purified water in order to carry out the wet granulation.
In particular, the present invention relates to a pharmaceutical composition for oral administration which comprises:
- 0.5% to 20% by weight of compound A in micronized form,
- 0.05% to 0.5% by weight of sodium laurylsulfate,
- 2.5% to 10% by weight of crosslinked sodium carboxymethyl cellulose,
and pharmaceutical excipients,
said composition being formulated by wet granulation.
Preferably the present invention relates to a pharmaceutical composition for oral administration which is formulated by wet granulation and which contains:
- 0.5% to 20% by weight of compound A in micronized form,
- 0.1% by weight of sodium laurylsulfate,
- 5% by weight of crosslinked sodium carboxymethyl cellulose,
- 1% to 10% by weight of binder,
- 0.2% to 5% by weight of lubricant,
and a diluent in sufficient amount for 100%.
Very particularly, the present invention relates to pharmaceutical compositions in the form of gelatin capsules which are prepared by wet granulation and which have one of the following formulations, expressed in percentages by weight: i) Internal phase
micronized compound A 0.59%
corn starch 30%
200 mesh lactose monohydrate 60.78%
povidone K 30 2.53%
crosslinked sodium carboxymethyl cellulose 5%
Granulation
sodium laurylsulfate 0.1%
purified water QS
External phase
magnesium stearate 1%
ii) Internal phase
micronized compound A 5.88%
corn starch 30%
200 mesh lactose monohydrate 55.49%
povidone K 30 2.53%
crosslinked sodium carboxymethyl cellulose 5%
Granulation
sodium laurylsulfate 0.1%
purified water QS
External phase
magnesium stearate 1%
iii) Internal phase
micronized compound A 17.64%
corn starch 30%
200 mesh lactose monohydrate 43.73%
povidone K 30 2.53%
crosslinked sodium carboxymethyl cellulose 5%
Granulation
sodium laurylsulfate 0.1%
purified water QS
External phase
magnesium stearate 1%
The characteristics and advantages of the compositions according to the invention will become apparent from the following description based on the compositions given as Examples.
TESTS
1. Study of the solubility of the compounds of formula (I)
The solubilities of the compounds of formula (I) are measured in different aqueous media. The instantaneous solubility is evaluated at room temperature by quantitative analysis. The results, expressed in µg per ml, are collated in Table 1 below:
TABLE 1(Table Removed)
Measurements were also made of the solubility of compound A in different solvents (Table 2) and after dilution in water of the solutions formed (Table 3).
TABLE 2
(Table Removed)
TABLE 3(Table Removed)2. Study of the Wettability
The wettability of compound A was studied in different formulations using
the method of H. Mohamad et al., Labo Pharma. Problemes techniques, 1984, 32
(346), 284 - 289.
2.1. Influence of the granulation process
A formulation obtained by simple mixing (formulation 1) was compared
with a formulation obtained by wet granulation (formulation 2).
Formulation 1
compound A 30 mg
modified com starch 48 mg
extrafme crystals of lactose monohydrate 70.1 mg
anhydrous colloidal silica 0.4 mg
magnesium stearate 1.5 mg
Gelatin capsule 150mg
Formulation 2
compound A 30 mg
modified com starch 51 mg
200 mesh lactose monohydrate 83 mg
povidone K. 30 4.3 mg
magnesium stearate 1.7 mg
Gelatin capsule 170 mg
The wettability measured by H. Mohamad's method is 22 mg2/s for formulation 1 and 110 mg2/s for formulation 2.
Thus the wet granulation process improves the wettability by a factor of 5.
2.2. Influence of the active principle content
For comparison purposes, formulations in which the active principle content was respectively 10 mg (formulation 3) and 1 mg (formulation 4) were prepared by wet granulation.
TABLE 4
(Table Removed)
The wettability is 500 mg"/s for formulation 3.
The wettability is 1000 mg2/s for formulation 4.
Thus the wettability is inversely proportional to the amount of active principle contained in the formulation, illustrating the hydrophobic character of compound A.
2.3. Influence of the excipients
Several formulations were prepared by wet granulation and compared with a reference formulation also obtained by wet granulation.
TABLE 5
(Table Removed)
Only 0.5% sodium laurylsulfate improves the wettability significantly.
The wettability measurements are not suitable for studying the effect of a disintegrating agent like crosslinked sodium carboxymethyl cellulose.
3. Study of the dissolution in a gastric medium
The kinetics of dissolution of different formulations in a gastric medium were studied at 37°C in a phosphate-citrate buffer of pH 3 for 30 minutes.
When 40 mg of compound A are placed in one liter of the dissolution medium with nothing else added, it is observed that no dissolution takes place.
To enable dissolution of the test formulations, 0.2% of sodium laurylsulfate was added to the medium as a surfactant.
TABLE 6
(Table Removed)
TABLE 6 (continuation)
(Table Removed)
6 tests were carried out for each formulation and the amount of compound A dissolved in the medium was measured every 5 minutes.
Table 7 indicates the mean value of the percentage of compound A dissolved and the standard deviation relative to this value for the different formulations described in Table 6.
TABLE 7
(Table Removed)
TABLE 7 (continuation)

(Table Removed)
For formulations C and D, which respectively contain 1% and 5% of polyethylene glycol 6000, it is found that the maximum dissolution is only reached after 30 minutes.
For formulations A and B, which respectively contain 0.1% and 0.5% of sodium laurylsulfate, it is observed that the maximum value is reached after 20 minutes and 30 minutes respectively.
Also, the measured results are scattered for each of formulations A, B, C and D.
The results observed with formulations E, F and G show the value of the presence of crosslinked sodium carboxymethyl cellulose in promoting the dissolution.
For formulations E and G, which respectively contain 5% and 2.5% of crosslinked sodium carboxymethyl cellulose, it is observed that 100% of compound A is dissolved after 20 minutes or 15 minutes respectively, and that the results are relatively scattered in the first 15 minutes.
Formulation F, which contains both 0.1% of sodium laurylsulfate and 5% of crosslinked sodium carboxymethyl cellulose, gives the best results. In fact, compound A is totally dissolved after 15 minutes; furthermore, the deviation between the results of the different tests is very low (deviation of 2.3 to 1.5 between 15 and 30 minutes).
5. Evaluation of the intestinal transepithelial passage of compound A
Caco-2 cells are inoculated onto microporous polycarbonate filters covered with collagen. The cellular monolayer formed on the filter then makes it possible to separate an apical compartment (imitating the intestinal lumen) from a basal
compartment (imitating the blood circulation).
The composition containing the compound to be studied is placed on the apical side and the passage of this compound, dispersed or solubilized in Hank's medium, through this cellular barrier is evaluated by measuring the kinetics of its appearance on the basal side. This aqueous medium, of pH 6.5, has the following composition: NaCl = 8.0 g/1; KC1 = 0.4 g/1; CaCb = 0.19 g/1; MgCl2 = 0.1 g/1; MgSO4 = 0.1 g/1; Na2HPO4 = 0.09 g/1; KH2PO4 = 0.06 g/1; NaHCO3 = 0.35 g/1; glucose = 1 g/1; phenol red = 0.01 g/l.
The coefficient of permeability P, in cm/s, is then determined; this characterizes the rate of passage of the molecule through the membrane, namely:
P = (da/dt).(l/A.Co)
where:
da/dt = variation of the amount of test compound passing through the cellular monolayer as a function of time (mol/s)
A = surface area of the monolayer (cm2)
Co = initial concentration of the test compound (mol/1)
3.1. Coefficient of permeability to compound A, introduced in Hank's
medium, in solution in DMSO
P = 96.10"7cm/s
The permeability to compound A measured in this way in solution (in DMSO) indicates an intrinsic characteristic of this compound. This result indicates the very good ability of compound A to pass through the epithelium when it is in solution.
3.2. Relative rate of intestinal transepithelial passage of compound A
The rate of passage of compound A in formulation X was measured and compared with that of compound A in suspension.
Formulation X
compound A 30 mg
modified com starch 51 mg
200 mesh lactose monohydrate 83 mg
povidone K 30 4.3 mg
sodium laurylsulfate 0.17 mg
crosslinked sodium carboxymethyl cellulose 8.5 mg
magnesium stearate 1.7 mg
Gelatin capsule 178.67 mg

(Table Removed)
EXAMPLE 1: 1 mg gelatin capsule
A gelatin capsule prepared by wet granulation and having the following
composition:
Internal phase
micronized compound A 1 mg
corn starch 51 mg
200 mesh lactose monohydrate 103.33 mg
povidone K 30 4.3 mg
crosslinked sodium carboxymethyl cellulose 8.5 mg
Granulation
sodium laurylsulfate 0.17 mg
purified water QS
External phase
magnesium stearate 1.7 mg
For a finished size 3 white-opaque gelatin capsule of 170 mg
EXAMPLE 2: 10 mg gelatin capsule
A gelatin capsule prepared by wet granulation and having the following
composition:
Internal phase
micronized compound A 10 mg
com starch 51 mg
200 mesh lactose monohydrate 94.33 mg
povidone K 30 4.3 mg
crosslinked sodium carboxymethyl cellulose 8.5 mg
Granulation
sodium laurylsulfate 0.17mg
purified water QS
External phase
magnesium stearate 1.7mg
For a finished size 3 white-opaque gelatin capsule of 170 mg
EXAMPLE 3: 30 mg gelatin capsule
A gelatin capsule prepared by wet granulation and having the following
composition:
Internal phase
micronized compound A 30 mg
com starch 51 mg
200 mesh lactose monohydrate 74.33 mg
povidone K 30 4.3 mg
crosslinked sodium carboxymethyl cellulose 8.5 mg
Granulation
sodium laurylsulfate 0.17 mg
purified water QS
External phase
magnesium stearate 1.7 mg
For a finished size 3 white-opaque gelatin capsule of 170 mg
EXAMPLE 4: 30 mg gelatin capsule
A gelatin capsule prepared by wet granulation and having the following
composition:
Internal phase
micronized compound A 30 mg
corn starch 51 mg
200 mesh lactose monohydrate 73.65 mg
povidone K 30 4.3 mg
crosslinked sodium carboxymethyl cellulose 8.5 mg
Granulation
sodium laurylsulfate 0.85 mg
purified water QS
External phase
magnesium stearate 1.7 mg
For a finished size 3 white-opaque gelatin capsule of 170 mg
EXAMPLE 5: 1 mg tablet
Internal phase
micronized compound A 1 mg
com starch 50 mg
200 mesh lactose monohydrate 130 mg
6 cP hydroxypropyl methyl cellulose 6 mg
crosslinked sodium carboxymethyl cellulose 10 mg
Granulation
sodium laurylsulfate 1 mg
purified water QS
External phase
magnesium stearate 2 mg
For a finished tablet of 200 mg
EXAMPLE 6: l0mg tablet
Internal phase
micronized compound A l0mg
corn starch 50 mg
200 mesh lactose monohydrate 211.5 mg
6 cP hydroxypropyl methyl cellulose 9 mg
sodium carboxymethyl starch 15 mg
sodium laurylsulfate 1.5 mg
Granulation
purified water QS
External phase
magnesium stearate 3 mg
For a finished tablet of 300 mg
EXAMPLE 7: 30 mg tablet
Internal phase
micronized compound A 30 mg
corn starch 80 mg
200 mesh lactose monohydrate 252 mg
povidone K 30 12 mg
crosslinked sodium carboxymethyl cellulose 20 mg
sodium laurylsulfate 2 mg
Granulation
purified water QS
External phase
magnesium stearate 4 mg
For a finished tablet of 400 mg





WE CLAIM:
1. A pharmaceutical composition for the oral administration of N-piperidino-5-(4-chlorophenyl)-l-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide of the formula comprising
(Formula Removed)

of one of its pharmaceutically acceptable salts or of one of their solvates (active principle hereafter), comprising:
0.5% to 20% by weight of active principle in micronized form;
0.05% to 0.5% by weight of a sodium alkylsulfate,
2.5% to 10% by weight of a disintegrating agent, and
pharmaceutical excipients, said composition being formulated by wet granulation.
2. A pharmaceutical composition as claimed in claim 1, wherein it
comprises
0.5% to 20% by weight of N-piperidino-5-(4-chlorophenyl)-l-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide in micronized form, 0.05% to 0.5% by weight of sodium laurylsulfate, and 2.5% to 10% by weight of crosslinked sodium carboxymethyl cellulose.
3. A pharmaceutical composition as claimed in claim 1, wherein it
comprises
0.5% to 20% by weight of N-piperidino-5-(4-chlorophenyl)-l-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide in micronized form, 0.1% by weight of sodium laurylsulfate,
5% by weight of crosslinked sodium carboxymethyl cellulose,
1% to 10% by weight of binder, 0.2% to 5% by weight of lubricant, and a diluent in a sufficient amount for 100%.
4. A pharmaceutical composition as claimed in claim 1 in the form
of gelatin capsules, tablets, sachets or powders.
5. A process for the preparation of a pharmaceutical composition as
claimed in claim 1 wherein:

a) the active principle, the disintegrating agent and the sodium
alkylsulfate are mixed at room temperature with a diluent, a binder and,
optionally, a coloring agent;
b) the mixture is wetted with purified water;
c) the resulting wet mass is dried and graded; and
d) a lubricant and, optionally, an antiadhesive, a flowing agent, a
coloring agent and/or a flavoring agent are added to the resulting graded
dry grains.

6. A process as claimed in claim 5, wherein the sodium alkylsulfate
is optionally incorporated in step b).
7. A pharmaceutical composition substantially as herein described
with reference to the foregoing examples.

Documents:

712-del-1998-abstract.pdf

712-del-1998-claims.pdf

712-del-1998-correspondence-others.pdf

712-del-1998-correspondence-po.pdf

712-del-1998-description (complete).pdf

712-del-1998-form-1.pdf

712-del-1998-form-13.pdf

712-del-1998-form-19.pdf

712-del-1998-form-2.pdf

712-del-1998-form-3.pdf

712-del-1998-form-4.pdf

712-del-1998-form-6.pdf

712-del-1998-gpa.pdf

712-del-1998-petiton-137.pdf

712-del-1998-petiton-138.pdf


Patent Number 222769
Indian Patent Application Number 712/DEL/1998
PG Journal Number 37/2008
Publication Date 12-Sep-2008
Grant Date 22-Aug-2008
Date of Filing 20-Mar-1998
Name of Patentee SANOFI-SYNTHELABO
Applicant Address 174 AVENUE DE FRANCE, F-75013, PARIS, FRANCE.
Inventors:
# Inventor's Name Inventor's Address
1 ABRAMOVICI BERNARD 56 RUE DU LUMINAIRE, 34990 JUVIGNAC, FRANCE.
2 CONDAMINE CHRISTIAN 4 AVENUE DE LA PAIX, 34690 FABREGUES, FRANCE.
3 GROMENIL JEAN-CLADE 6 VOIE ROMAINE, 34560 MONTBAZIN, FRANCE.
PCT International Classification Number A61K 31/33
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 97 03835 1997-03-28 France