Title of Invention

PROCESS FOR PREPARING CRYSTALLINE CICLESONIDE WITH DEFINED PARTICLE SIZE

Abstract The invention relates to a novel process for preparing crystalline ciclesonide with an advantageous particle size and to the use for producing pharmaceutical preparations, in particular for topical use. The crystalline ciclesonide obtained by the novel process has advantageous aerodynamic properties, and can be further processed to inhalable or nasally administered pharmaceutical preparations without further mechanical micronization.
Full Text FORM 2
THE PATENT ACT 1970 (39 of 1970}
The Patents Rules, 2003 PROVISIONAL / COMPLETE SPECIFICATION (See Section 10, and rule 13)
1. TITLE OF INVENTION
PROCESS FOR PREPARING CRYSTALLINE CICLESONIDE WITH DEFINED PARTICLE SIZE

2.

APPLICANT (S



a) Name
b) Nationality
c) Address

ALTANA PHARMA AG GERMAN Company BYK-GULDEN-STRASSE 2, D-78467 KONSTANZ,
GERMANY



3.

PREAMBLE TO THE DESCRIPTION

The following specification particularly describes the invention and the manner in which it is to be performed : -

>'
«

s&

Process for preparing crystalline ciclesonide with defined particle size
Field of the invention The invention relates to a novel process for preparing crystalline ciclesonide with an advantageous particle size and particle size distribution and to the use for producing pharmaceutical preparations, in particular for topical use. The crystalline ciclesonide obtained by the novel process has advantageous properties, in particular for further processing to inhalable or ; nasally administered pharmaceutical preparations.
Known technical background US 4605517 is related to a method of preparing steroid compounds of controlled particle size comprising dissolving the steroid in an organic solvent, precipitating the steroid by mixing a non-solvent for the steroid with the resulting solution, and controlling the time of mixing and the degree of agitation during mixing.
Sjoestroem et al. [J. Pharm. Sci (1993), 82 (6), 584-9] describe a process for preparing small particles of sparingly water-soluble active compounds by precipitation in oil-in-water emulsions. For this purpose, the steroids cholesteryl acetate and a-sitosterol were dissolved in an organic solvent, and an emulsion was prepared with water in the presence of a surfactant. Evaporation of the organic solvent results in a precipitate of the steroid with particle sizes down to 25 nm.
Hem et al. [J. Pharm. Sci (1967), 56 (2), 229-233] describe the mechanism of crystallization of hydrocortisone on exposure to ultrasound.
EP 142309 A2 describes the preparation of active compounds by dissolving in an organic solvent and mixing with a non-solvent for the active compound. Epostane was for this purpose dissolved in dimethyl- formamide (DMF), and water was added. The precipitate obtained in this way has particle sizes which are within a narrow size range.
Ruch et al. [Journal of Colloid and Interface Science (2000), 229 (1), 207-211] describe the preparation of budesonide particles in the micrometer size range by precipitation in an ultrasonic bath. For this pur- pose, water is added to budesonide solutions exposed to ultrasound until a precipitate is obtained or, in the case where budesonide is dissolved in solvent mixtures, the more volatile solvent is evaporated at room temperature.
WO 90/03782 relates to a process for preparing a finely divided solid by dissolving the solid in a liquid carrier solvent in order to form an injection solution, and adding the injection solution to an antisolvent which is a supercritical fluid, a compressed, liquefied gas or a dense vapour.
WO 92108730 describes a process for crystallizing organic substances, especially steroids. For this purpose, the steroid is dissolved in a ternary mixture of lipophilic solvent, hydrophilic solvent and a surface-active substance, and crystallized. This is said to result in predeterminable and homogeneous particle sizes by non-mechanical means.
WO 00/38811 describes an apparatus for preparing crystalline particles with defined size distribution, in particular particles with a size suitable for inhalation.
Cidesonide is the INN (International Nonproprietary Name) for a compound with the chemical name 16,17- [ yclohexylmethylene) bis (oxy)]-ll-hydroxy-21- (2-methyl-l-oxopropoxy) pregna-1, 4-diene-3, 20- dione [11 ba) a, 16aipha (R) ]. The preparation of ciclesonide and other epimeric pregna-1, 4diene-3, 20- dione 16, 17-acetal 21-esters with anti-inflammatory effect having a butyl, isopropyl, sec-butyl, cyclohex- yl or phenyl radical on the cyclic acetal ring, and whose G21 hydroxyl group is acylated by an acetyl or isobutyryl radical, are disclosed in DE-A 41 29 535.
2

Isolation of the respective R epimer starting from an RIS mixture by preparative high-pressure liquid chromatography (HPLC) is described. The international patent application WO 93/09282 Al describes a process for epimer enrichment of the R epimer of ciclesonide by fractional crystallization. For this purpose, ciclesonide in the form of an R/S mixture is dissolved in a suitable water-miscible organic solvent at the boiling point, water is added, and the mixture is cooled to room temperature. The R epimer-enriched ciclesonide obtained in this way must, however, then be subjected to a mechanical micronization in order to obtain the particle sizes and distributions necessary for inhalable pharmaceutical preparations. It would be desirable during the chemical synthesis of ciclesonide to obtain the active compound as product of the process already in form having particle sizes and distribution suitable immediately for further processing to inhalable preparations. This would make it possible to dispense with the additional mechanical micronization and thus possible disadvantages of a mechanical micronization [e. g. risk of contamination, formation of particles which are too small, increased uptake of water owing to the amorphous structures of the micronized product compared with crystalline structures] could be avoided.
Description of the invention It has now been found, surprisingly, that dissolution of ciclesonide in a
water-miscible solvent and sub- sequent addition of this ciclesonide solution to water results in
crystalline ciclesonide which-in contrast to the ciclesonide obtained by the process described in WO
98/09982 Al-has particle sizes which are suitable for inhalation. It is therefore possible in the
further processing to inhalable pharmaceutical preparations to dispense with mechanical
micronization; -:'-w ■
The invention therefore relates to a process for preparing a compound of the formula I

Formula I in crystalline form, with defined particle size, comprising the steps of a) preparation of a solution of the compound of the formula I in a suitable water-miscible organic solvent; b) adding the solution obtained as in a) to water and isolating the precipitate of the compound of the formula I which is formed.
The compound of the formula I is a compound with the chemical name 16, 17- [ (cyclohoxylmethyl- ene) bis (oxy)]-ll-hydroxy-21- (2-methyl-l-oxopropoxy) pregna-l,4-diene-3, 20-dione [Ilbeta, 16alpha (R, S) ]. The R epimer (based on the absolute configuration at C-22) of this compound has the INN (International Nonproprietary Name) ciclesonide. The term compound of the formula I encompasses according to the invention the pure R epimer, the pure S epimer, and R/S epimer mixtures in any mixing ratio and also pharmaceutical acceptable solvates of the compound of the formula 1.
The procedure for the process of the invention advantageously starts from a compound of the formula I which is mainly in the form of the R epimer (based on the absolute configuration at b22). Mainly in epimerically pure form means in this connection according to the invention that at least
3

90%, preferably at least 95%, in particular at least 97%, particularly preferably at least 99%, of the R epimer is present.
Such compounds of the formula) which are mainly in the form of the R epimer can be obtained for example in analogy to the synthesis process described in WO 02/38584 and subsequent acylation or by preparative HPLC or fractional crystallization of R/S epimer mixtures of the compound of the formula I as described in the international patent application WO 98/09982.
To carry out the process of the invention, the compound of the formula I is dissolved in a suitable water- miscible organic solvent. Suitable water-miscible organic solvents which may be mentioned according to the invention are alcohols such as, for example, methanol, ethanol, N-propanol and isppropanol, acetone, tetrahydrofuran (THF) or dimethylformamide (DMF) and mixtures thereof in any mixing ratio. It is expedient for the solvent to have a temperature during this of from 10'C to the boiling point of the solvent, preferably a temperature of from 15°C to a temperature which is 1ODC beiow the boiling point of the solvent, in particular from 15°C to 35°C, particularly preferably from 20°C to 25°C, and the solvent is very particularly preferably at room temperature (i. e. temperature of the solvent corresponds to the temperature of the room where the process is carried out). The subsequent addition of this solution to water expediently takes place with stirring and while maintaining the temperature of the solvent. The addition particularly preferably takes place by dropwise addition. The temperature of the water is according to the invention preferably from 10°C to "5ucC, preferably 15°C to 40°C, very particularly preferably 20t to 30°C. In a preferred embodiment, the water is at room temperature (i. e. temperature of the water corresponds to the temperature of the room where the process is carried out). The amount of the solvent used to dissolve the compound of the formula I depends on the nature of the solvent and the temperature. It is expedient to use at least sufficient solvent for the compound of the formula I to be completely dissolved, preferably sometvhat more. The amount of mater employed in the process of the invention is expediently to be chosen so that the dissolved compound of the formula) is precipitated in quantitative form after addition to the water.
The precipitate which is formed is isolated according to the invention preferably by removing the pre- cipitate from the solution, in particular by filtering off the precipitate, washing the precipitate with water and subsequently drying.
The process of the invention results in the compound of the formula) with a defined particle size. The defined particle size is according to the invention a particle size and particle distribution suitable for in- halation. A form suitable for inhalation means particle sizes having an aerodynamic diameter between 1 and 10 um, preferably in the range from 1 to 5 jim, particularly preferably 1 to 3 pm. Preparations which are preferred in this connection are those for which the particle size determination shows an [unit: wn] of less than or equal to 10, preferably 7.5, very preferably 3, particularly preferably 2. An Xa in the range from 1.8 to 2.0 is to be particularly emphasized according to the invention. The 40 in the particle size determination means that the particle diameter for 50% of the total volume of all the par- dictes is less than the stated value. Determination of the particle size distribution is possible, for ex- ample, by laser diffraction on the solid substance by known methods. It is preferred according to the invention for the particle size distribution to be determined according to by the dry measurement method like that used for example in the Sympatec HELOS-LASER diffractor or an equivalent instrument (the instrument parameters on the Sympatec HELOS-LASER diffractor can be set as follows, for example: measurement time (5 s), time base (1 000 ms), reference measurement duration (5 s), measurement range/lens (R2 0.25/0. 45.. 87. 5 um), starting condition (0.000 s after starting button), dispersing module (RHODOS + VIBRI), evaluation mode (HRLD), bed height (2 mm), output (50%), dispersing pressure (3.50 bar,
4

permitted variation in the actually measured pressure is 3.30 bar to 3.70 bar and evaluation of the Fraunhofer diffraction diagram).
Preference is given according to the invention to a crystalline inhalable form of the compound of the formula) having a maximum proportion of particles with the particle size in the range from 1. 5 urn to 7.5 Am, preferably 1.75 Am to 6.5 um, particularly preferably 1.85 urn to 5.5 urn, in 'particular 2 Am to 5 um. (This range represents the inhalable fraction which, because of its size, is not deposited directly in the mouth or throat on inhalation or is exhaled again because of its fineness). An exemplary embodi- ment of the invention is a crystalline inhalable form of the compound of the formula I in which a maximum of 55% [vol.] of the particles are smaller than or equal to 1.85 urn, and at least 75% [vol. ] are smaller than or equal to 4.5 urn. The compound preferably is not in micronised form. Micronised form according to the invention means that the compound has been subject to a mschanical micronization step (e. g. mechanical milling).
The compound of the formula I can be prepared in a manner known per se, for example as described in DE-A 41 29 535. Alternatively, the compounds of the formula I can also be prepared starting from the corresponding 21-hydroxy compounds of the formula 11 Formula II

by acylation with a suitable acylating agent. Such 21-hydroxy compounds are described for example in WO 95/24416 and WO 02/38584. The acylation can in this case take place in a manner known to the skilled person, e. g. as described in WO 98/09982.
The invention therefore further also relates to a process for preparing a compound of the formula I Formula I

in crystalline form with defined particle size, comprising the steps of a) preparing a compound of the formula 1 by acylaton of a compound of the formula 11 with a suitable acylating agent; b) crystallizing the compound of the formula I obtained in a) by adding water to a solution of the compound in a suitable water-miscible organic solvent or heating a suspension of the compound of the formula I in a mixture of a suitable water-miscible organic solvent and water, c) removing the resulting R epimer-enriched precipitate of the compound of the formula I from the water/solvent mixture; d) if desired repeating step b); e) preparing a solution of the compound obtained in c) in a
5

suitable water-miscible organic solvent ; adding the solution obtained as in e) to water and g) isolating the precipitate which has been formed of the compound of the formula 1.
To carry out steps a), b) and c) of the process of the invention, the R/S epimer mixture of the formula I is dissolved in a suitable water-miscible organic solvent, expediently at elevated temperature, in particular at the boiling point of the solvent used. The subsequent addition of water to this solution expediently takes place with stirring and while maintaining the elevated temperature, in particular the boiling point, with a cooling, preferably to room temperature, taking place with stirring after the addition of water is complete. Alternatively, the R/S epimer mixture of the formula I can be suspended in a mixture of water and a suitable water-miscible organic solvent and be dissolved by heating, in particular to the boiling point of the solvent mixture. The solution is subsequently cooled while stirring, preferably to room temperature. The cooling advantageously takes place slowly, preferably over a period of from 2 to 10 hours. The subsequent fractional crystallization can advantageously be influenced by adding crystal- lization nuclei (e. g. seed crystals), preferably using seed crystals of the pure R epimer of the formula I in each case. Examples of suitable water-miscible organic solvents which may be mentioned for step b) of the process of the invention are acetone or, in particular, alcohols such as isopropanol, n-propanol, methanol and, preferably, ethanol, and mixtures thereof in any mixing ratio. It is expedient to use for dissolving 0.18 mol of R/S epimer mixture of the formula i 190-700 ml of the suitable water-miscible organic solvent, preferably 300-400 mi. The ratio of the water to the water-miscible organic solvent by volume is preferably in the range between 0.1-1 [v/v], in particular between 0.25-0. 75 [v/v].
The subsequent removal [step c)] of the R epimer-enriched R/S epimer mixture of the formula I from the solution takes place in a manner known to the skilled person, in particular by filtration.
The procedure for the process of the invention advantageously starts from compounds of the formula I in which the R epimer is already enriched, for example the R epimer content is S 75%, in particular 185%.
The acylation in step a) moreover takes place in a manner known to the skilled person, e. g. as described in the examples by acylation with suitable acylating agents such as isobutyric anhydride.
The crystalline compound of the formula I with defined particle size obtained by the process of the invention can then be further processed to pharmaceutical preparations (preferably without further micronization step), where appropriate in combination with further pharmaceutical active compounds.
The compound of the formula I are employed in the pharmaceutical preparations either as such or, preferably, in combination with suitable pharmaceutical excipients, e. g. in the form of tablets, coated tablets, capsules, suppositories, plasters, emulsions, suspensions, gels or solutions, with the active compound content advantageously being between 0.1 and 95%. Pharmaceutical preparations which are preferably mentioned are those for topical administration through the lungs and through mucous membranes, especially the nasal mucosa.
The excipients suitable for the desired pharmaceutical preparation are familiar to the skilled person on the basis of his expert knowledge. Besides solvents, gel formers, ointment bases and other active com- pound carriers, it is possible to use for example antioxidants, dispersants, emulsifiers, preservatives, solubilizers or permeation promoters.
6

•Xtie compound of the formula I obtained by the process of the invention is. administered for the treatment of disorders of the respiratory tract preferably in inhaled form. For this purpose, the compound of the formula) is administered either directly as powder or atomization of solutions or suspensions containing it. The substances are for this purpose preferably administered by inhalation in the form of aerosols, with the aerosol particles of solid, liquid or mixed composition having a diameter of from 0.5 to 10 Im, advantageously from 2 to 6 urn.
The aerosol can be generated for example by pressure-operated nozzle nebulizers or ultrasonic nebu- lizersj but advantageously by propellant gas-operated metered aerosols or propellant gas-free use of micronized active compounds from inhalation capsules.
Depending on the inhaler system used, the pharmaceutical preparations comprise besides the active" compounds also the necessary excipients such as, for example, propellant gases (e. g. HFA 134a or 227), solvents (e. g. ethanol), surface-active substances, emulsifiers, stabilizers, preservatives, aromatizing agents, fillers (e. g. lactose for powder inhalers) or, where appropriate, further active compounds.
Pharmaceutical preparations of ciclesonide suitable for inhalation or for administration to nasal mucosa, and the production, are described for example in US 6120752, US 6264923, W001/028562, WO01/028563 or DE 19541689. The pharmaceutical preparations can be produced by processes known to the skilled person. Normally, the active compounds (i. e. the compound of the formula 1, if desired combined with further active compounds) are mixed with a carrier, which consists of one or more excipients. In this case, the active compounds are generally finely divided in solid and/or liquid carriers and then further processed to the desired pharmaceutical preparation.
For inhalation purposes there are available a large number of appliances with which aerosots of optimal particle size can be generated and administered using an inhalation technique which is as appropriate as possible for the patient. Besides the use of attachments (spacers, expanders) and pear-shaped containers (e. g. Nebulator, Volumatic@) and automatic delivery actuations (Autohaler@) for metered aerosols, a series of technical solutions are available in particular for ponder inhalers (e. g. Diskhaler@, RotadislcO, Turbohalers or the technologies described in EP 0 505 321, EP 407028, EP 650410, EP 691865, EP 725725, WO 99/21601, US 6120752 or US 6264923), with which optimal administration of active compound can bs achieved.
Concerning the composition and production of pharmaceutical preparations for nasal administration, reference is made for example to WO 01/28562 and WO 01/28563.
The following examples illustrate the invention further without restricting it. RT stands for room temperature, min for minute (s), h for hour (s), m. p. for melting point and abs. for absolute.
Examples 1. Preparation of crystalline 16,17-[(cyclohexylmethylene)bis(oxy)]-ll,-hydroxy-21-(2-methyl- 1-oxopropoxylpregna-l. 4-diene-3. 20-dione [llbeta. 16alpha (R.S)] with defined particle size 16, 17- [ (Cyclohexylmethylene) bis (oxy)]-ll-hydroxy-21- (2-methyi-l-oxopropoxy) pregna-1, 4-diene-3, 20- dione [i i beta, 1 6alpha (R, S) ] is dissolved at the temperature indicated in the table in the appropriate amount of ethanol. The solution is added drop wise, while maintaining the temperature and with vigorous stirring, to the stated amount of water at the stated temperature of the water. The precipitate is filtered off with suction, washed with water and dried.
The) E in the table is determined by laser diffraction by the dry measurement method in a Sympatec HELOS-LASER diffraetor or an equivalent instrument [parameters : measurement time (5 s), time base (1 000 ms), reference measurement duration (5 s), measurement range/lens (R2 0. 25/0. 45..
7

87. 5 urn), starting condition (0.000 s after starting button), dispersing module (RHODOS + VTBRI), evaluation mode (HRLD), bed height (2 mm), output dispersing pressure (3. 50 bar, permitted variation of the actually measured pressure is 3.30 bar to 3.70 bar and evaluation of the Fraunhofer •diffraction diagram)].
In contrast to the crystallization process described in WO 98/09982, no epimer enrichment is
observed.

Esampte SteroltB#B> EBClMltempi CC). Wear VKrtSFtenii). PC)
1. 3 RT 25,5 mr w 8.0
2 73 RT 253 RT 95 1.8
3 7.3 mr 12.5 mr 95-88 1.9
1 7,fi RT 7,6 RT sa 2-0
6 73 RT 123 10 94-66 1.6
6 73 RT 123 so 92*5 1.9
7 7 RT 10 nrr 97 13
a 7 RT 12 40 97 13
s S RT • 10 20 SOW 13.
M,;-U':f. *.,>■'■ '■ RT 9 20 97 2.0
11 £2 60 e 20 9849 1-8
12 23 W 10 20 96 23
13 3 40 7 20 98 2.1
14 4 30 8 20 96 1.8
16 4 30 8 30 6847 1.9
16 10 3) 10 SO 97 1.9
2. Epimer enrichment of 16. 17-f (cyclohexylmethylene)bis(oxy)]-ll-hydroxy-21-(2-methyl-l-oxopropoxy)pregna-l,4-diene-3, 20-dione 111 beta. 16alpha (R. S)] by the process described in WO 98/09982 2.1 316 g (584 mmol) of 16, 17- [ (cyclohexylmethylene) bis (oxy)]-ll-hydroxy-21- (2-methyl-1-oxopro- poxy) pregna-1, 4-diene-3, 20-dione [llbeta, 16alpha (R, S)], referred to as A hereinafter, (crude product, oil, RIS epimer ratio about 90/10) are dissolved in 1. 11 of abs. ethanol and, while boiling, 700 ml of water are added. The mixture is allowed to reach RT while stirring vigorously,,and the precipitate is filtered off with suction, washed with 500 ml of abs. ethanol/water : 2/1 and dried in a vacuum oven at 50°C for 5 h.
Ytetd : 237 g (438 mmol, 75%) of A, R/S epimer ratio about 95/5. m. p.: 199-201°C The product is dissolved in 900 ml of abs. ethanol and, while boiling, 650 ml of water are added, and the product is isolated as stated above, yield : 209 g (386.5 mmol, 88%) of A, R/S epimer ratio about 97/3. m. p.: 201-203'C The product is dissolved in 800 ml of abs. ethanol and, while boliling, 450 ml of water are added, and the product is isolated as stated above.
Yield : 178 g (329 mmol, 85%) of A, RIS epimer ratio about 98.5/1. 5. m. p.: 205-206'C The product is dissolved in 600 ml of abs. ethanol and, while boiling, 350 ml of water are added, and the product is isolated as stated above.
[email protected]# 161 g (298 mmol, 90. 5%) of A, R/S epimer ratio > 99.5/0. 5. m. p.: 206. 5-207'C 2.2 1.5 g (2.77 mmol) of A (R/S epimer ratio about 89/11) are dissolved in 3 ml of abs. methanol and, while boiling, 1 ml of water is added. The mixture is allowed to reach RT while stirring, and the precipitate is filtered off with suction, washed with a little methanol/water = 3/1 and dried as above.
8

Yield : 1.21 g (80. 6%) of A, R/S epimer ratio about 93: 7.
2.3 5 g (9.25 mmol) of A (R/S epimer ratio about 91.5/8. 5) are dissolved in 15 ml of boiling
isopropanol, and 10 ml of water are added. The mixture is allowed to reach RT while stirring, and
the precipitate is filtered off with suction, washed with a little isopropanol/water = 2/1 and dried as
above.
Yield : 4 g (80%) of A, R/S epimer ratio about 94/6.
2.4 1.5 g (2.77 mmol) of A (R/S epimer ratio about 89/11) are dissolved in 4 ml of boiling acetone,
and 1 ml of water is added. The mixture is allowed to reach RT while stirring, and the precipitate is
filtered off with suction, washed with a little acetone/water = 2/1 and dried as above.
[email protected]: 1.12 g (75%) of A, R/S epimer ratio about 95/5.






[email protected] valuea for 16.17-[(cycIohexylrnethylene)bis(oxy)]-l l-hydroxy-21-(2-methyl-



l-oxopropoxy)preqna-l,α-diene-3,20-dione [llbeta. 16alpha (B.S)] obtained bv fractional crystallization by the process described in WO 98/09982 The following table contains XO values for 16, 17- [ (cyclohexylmethylene) bis (oxy)]-ll-hydroxy-21-(2- methyl-1-oxopropoxy) pregna-1, 4-diene-3,20-dione [11 beta, 16alpha (R, S) ] obtained by the process described in WO 98/09982 (see Example 2). The is determined by a suitable process. The ethanol/water column relates to the ratio of ethanol to water by volume used for the crystallization.

Sumplt -. EUtanotftntir X* fen)
1 1/fcW S&S7
2 1A£6 »-7»
3 W8 36.25
4 1AW 21.82
6 MM 6742
6 1iftS 20.B3
Result; the 16, 17- [ (cyclohexylmethylene) bis (oxy)]-ll-hydroxy-21-(2-methyl-l-oxopropoxy) pregna-1, 4- diene-3, 20-dione [1 1 beta, 16alpha (R, S) ] obtained by the process described in WO 98/09982 has distinctly higher values. These are not in the range of X60 values of particle sizes suitable for inhalation.
4. Preparation of the starting compounds of the formula I by acylation A: 16. 17-[(Cyclohexylmethylene)bis(oxy)]-11 -hydroxy-21 -(2-methyl-1 -oxopropoxy)[email protected],4-diene- 3. 20siione [llbeta. 16alpha (R.S)] 10 g of 16, 17- [ (cyclohoxylmethylene) bis (oxy)]-ll, 21-dihydroxypregna-1, 4-diene3,20-dione [1 lbeta, 1 6alpha (R, S) ] and 6 g of potassium carbonate are suspended in 50 ml of acetone and, while stirring, 4.4 ml of isobutyric anhydride are added, and the mixture is heated under reflux for 2.5 h. After cooling to RT, 100 ml of water are slowly added to the suspension. The product is filtered off with suction, washed with water and dried. The enrichment of the R epimer takes place as described above.
Yield of crude product: 11.4 g (99.3% of theory) of 16, 17-[(cyclohexylmethylene) bis (oxy)]-ll-hydroxy-21- (2-methyl-1-oxopropoxy) pregna-1, 4-diene-3, 20-dione [llbeta, 16alpha (R, S) ] r S„ I Determination of the epimer ratios for compounds of the formula 1 The epimer ratios are determined by HPLC.
9

HPLC conditions: Column material : Hypersil CI8, 5 um, 125x4. 6 mm Detector wavelength : 242 nm Sample concentration : 0. 5-1. 5 mg/ml Volume loaded : 20, ut Row rate : 1 ml/min Oven temperature 20t: Compound A: eluent water (450/.)/ethanol (55%)
10

We Claims
1. Process for preparing a compound of the formula I Formula)

in crystalline form, with defined particle size, comprising the steps of a) preparation of a solution of the compound of the formula I in a suitable water-miscible organic solvent; b) adding the solution obtained as in a) to water and c) isolating the precipitate of the compound of the formula I which is formed.
2. Process according to Claim 1, characterized in that the suitable water-miscible organic solvent is an alcohol.
3. Process according to Claim 2, characterized in that the alcohol is selected from the group of methanol, ethanol, N-propanol and isopropanol or mixtures in any mixing ratio thereof.
4. Process according to Claim 3, characterized in that ethanol is involved.
5. Process according to Claim 1, characterized in that acetone, tetrahydrofuran or
dimethylformamide is involved.
6. Process according to Claim 1, characterized in that the temperature of the suitable water-miscible organic solvent is in the range from 15'C to 10'C below the boiling point of the solvent.
7. Process according to Claim 6, characterized in that the temperature of the suitable water-miscible organic solvent corresponds to the room temperature at which the process is carried out.
8. Process according to Claim 1, characterized in that the temperature of the water is from 10 to
50°C.
9. Process according to Claim 7, characterized in that the temperature of the water corresponds to
the room temperature at which the process is carried out.
10. Process according to Claim 1, characterized in that the compound of the formula) has the chemical name 16, 17- [ (cyclohexylmethylene) bis (oxy)]-ll-hydroxy-21-(2-methyl-l-oXopro-poxy) pregna-1,4-diene-3,20-dione 111 beta, 1 6alpha (R, S)].
11. Process according to Claim 1, characterized in that the compound of the formula 1 is substantially in the form of the R epimer.
11

12. Process according to Claim 11, characterized in that the proportion of R epimer in the
compound of the formula I is more than 95%.
13. Process according to Claim 11, characterized in that ciclesonide is involved.
14. Process according to Claim 1, characterized in that the precipitate obtained after step c) is subsequently dried.
15. Process for preparing a compound of the formula I according to Claim 1 in crystalline form with defined particle size, comprising the steps of a) preparing a compound of the formula I by acylation of a compound of the formula 11 Formula II


Formula!
* i"
H
with a suitable acylating agent; b) crystallizing the compound of the formula I obtained in a) by adding water to a solution of the compound in a suitable water-miscible organic solvent or heating a suspension of the compound of the formula I in a mixture of a suitable water-miscible organic solvent and water, c) removing the resulting R epimer-enriched precipitate of the compound of the formula I from the water/solvent mixture; d) if desired repeating step b); e) preparing a solution of the compound obtained in c) in a suitable water-miscible organic solvent ; adding the solution obtained as in e) to water and g) isolating the precipitate which has been formed of the compound of the formula 1.
16. Process according to Claim 1, where the particle size is characterized by an Yw of less than or equal to 10.
17. Process according to Claim 16, where the particle size is characterized by an 4 of in the range from 1.8 to 2,0...
18. Process according to Claim 15, where the organic solvents used in steps b) and e) are the same solvents.
19. Compound of the formula I obtainable according to Claim 1 without further micronization step, where the compound is in inhalable form.
20. Compound according to Claim 19, where the particle size of the compound of the formula I has an) E in the range from 1.8 to 2.0.
21. Compound according to Claims 19 or 20, which compound is not in micronized form.
22. Crystalline ciclesonide with a particle size characterized by an w of less than or equal to 10.
12

23. Crystalline ciclesonide with a particle size characterized by an Xw of in the range from 1.8 to 2.0.
24. Crystalline ciclesonide according to Claims 22 or 23, which ciclesonide is not in micronized form.
25. Pharmaceutical composition comprising a compound according to Claims 19 to 24, which compound is present as solid particles together with pharmaceutically acceptable excipients.
26. Pharmaceutical composition according to claim 25, which is an aqueous suspension of the compound.
27. Pharmaceutical composition according to claim 25, which is a dry powder. Dated this ,h day of , 2005
HIRAL OH^NDRAKANT JOSHI lAGENTFOR ALTANA PHARMA AG
13

ABSTRACT
The invention relates to a novel process for preparing crystalline ciclesonide with an advantageous particle size and to the use for producing pharmaceutical preparations, in particular for topical use. The crystalline ciclesonide obtained by the novel process has advantageous aerodynamic properties, and can be further processed to inhalable or nasally administered pharmaceutical preparations without further mechanical micronization.
To
The Controller of Patent
The Patent Office
Mumbai
14


Documents:


Patent Number 220902
Indian Patent Application Number 1158/MUMNP/2005
PG Journal Number 35/2008
Publication Date 29-Aug-2008
Grant Date 10-Jun-2008
Date of Filing 20-Oct-2005
Name of Patentee NYCOMED GMBH
Applicant Address Byk-Gulden-Str. 2, 78467 Konstanz
Inventors:
# Inventor's Name Inventor's Address
1 EISTETTER, KLAUS Saentisblick 7, 78465 Konstanz
2 KAUPP STEFAN Friedrichstr. 4, 78315 Radolfzell (DE).
3 STURM ERNST Bohlstrasse 14, 78465 Konstanz (DE).
4 SCHMIDT BEATE Allensbacher Strasse 5, 78476 Allensbach (DE).
PCT International Classification Number Nil
PCT International Application Number PCT/EP04/050373
PCT International Filing date 2004-03-26
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10314097.2 2003-03-27 EUROPEAN UNION
2 03007007.2 2003-03-27 EUROPEAN UNION