Title of Invention

"A DEVICE FOR MOVING THE SPOOLS AND TUBES OF AUTOMATIC SPOOLERS"

Abstract An improved system for moving the spools and tubes on the trays of automatic spoolers, whereby the spooling units composing the machine are at their outlet connected to a discharge circuit fitted with a switch capable of routing the trays on a return path, or switching them to a "stand-by" circulation on said circuit.
Full Text The present invention relates to a device for moving the spools or tubes
of automatic spoolers;
This invention details with a processing system for the vinding or
spooling of ih-grada yarns.

Spooling is a much more productive operation than spinning,
because the yarn i$_5pop'ed at a much higher linear velocity "than in spinning, so that a limited number of spooling stations is capable of handling the yarn produced in a large number of spinning stations, for
instance in a circuit-type-spinning system producing yarn wound"-0rv a
very large number of $mal! size spools, these 'are then handled in the

spooler whose fyarn is unraveled, freed from its defects an- rewound
on a smaller number of spools of larger size.
The moving in 3 spooler covers not only the full spools-- supplied
by the spinners to the spooler/and the empty tubes returned by the
; spooler to the spinner to form new spools, but also the non-iegligible
number of irregular spoote.
'These irregular spools are generally tubes frorv. which the wound yarn has not been picked up completely and from which the spooling unit is unable to recover further yarn by its own means, for instance ; because it fails to catch the end of skein to resume the unraveling process. The re-use of these irregular spools thus requires them to be recycled to the spools setting-up station to recover their ends of skein ; and set them up for the air unreeling in the spinning process. In order to ! feed-them to the spinning process, the spools must in fact t-e set up
with their ends of skin in .a predetermined position, for instance .
inserted into the tube on which it is wound. The spooling static-n is thus
capable of catching the ends of skein independently, and to launch
their automatic spooling process without the ,aid of operators


In the spooling circuit the spinner requires a considerable circulation of material to be moved and controlled: the empty tubes to be returned to the spinning process to rewind them into spools, the new spools to be set up for feeding to the spooler, and of the unraveled spools to be recirculated. In spoolers of a recent design he overall movement involves thousands of spools per hour.
For this reason the moving and normal handling of the* machines are entrusted as far as possible to automatic devices, and the action of operators is limited to supervising and handling of malfunctions.
A technical solution for moving the spools and tubes enjoying considerable favor, for instance according to the patent FR 1.571.158 or patent US 4.463.909, consists in moving them on trays, which are
generally formed by a disc fitted with a spool or tube holding pin, or a central vertical peg capable of holding them in an upright position resting against a collar of a diameter larger than the tube. In this position the spool is subjected to essentially all the operations designed for the machine.
This setup allows the spools to be transferred and handled while essentially avoiding any undesirable soiling contact with the parts of the machine. The vehicle constituted by the tray also turns out to be most useful for the simultaneous handling of multiple batches of different yarns during the spooling process, because the spools can be differentiated based on their carrying tray and the latter can be addressed to the spooling stations specifically dedicatee to them, according to the batches of yarn being processed.
This invention refers to an improved system for the moving of full and empty spools by said tray-type supports.
-In order ;o better evidence the characteristic's and advantages of this invention, it wW now b© described with reference to a typical -embodiment illustrated in the Figures from 2 to 4 for exemplifying but rot.limiting purpose*,'white Figure 1 represents the spooler's reference
layout, According to the present invention there is provided a device for moving the spools or tubes of automatic spoolers whereby the spools or tubes are caused to circulate on transport trays P, in which the said automatic spoolers are constituted of a spooling section and a setting-up section and the said sections are essentially connected by two paths for the feeding and unloading, respectively, of the trays going to and coming from the spooling machine; wherein the sectiofT '"comprises a multiple number of spooling units lined up along a front and fed by spools ready to be unraveled, by using a feeding circuit; there the setting-up section comprises along its path spool loading units on unloaded trays and spool setting-up units feeding the circuit, and along its path a first selecting station capable of identifying the spools to be recycled and of causing them to be switched to the path toward the setting-up units, a selecting station capable of identifying the tubes soiled by residual yarn and of causing them to be switched toward the cleaning unit of the tubes on path, and a station for unloading the tubes that releases the trays routed to the spooler feeding path, characterised in that the spooling units of the section are at their outlets connected by passages to an unloading circuit comprising in sequence a path extending over the full length of the spooling section, a U-shaped curve, a path in a reverse direction essentially parallel to the path and set at the end of the path, before joining up with path, a U-shaped switch connecting the paths, where said circuit is fitted with a switching device which depending on the commands allows the trays to be moved forward on the path or prevents the trays - along with their spools or tubes - from circulating on said circuit.
Figuri. 1 offers a plan view of a simplified sefcjp of an
i
exemplifying embodiment of the layout of a spooling machine.'
. According to tfie layout of Figure 1, the spob#rjg.roachh9 can be
i .
divided into a section 1 for the spooling and a section 2 for the setting-up of the spools. Between these sections there is a circulation of spool carrying trays P, which may from case to case carry a new upoo! 6f a tube still containing e-significant length of.yarn to be re-us^d, or the tube of a completely unreeted spool, or finally .a soiled tube, containing a negligible residual amount of yarn to be removed. This circulation is assured by transport systems already knoMln'the art. Trwimay for instance consist in conveyor belts, rotating plates or srnali belts supporting" and comrrunicating their motion to the trays, coupled with laterally orienting gu'M^s capable of contacsing the base of the trays,. generally their collars. A different arrangement may be set up by placing th® trays- on smooth planar surfaces, causing them to slide along the same by pushing and orienting organs set up on their side. ' for ^instance according to the European patent EP-A-7219IQ in the name of th« same applicant. Th® embodiment of Figure 1 shows the., systems baaed .oh & conveyor belt or small belt with overlaying
orienting guide*, »vhich »0rvo ao uiqin U at i»pui liny ptsll is 3 «fi lU "4, Tui
the incoming of the spools destined to be spouted and the outgoing of
the totally or partially exhausted spools coming from th The spooling section 1 is constituted by a aeries of spooling units 5 in which the spools move between stand-by, unraveling and unloading positions according to an internal path 6, which connects the spool feeding circuit 7 to the unloading line 4 for the partially or totally exhausted spools. Inside each spooling unit 5 the spools «re moved and precisely positioned by levering systems already known in the art, for instance according to the European patent application EP-A-721909, in the name of the same applicant.
In the embodiment shown in Figure 1, the feeding circuit 7 may for instance be produced with a pair of conveyor belts 8 and 9, as shown by a dotted line in the figure, one running to the left and the other to the right and connected by curved portions of their lateral guides; alternatively, it may be produced by the dragging of resting
surfaces by pushing and guiding means according to the European
patent application] EP-A-721910. Said feeding circuit 7 upholds the circulation of a multiple number of spools, each carried on its spool holding tray and ready to be used In the spooling unit 5. AD soon as one of these units has unloaded a tray P with an exhausted spool on the return path 4, it may pick up from circuit 7 a tray P carrying a new spool held in the spooling unit in a stand-by position, and therefore carried to the unraveling process, by spooling-up the yarn wound on its tube.
The section 2 involving the setting-up of the yam comprises the handling units of the spools and tubes auxiliary to the spooling process.
This section comprises a spool loading unit 11, which receives the unloaded trays F> coming in from their return path and loads them up with new spools. In case several batches of yarn are processed simultaneously, such a loading unit may be composed of several loading stations, each of which releases a spool from its own batch of yarn, while identifying the receiving tray on a case-to-case basis.
In the setting-up section 2 the trays loaded up with the new spools move on to the transport line 3 toward the spool setting-up unit 12. Before being slipped onto the tray to be moved to tho spooling process, the spools are deprived of the so-called sub-spool; in the setting-up station 12 the end of skein of the yarn wound up on the same is caught, picked up, cut to a controlled length and introduced in the upper opening of the tube, from which It will be picked up at the start of its unreeling step on the unit 5. Before releasing the apool from its setting-up station 12, the favorable outcome of its setting-up process is controlled by appropriate sensors. If this control is positivo, the tray of the spool is conveyed along the path 3 toward the circuit 7. If on the other hand the control reveals that the setting-up of the spools failed to have a favorable outcome and to properly insert its end of skein into the tube, its tray is switched over - by a switch not shown in the figure - to the recycling path 13 that takes these trays to the return path 4. Even the setting-up unit 12 may be split up among several oetting-up stations. This splitting may be appropriate and even necessary for various reasons. It is in any case necessary if the number of set-ups per hour exceeds the capacity of a single unit, or the processing simultaneously rnvolvos several yarns, each requiring an appropriate setting-up procedure. The splitting further affords potential some extra
margins which are useful both in the early stages of launching a campaign, as reserve units in the case of problems, and where low or uneven-grade yarns are to be processed.
The return path 4 simultaneously includes trays coming from the spooling section 1 and carrying either incomplete spools A to be recycled, tubes B of exhausted spools, tubes C with residual yarn to be removed, which are correctly termed soiled tubes, and trays coming directly from unit 12 and carrying spools whose setting up ha;i not been successful and which are to be recycled like the spools A.
All these trays moving on the return path 4 are controlled in a selection station 14 which identifies the spools of type A and thus determines the switching on their trays P - using switches of a known type, not shown in this figure for simplicity - to the path 15 lhat leads them to rejoin each other directly on path 3, just upstream of the setting-up unit 12. This identification is generally carried out by sensing, or measuring by optic means, of the diameter of the base of the yarn wound-up on the tube. If this diameter exceeds a predetermined size, the spool is of type A, and the tray of thi 3 spool is moved to be recycled on path 15.
On the other hand, the trays carrying clean or "soiled" tubes due to yarn residues continue moving along their path 4 and meet a further selecting station 16 capable of identifying the tubes C, which are therefore switched again on their trays - using switches of a Known type, not shown in the figure for simplicity - toward a tube cleaning unit 17 placed on the path 18, for instance a cleaning device according to the Italian patent application MI96A001608 In the name of the same applicant
The identification of the soiled tube is generally done by controlling its surface) characteristics by sensing: for examplo, the tube is identified as being "soiled", if it offers a sufficient grasp to a dented sensor,
The trays with cleaned tubes in the unit 17 continue or their path 18 and re-enter the path 4, where they re-join the trays carrying the already cleaned tubes B, because they have been completely exhausted by the spooling in the units 5
The path 4 continues toward the tube unloading unit 19, reached by the trays loaded with the tubes free of spinning residues. In this station the tubes are removed from the peg on the tray, and normally returned to the spinning process. Downstream of the unit 19 the unloaded and available trays P are routed to the spool-feeding path 3 to receive a new winding spool in the loading unit 11.
Each of the spooling and auxiliary operations requires its own processing time, The need for limiting the dead moments requires at any rate a certain stock of "stand-by" trays for every processing stage. It must further be take on into account that a small yet significant part of the spools may require to be set aside for the operators' Intervention purposes.
The required stock of trays for each spooling unit 5 constituting an automatic spooler of a recent design may vary from 4 to 8 trays available on the spooling machine: this means that a few hundred trays are simultaneously available and circulating on the spooler If the spooler is directly connected to the spinning machines to form the so-called spinning and spooling machine, the overall number of trays fitted to the machine rises to even larger numbers.
This considerable number of tubes and spools circulating each on a tray P takes up considerable space, which does not cause difficulties during the spooler's normal operation, but may bt» a source of considerable problems in the initial and final batching stages, especially if several batches are processed simultaneously, as well as when any malfunctions of the units in the setting-up section 2 adjacent to the spooling section 1 occur, at least during the operator;;' time-out for intervention.
At the start of a batch, for example, all the trayu with an exhausted tube of the previous batch must generally be arranged on a return path 4, followed by the removal of the tubes of the previous batch from the tray by using the spools of the new batch, and their setting up and forwarding to the feeding circuit 7. The spooling is preferably started only when the return path 4 is freely available to unload the trays from the spooling units.
The so-called 'batch endings" may be due to both a decision to simply break off the processing of the existing batch to make room for a different batch, an exhaustion of the batch, or a so-called optimized exhaustion, which at the time of exhausting the batch concentrates the residual yarn on completing the maximum possible number of spools, while gradually deactivating the unit a completing a spool, and preferentially feeding the still available spools to the units awaiting completion of their spools. These various "batch endings" are handled in different ways; in any case, their handling requires accumulating the trays on the return path 4 before starting a new batch. The accumulation of trays on "stand-by" duty causes a crowding of the paths, with resulting difficulties and delays In the transitions age. For
example, if a queuo is created on path 4, the same is indifferently constituted by the transport of spools A to be recycled, by soiled tubes C and clean tubes B, and if even a single of the service units specifically dedicated to them is deactivated, all trays must stop. If the queue of the trays stopped on path 4 lengthens to the point of obstructing the outgoing spooling units 5, beginning from those closest to section 2 i.e. those at the extreme right of Figure 1, thesis units will progressively be blocked and become unable to perform their work.
The purpose of this invention is to improve the moving of the trays in the spooling unit 1 to prevent the problems hereto described, and is in its broadest sense defined in claim 1, while its preferential embodiments are defined in the subordinate claims. In order to better evidence the characteristics and advantages of this Invention, the same will now be described with reference to a typical embodiment, as shown for exemplifying and non*limiting purposes in the Figures from 2 to 4.
At the outlet of the paths 6 inside the spooling units 5 of section 1, the direction of the trays is skewed In a sense opposite to the direction of the return path 4, with the outlet passages 21 determined by tray-orienting guides, The passages 21 join each other at a path 22 which extends all the way along the face of the spooling section 1 connecting the passages, and which is in turn formed by some laterally orienting guides. A conveyor belt 23 of appropriate width is arranged under the passages 21 and the path 22, and moves the trays which are unloaded from the spooling units to the left, meaning in a direction opposite to that of the return path 4.
At the end of the spooling units' face, the path 22 is inverted by a U-shaped turn 24, switching It around 180* by its guides and moving

the trays along a path 25, which is in itself determined laterally orienting guides and runs in the same direction as that of the* path 4.
A conveying belt or strap system 26 is arranged under the paths 4 and 25, so as to move the trays resting on the same. The return path is therefore a sequence of the paths 22, 25 and 4. The length of the additional paths 22 and 25 allows accumulating the spooler's entire normal stock of,trays, while at any rate preventing the obstruction of the spooler units' outlets. The operations to start and end the spinning batches are thus facilitated or speeded up. The density of the trays present in the ovor all return path may vary depending on the requirements cind circumstances.
At the end of the path 25, before it joins with the path 4, a switch 30 is applied by a U-shaped inversion of the motion and by using means similar to those of the curve 24, so as to return the trays deviated by the switch 30 bacK to the belt of the path 22 facing the outlets of the spooling stations 5.
A switching organ 29 is positioned ahead of the U-shaped switch 30 and actuated whenever the trays with their spools or tubes must not be allowed to continue toward the path 4, in this case the> trays are caused to circulate on the circuit of the paths constituted by the sections 22-25 joined to each other by the curves 24-30, whi e awaiting to be unblocked toward the path 4 of the setting-up section 2. The circumstances keeping these trays in a circulating motion prevent a permanent clogging even in the presence of a considerable queue of stand-by trays, and keep the outlets of the spooling units free even during the blocked periods of path 4.
A preferred embodiment of the invention ia now described with reference to Figure 3, again for exemplifying and non-limiting purposes, This figure schematically describes the actuating of the transport, on the paths 3 and 4, by using underlying conveyor belts of a conventional type, where the direction of the path is determined by overlaying guides
whnftft Hiftlanr*! from «Af.h nthar i.« littlA mnra than that nf the tray's
collar.
A spool and tray identifying station similar to those on the return path 4 is placed on the path 25 prior to the deviation 30. In particular, the identifying station 31 is preferentially constituted by a tray identifying station 32 designed to recognize its type of spool, essentially used where several batches of yarn are to be processed simultaneously, by a spool-sensing station 33 designed to ic entify the trays carrying the spools A to be recycled to the setting-up station 12 and thus to be returned to the spooling units, and by a sensing station 34 designed to identify the trays carrying the soiled tubes C to be cleaned in the station 17, while distinguishing them from the trays carrying clean tubes meant to be simply removed from their trays in the station 19.
A switching organ 36, entirely similar to the formerly described switch 29, is positioned downstream of the identifying station 31, Based on the identifications made by the station 31 and the commands of the spooler's control unit as symbolically indicated in the figure by the numeral 35, this switch determines the path of every tray P depending on the requirements and the type of spoof or tube it is carrying.
In other words, the identifying station 31 is connected to said control unit, which basied on the identifications performed on a tray-by-
tray basis by this identifying station 31 selectively commands the switch 31 to determine the path of every tray, depending! on the circumstances.
Under fully operating conditions the spooler releases the trays from the spooling units on path 22 to the left up to the U-sHaped turn 24, and these continue moving to the right on the paths 25 and 4, without necessarily being identified in the station 31, nor deviated by the switch 36.
The spooler components according to this invention are caused to act during the machine's transitional operating phases, both at the beginning or at the end of a batch as well as during any malfunction or periods of intervention on parts of the spooler. As an example, if the batch is in its final phases and only a single batch is being processed on the entire spooling machine, the identification of the spools A in the station 33 may be carried out as follows: only the trays carrying the spools A are not stopped and allowed to continue toward the identifying and switching station 14 for the spools A to be recycled to the ir setting-up in station 12, so a; to be subsequently exhausted in their spooling units. On the other hand, the trays carrying clean tubes B or soiled tubes C are switched on the curve 30 so as to circulate on the so-called "stand-by" circuit, meaning a parking circuit for the trays circulating in the sections 22-24-25-30, while awaiting a chance to change the batch, the gradually liberating the machine of the spools being exhausted. The same set-up may be adopted whenever a malfunction or an intervention occurs in the tray unloading station 19.
On the other hand, if several batches are processed simultaneously and one of the batches Is approaching its terminal
phase, this interception and selection is also carried out by activating the batch identifying station 32 and implementing the circulating storage on said circuit only for the clean tubes 8 and soiled tubes C of the batch being exhausted, while on the other hand allowing the trays of the other batch to circulate undisturbed.
Again for exemplifying purposes, if the tray selecting station 14 is not properly operating and thus incapable of correctly identifying and determining the switching of the trays using the spools A and an operation for its adjustment is underway, the station 33 is activated for the purpose of identifying the spools A on the path 25, so as to switch its trays and cause them to circulate in a "stand-by" mode, until station 14 is put back in operation, while on the other hand the trays carrying the tubes B and C are allowed to continue undisturbed.
If any disturbances occur or interventions are underway in the tube cleaning station 17, the tubes of type C, i.e. the soiled tubes can be identified. The station 34 is then activated in order to icentify the tubes C on the path 25, to switch their trays and cause them to circulate in a "stand-by" mode, until the station 17 is taken back into operation, while on the other hand the trays with the cleaned tubes B an the spools A are allowed to continue undisturbed.
According to a further embodiment of this invention shown in a simplified form in Figure 4, the identifying station 31 m kept in continuous operation to identify, all the spools or tubes reaching the path 25, even under full operating conditions in lieu of the stations 14 and 16. In this embodiment, in station 31 each tray P is identified by a recorded code and checked on whether it carries a spool A or a tube B or C - for example based on a handling and coded recording system as
described in the European patent application no. 796.812 in the name of the same applicant. The subsequent switching stations of section 2 are already capable of operating based on this identification. The station 40, taken in of the selecting station 14, limits itself to identifying the passing tray P, and communicating its recorded code to the control unit 35, which based on the information received from station 31, identifies the spools of type A carried, and threw switches them oh their trays P to path 15. A similar communication to I he control unit 35 occurs for the trays P carrying spools on the path 13, on the part of the control unit placed at the outlet of the setting-up unit 12. If the control reveals the presence of an improperly set-up spool, its tray P is identified - this recorded identification is communicated to the control unit 35 - and then switched to the recycling path 13.
Even the station 41, taken in lieu of the selecting station 16, limits itself to identifying the passing tray P and to communicating its recorded code to the control unit 35, which based on the information received from the station 31, identifies the trays P carrying tubes of type C and switches them toward the unit 17 to clean the tubes.




We Claim:
1. A device for moving the spools or tubes of automatic spoolers whereby the spools or tubes are caused to circulate on transport trays P, in which the said automatic spoolers are constituted of a spooling section (1) and a setting-up section (2) and the said sections are essentially connected by two paths (3, 4) for the feeding and unloading, respectively, of the trays (P) going to and coming from the spooling machine; wherein the section (1) comprises a multiple number of spooling units (5) lined up along a front and fed by spools ready to be unraveled, by using a feeding circuit (7); there the setting-up section (2) comprises along its path (3) spool loading units (11) on unloaded trays and spool setting-up units (12) feeding the circuit (7), and along its path (4) a first selecting station (14) capable of identifying the spools to be recycled and of causing them to be switched to the path (15) toward the setting-up units (12), a selecting station (16) capable of identifying the tubes soiled by residual yarn and of causing them to be switched toward the cleaning unit (17) of the tubes on path 18, and a station (19) for unloading the tubes that releases the trays routed to the spooler feeding path (3), characterised in that the spooling units (5) of the section (1) are at their outlets connected by passages (21) to an unloading circuit comprising in sequence a path (22) extending over the full length of the spooling section (1), a U-shaped curve 24, a path (25) in a reverse direction essentially parallel to the path (22) and set at the end of the path (25), before joining up with path (4), a U-shaped switch 30 connecting the paths (22) and (25), where said circuit is fitted with a switching device (29, 36) which depending on the commands allows the trays to be moved forward on the path (4) or prevents the trays - along with their spools or tubes - from circulating on said circuit.

2. A device for moving the spools and tubes of automatic spoolers
as claimed in claim 1, wherein a spool or tube identifying
station (31) is placed on the path of the unloading circuit (25)
and ahead of the switching organ (29, 26) which causes the
forwarding of the trays with their spools and tubes along path
(4) or their return toward the path (22) comprising the switch
(30).
3. A device for moving the spools and tubes of automatic spoolers
as claimed in claim 2, wherein the identifying station (31)
comprises a batch identifying station 32 of the spool carried by
each tray, by identifying the tray (P) itself.
4. A device for moving the spools and tubes of automatic spoolers
as claimed in claim 2, wherein the identifying station (31)
comprises a spool sensing station (33) to identify the trays
carrying any spools to be recycled to the setting-up station (12)
and a spool sensing station (34) to identify the trays carrying
soiled tubes to be cleaned in the unit (17), so as to distinguish
them from the trays carrying cleaned tubes.
5. A device for moving the spools and tubes of automatic spoolers
as claimed in one or more of the claims from 2 to 4, wherein the
identifying station (31) is connected to the spooler control unit
(35), which based on the identifications received tray by tray
from said identifying station, commands a switching organ (36)
to determine the path of every tray depending on the
circumstances.
6. A device for moving the spools and tubes of automatic spoolers
as claimed in claim 5, wherein the selecting station (40) and the
selecting station (41) identify the trays (P) in a coded record and
communicate said identification to the control unit (35),

which based on the information from the station (31), determines by the switches of said stations (40, 41) the switching direction of the trays (P) carrying the spools to be recycled on the path (15) and those carrying the tubes soiled by the residual yarn on the path (18), respectively.
7. A device for moving the spools and tubes of automatic spoolers substantially as herein described with reference to the accompanying drawings.

Documents:

498-del-1999-abstract.pdf

498-del-1999-claims.pdf

498-del-1999-correspondence-others.pdf

498-del-1999-correspondence-po.pdf

498-del-1999-description (complete).pdf

498-del-1999-drawings.pdf

498-del-1999-form-1.pdf

498-del-1999-form-13.pdf

498-del-1999-form-19.pdf

498-del-1999-form-2.pdf

498-del-1999-form-3.pdf

498-del-1999-form-4.pdf

498-del-1999-form-6.pdf

498-del-1999-gpa.pdf

498-del-1999-petition-137.pdf

498-del-1999-petition-138.pdf


Patent Number 221457
Indian Patent Application Number 498/DEL/1999
PG Journal Number 31/2008
Publication Date 01-Aug-2008
Grant Date 23-Jun-2008
Date of Filing 31-Mar-1999
Name of Patentee SAVIO MACCHINE TESSILI S.p.A.
Applicant Address VIA UDINE 105-PORDENONE, ITALY.
Inventors:
# Inventor's Name Inventor's Address
1 GIANNI SANTAROSSA VIA DAMIANO CHIESA 56, PORDENONE, ITALY.
2 LUCIANO BERTOLI VIA PIANDIPAN 24- FIUME VENETO (PORDENONE, ITALY).
3 ROBERTO BADIALI VIA CARDUCCI 1/A -PRODENONE, ITALY.
PCT International Classification Number B65H 67/06
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 MI98A 000684 1998-03-31 Italy