Title of Invention

"A DIELECTRIC MEMBER FOR A LIQUID ELECTROLYTE FUEL CELL SYSTEM"

Abstract A dielectric member (4) for electrically insulating a manifold (2) or other component from a liquid electrolyte fuel cell, said dielectric member (4) having: opposing surfaces adapted to face, respectively, the manifold and the fuel cell, opposing sides connecting the opposing surfaces, and a barrier (5) which chemically reacts with the liquid electrolyte to form solid products which are stable in the electrolyte, characterized in that said barrier comprises at least one of a first barrier segment (5A) embedded in one of the opposing sides of said dielectric member (4) and a second barrier segment (5B) embedded in the other of the opposing sides of said dielectric member (4).
Full Text The present invention relates to a dielectric member for a liquid electrolyte fuel cell system.
This invention relates to dielectric members and, in particular, to dielectric members for electrically isolating manifolds and other components, from a liquid electrolyte fuel cell stack.
In a carbonate (liquid electrolyte) fuel cell stack with external manifolds for gas supply and discharge, the manifolds are electrically isolated from the fuel cell stack by a dielectric member in the form of a picture frame. The dielectric frame must be capable of operating at a voltage difference of between 100 and 1000 volts depending on the number of cells in a stack and the electrical configuration of the stacks when arranged in a power plant. A dielectric frame formed of Al2O3 has been found capable of providing electrical isolation to thousands of volts.
However, at the fuel cell operating temperature of 650°C, the liquid electrolyte in the fuel cell stack tends to creep over the surface of the dielectric frame. The frame and the stack are only separated by a thin porous gasket for gas sealing. The porous gasket becomes filled with electrolyte and as the dielectric frame comes in contact with the liquid electrolyte, the frame becomes wetted.
Once this occurs, a thin continuous layer of conductive liquid electrolyte film forms on the surface of the dielectric. Consequently, the electrical isolation provided by the dielectric frame can be compromised and can lead to stack malfunction. As a result, designers of these frames have looked to develop techniques to prevent or reduce the electrolyte creepage. The aim of these designers is to realize a dielectric frame able to provide stable long-term dielectric insulation of the liquid electrolyte fuel cell stack from the metallic manifold.
It is, therefore, an object of the present invention to provide a dielectric member which overcomes the above disadvantages.


It is a further object of the present invention to provide a dielectric member which exhibits increased resistance to dielectric creepage.
Summary of the Invention
In accordance with the principles of the present invention, the above and other objects are realized in a dielectric member for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric member is adapted to include a barrier which chemically reacts with the liquid electrolyte to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage. of electrolyte from reaching the metallic manifolds.
Brief Description of the Drawings
The above and other features and aspects of the present invention will become more apparent upon reading the following detailed description in conjunction with the accompanying drawings, in which:
FIG. 1 shows a fuel cell stack incorporating a dielectric member having a barrier in accordance with the principles of the present invention;
FIG. 2 illustrates schematically one form of the dielectric member of FIG. 1;
FIG. 3 shows a test configuration for testing a dielectric member having a barrier in accordance with the principles of the present invention;
FIG. 4 shows test results for a dielectric member of FIG. 3;
FIGS. 5 and 6 show further configurations for the dielectric member of FIG. 1; and
FIGS. 7 and 8 illustrate application of the invention to a dielectric frame.
Description of the Invention
FIG. 1 shows a fuel cell stack 1 in which a metallic manifold 2 abuts a face 1A of the stack. The manifold 2 can either serve to input gas or to extract gas from the stack 1.

Situated between the stack 1 and the manifold 2 are a gasket 3 and a dielectric member 4. The gasket 3 contacts the face 1A of the stack, while the dielectric member is situated between the gasket 3 and manifold 2. The dielectric member 4, typically, may have the form of a picture frame.
The dielectric member electrically isolates the metallic manifold 2 from the stack 1. As shown in FIG. 2, the dielectric member 4 includes a barrier 5 which is situated in the path of the liquid electrolyte flowing from the stack 1 through the gasket 3. In accordance with the invention, the barrier 5 is adapted to chemically react with the liquid electrolyte (e.g., carbonate electrolyte) of the stack 1 to produce solid products which are stable in the electrolyte. As can be appreciated, the production of these products inhibits flow of the electrolyte along the surface of the dielectric member. As a result, electrolyte creepage is reduced and the insulating characteristics of the dielectric member are preserved.
The material used for the barrier 5 can take on a variety of forms. One material found usable is calcium aluminate cement (Secar, available from LaFarge Corp.) At 650°C, Secar quickly reacts with Li2CO3 to form solid products consisting of LiAlO2, CaO and K2CO3. These products are chemically stable in the liquid electrolyte (molten carbonate) environment. Another material is y-AliOa. Further common materials, such as MgAl2O4 powder and CaA^CU powder, can also be used.
The effectiveness of the above-mentioned materials as barriers depends not only on the chemical nature of the materials, but also on the amount of the material used. As long as there is sufficient reactive material, the electrolyte from the stack 1 will not creep over the entire surface of the dielectric member 4 so as to be able to reach the manifold 2.
Example 1. A dielectric member using a barrier 5 comprised of Secar (mechanical mixtures of A12O3 and CaO) was fabricated. The dielectric member comprised a grooved A12O3 rectangular bar in a dimension of 4" x 1" X 0.625" with Ra 29 surface finishing (Ra: the average deviation of the profile from the mean line, in p,in). The Secar was embedded in grooves on both sides of the bar, as shown in FIG. 3.

The effect of Secar as a reactive barrier was then evaluated in an accelerated electrolyte pool test. In the test, the bottom of the dielectric member was submerged in a liquid electrolyte pool (infinite electrolyte supply), and a piece of gasket, serving as electrolyte absorbent, was laid on the top surface to collect the creeping electrolyte. The results from this test are shown in FIG. 4, and demonstrate that the production of reaction products caused significant delay in electrolyte creepage.
Example 2. A dielectric member 4 as shown in FIG. 3 was formed in this case with the barrier comprised of y-A^Os powder. This member was similarly tested as described in Example 1 and the results are also shown in FIG. 4. These results similarly indicate that the barrier caused significant reduction in electrolyte creepage.
Example 3. In a liquid carbonate fuel cell stack, a dielectric frame as described in the U.S. Patent No. 4,414,294 may be employed. This dielectric frame, as shown in FIGS. 7 and 8, includes straight segments 71 which are connected at joints. The joint area, shown as forming a keyway 72 in FIGS. 7 and 8, has the highest liquid electrolyte creepage due to increased creepage surfaces in the joint and possible capillaries formed between the straight bars and the connecting key 73 inserted in the keyway 72. A barrier 5 made of Secar cement, with a dimension 1.50"x0.625"x0.031", was placed at the top of the joint area on the surface facing the manifold in a 250 kW molten carbonate fuel stack (340) cells. In approximately 12,000 hours of operation, the barrier partially reacted with the liquid electrolyte, and no electrolyte crossed the barrier and reached the manifold. This example confirmed the effectiveness of the use of a dielectric member provided with a chemically reactive barrier in actual fuel cell operation.
FIGS. 5 and 6 illustrate different configurations for the dielectric member 4 and the barrier 5. In the dielectric member 4 of FIG. 5, the barrier 5 comprises barrier inserts 5A and 5B which are embedded in the sides of the dielectric member. In the dielectric member 4 of FIG. 6, the barrier 5 comprises a layer situated on the surface of the member 4 facing the manifold 2.
The barriers 5 of the dielectric member 4 of the invention can be fabricated by various processes. Thus, the barriers 5 can be formed with high temperature

ceramic binders using a painting or a casting process. They can also be formed by the standard tape casting technique. In both dielectric members 5 of FIGS. 5 and 6, the presence of the barrier 5 results in reducing electrolyte flow and, thereby prolonging dielectric life.
In all cases it is understood that the above-described arrangements are merely illustrative of the many possible specific embodiments which represent applications of the present invention. Numerous and varied other arrangements can be readily devised in accordance with the principles of the present invention without departing from the spirit and scope of the invention.



WE CLAIM:
1. A dielectric member (4) for electrically insulating a manifold (2) or other component from a liquid electrolyte fuel cell, said dielectric member (4) having: opposing surfaces adapted to face, respectively, the manifold and the fuel cell, opposing sides connecting the opposing surfaces, and a barrier (5) which chemically reacts with the liquid electrolyte to form solid products which are stable in the electrolyte, characterized in that said barrier comprises at least one of a first barrier segment (5A) embedded in one of the opposing sides of said dielectric member (4) and a second barrier segment (5B) embedded in the other of the opposing sides of said dielectric member (4).
2. A dielectric member (4) as claimed in claim 1, wherein said barrier (5) comprises one of CaAl2O4 powder, MgAl2O3 powder, Al2O3 powder and calcium aluminate cement.
3. A dielectric member (4) as claimed in claim 1, wherein said dielectric member (4) has the shape of a frame.
4. A dielectric member (4) as claimed in claim 3, wherein said frame comprises a plurality of segments (71) joined at a joint and said barrier is situated in the area of said joint.
5. A dielectric member as claimed in claim 4, wherein said joint comprises a keyway area (72) for receiving a key (73) for joining said segments (71).


6. A liquid electrolyte fuel cell system comprising a dielectric
member (4) as claimed in any of the preceding claims.

Documents:

00832-delnp-2003-abstract.pdf

00832-delnp-2003-claims.pdf

00832-delnp-2003-correspondence-others.pdf

00832-delnp-2003-description (complete)-19-08-2008.pdf

00832-delnp-2003-description (complete)-25-06-2008.pdf

00832-delnp-2003-description (complete).pdf

00832-delnp-2003-drawings.pdf

00832-delnp-2003-form-18.pdf

00832-delnp-2003-form-2.pdf

00832-delnp-2003-form-5.pdf

00832-delnp-2003-gpa.pdf

00832-delnp-2003-pct-101.pdf

00832-delnp-2003-pct-210.pdf

00832-delnp-2003-pct-304.pdf

00832-delnp-2003-pct-401.pdf

00832-delnp-2003-pct-402.pdf

00832-delnp-2003-pct-408.pdf

00832-delnp-2003-pct-409.pdf

832-DELNP-2003-Abstract-(19-08-2008).pdf

832-DELNP-2003-Abstract-(25-06-2008).pdf

832-DELNP-2003-Claims-(19-08-2008).pdf

832-DELNP-2003-Claims-(25-06-2008).pdf

832-DELNP-2003-Correspondence-Others-(04-08-2008).pdf

832-DELNP-2003-Correspondence-Others-(19-08-2008).pdf

832-DELNP-2003-Correspondence-Others-(25-06-2008).pdf

832-delnp-2003-correspondence-po.pdf

832-DELNP-2003-Drawings-(25-06-2008).pdf

832-DELNP-2003-Form-1-(19-08-2008).pdf

832-DELNP-2003-Form-1-(25-06-2008).pdf

832-DELNP-2003-Form-1.pdf

832-DELNP-2003-Form-2-(19-08-2008).pdf

832-DELNP-2003-Form-2-(25-06-2008).pdf

832-DELNP-2003-Form-3-(25-06-2008).pdf

832-DELNP-2003-Form-3.pdf

832-DELNP-2003-GPA-(25-06-2008).pdf

832-DELNP-2003-PCT-220.pdf

832-DELNP-2003-PCT-416.pdf

832-DELNP-2003-Petition-137-(25-06-2008).pdf

832-DELNP-2003-Petition-138-(25-06-2008).pdf


Patent Number 222761
Indian Patent Application Number 832/DELNP/2003
PG Journal Number 37/2008
Publication Date 12-Sep-2008
Grant Date 21-Aug-2008
Date of Filing 28-May-2003
Name of Patentee FUELCELL ENERGY, INC.
Applicant Address 3 GREAT PASTURE ROAD, DANBURY, CONNECTICUT 06813-1305, UNITED STATES OF AMERICA.
Inventors:
# Inventor's Name Inventor's Address
1 JIAN LI 34 TOWN FARM ROAD, NEW MILFORD, CT 06776, USA
2 MOHAMMAD FAROOQUE 163 SOUTH STREET, #92N, DANBURY, CT 06810, USA
PCT International Classification Number H01B
PCT International Application Number PCT/US01/47890
PCT International Filing date 2001-12-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/736,558 2000-12-13 U.S.A.