Title of Invention

"TEMPERATURE SENSITIVE SAFETY VALVE ASSEMBLY"

Abstract TITLE: TEMPERATURE SENSITIVE SAFETY VALVE ASSEMBLY. The present invention relates toa temperature-sensitive safety valve assembly; the assembly comprising a first region for a first pressurized fluid,a second region for a second pressurized fluid, a valve between the first and the second regions designed to be actuated by the pressure of a first pressurized fluid in the first region against biasing means to open and outlet, for a first pressurized gas, from the first region, and heat sensitive sealing means ont he second region, being de-sealable at high temperature to depressurize the second region, thereby actuating the valve to close the outlet and sealt he first region.
Full Text The present invention relates to a temperature-sensitive safety valve
assembly.
It is known to provide a temperature-sensitive safety valve assembly,
which, at high temperature, shutoff a gas supply. However, the various
methods employed to sense a high temperature and shut off a safety
valve in a gas supply line have shortcomings.
It is, therefore, an aim of the invention to provide an improved
temperature-sensitive safety valve assembly.
According to a first aspect of the invention there is provided a
temperature-sensitive safety valve assembly comprising a first region for
a first pressurised gas, the region having a first outlet, a second region
for a second pressurised gas/ air, the second region comprising a heat-
sensitive sealing means, a valve between the first and second regions
adapted to be actuated by the pressure of a first pressurised gas/air in
the first region against biasing means to open the outlet, wherein the
heat-sensitive sealing means in the second region fails at high
temperature so as to de-pressurise the second region, thereby actuating
the valve to move under the biasing means to close the first outlet and
seal the first region.
In this way, at a certain high temperature, the valve can simply,
efficiently, cheaply and quickly shutoff a gas supply to, say, a building.
The heat-sensitive sealing means may be an openable and closeable
door, a shape-resuming material which deforms from an open to a
closed position and vice versa or a solid door which melts to open
region. Preferably, the sealing means comprises a fragile part.
The first region and/or second region may be designed to accommodate
a liquid.
Preferably the first region and/or second region is designed to
accommodate a flammable gas. Most preferably the first region is
designed to accommodate a flammable gas such as natural gas and/or
the second region is designed to accommodate air The heat-sensitive
sealing means is preferably located outside the first region.
Most preferably the sealing means is located on an outside surface of the
assembly.
This reduces the time lag between sensing a fire and closing the outlet.
The second region preferably comprises a receptacle (made of non-metal
temperature-sensitive material). The receptacle is preferably (partly or
completely) made of (UPVC) plastics material. Most preferably, the
receptacle comprises a conduit. In one form of the invention, the
conduit is frangeable at high temperature to de-pressurise the second
region. The conduit may be more than one metre long, preferably more
than ten metres long and in some embodiments longer than20 metres.
The conduit may follow a gas supply pipe along part of, and in some
embodiments along the total length of the gas supply pipe. The conduit
may comprise a flexible part, and may take the form of a flexible hose.
The heat-sensitive sealing means preferably comprises a glass bulb. The
heat-sensitive sealing means is designed to shatter (or fail) the
temperature of a fire.
The heat-sensitive sealing means is preferably designed and/or
orientated to fail so that it does not, in error, still seal the receptacle after
failure. For example, in one embodiment of the invention, the heat-
sensitive sealing means is designed to face downwards (so that when the
glass bulb breaks the remaining parts of the glass bulb fall away from the
opening in the receptacle).
A diaphragm is preferably arranged between the first region and the
second region so as to prevent mixing of a first pressurised fluid and
second pressurised fluid.
Preferably, the second region comprises an inlet valve for refilling of
fluid, most preferably one which is dedicated to that sole use. The inlet
valve may be in direct communication with a. housing for the valve, or
remote therefrom.
In one preferred embodiment of the invention, one or more further
temperature-sensitive safety valve assemblies are provided, the or each
further temperature-sensitive safety valve assemblies being similar to the
temperature-sensitive safety valve assembly, wherein at least one of the
or each further temperature-sensitive safety valve assembly is in
communication with the temperature-sensitive safety valve assembly so
that de-sealing of the heat sensitive sealing means on the second region
of the or each further temperature-sensitive safety valve assembly is
communicated to the temperature-sensitive safely valve assembly to shut
the outlet of the temperature-sensitive safely valve assembly.
The or each further temperature-sensitive safety valve assembly are all
preferably in communication with the temperature-sensitive safely valve
assembly.
According to a second aspect of the invention there is provided a
temperature-sensitive safety valve actuator assembly, comprising a
region for a pressurised gas such as air and heat sensitive sealing
means on the region, to close the region, and a valve actuator, the
temperature-sensitive safety valve actuator assembly being designed to
be fitted to a valve assembly for a gas/air supply line, and the heat
sensitive sealing means being de-sealable at high temperature to de-
pressurise the region, to move the valve actuator so as to actuate a valve
assembly and close a region for containing gas/air.
Preferably, the valve actuator is biased by biasing means such as a spring.
Also, preferably mere is a diaphragm in the temperature-sensitive safety
valve actuator assembly which is designed to separate the pressurised
gas/air in the region and another pressurised gas/air within a gas/air
supply pipe line.
According to a third aspect of the invention there is provided a building
having a temperature-sensitive safety valve assembly of temperature-
sensitive safety valve actuator assembly in accordance with, respectively,
the first or second aspect of the invention fitted thereto.
A temperature-sensitive safety valve assembly in accordance with the
invention will now be described, by way of example only, and with
reference to the accompanying drawings in which ;
FIGURE 1 is a simple schematic view, partly in cut-away, of a
temperature-sensitive safety valve assembly in accordance with the
invention,
FIGURE 2 is a simple schematic view of another temperature-sensitive
safety valve assembly fitted in a gas supply line,
FIGURE 3 is a simple schematic view showing a cut-away of a building
and a plurality of temperature-sensitive safety valve assemblies in
accordance with the invention fitted therein,
FIGURE 4 is a simple schematic view of a floor-mounted boiler fitted
with a temperature-sensitive safety valve assembly in accordance with
the invention,
FIGURE 5 is cross-sectional view of a safety valve assembly of a
temperature sensitive safety valve assembly in accordance with another
embodiment of the invention,
FIGURE 6 is a front view of the safety valve assembly of Figure 5,
FIGURE 7 is a plan view of the safety valve assembly of Figure5,
FIGURE 8 is a bottom view of the safety valve assembly of Figure 5,
FIGURE 9 is a bottom view of a support of the safety valve assembly of
Figure 5,
FIGURE 10 is another cross-sectional view of another safety valve
assembly of a temperature sensitive safely valve assembly in accordance
with yet another embodiment of the invention,
FIGURE 11 is a plan view of the assembly of Figure 10,
FIGURE 12 is a side view of the assembly of Figure 10, and
FIGURE 13 is a side view of part of the assembly of Figure 10.
Referring to Figure 1, a temperature-sensitive safety valve assembly 10
comprises a temperature-sensitive safety valve device 12, a regulator 14
and a gas pipe 16.
The temperature safety valve device 12 comprises a housings, inside of
which is a cavity in communication with a conduit 20.
The housing 18 comprises a valve seat 22, which defines an aperture
between the housing 18 and the regulator 14.
A fastener 24 is arranged, at a remote end of the housing 18 for
fastening the housing 18 to the regulator 14.
The housing 18 comprises a valve stem (or spindle) 26, arranged with a
valve head 28 inside the housing above seat22. A second valve head27 is
provided at the other end of the stem 26, A spring 30 is arranged around
the stem26 between the valve head 28 and a wall of the housing 18. The
valve stem 22 has a secondary stem 26a, which extends from valve
head27, in line with valve stem 26. The secondary stem 26a has a head
26b at an end remote from the end of the secondary stem which
extends from the second valve head 27.A diaphragm 32 is arranged
above the valve head 28.
The conduit 20 is made of plastics-The conduit 20 is generally U-shaped.
The conduit 20 has a closure member 34, at one end which takes the
form of a glass bulb 36. The conduit has another closure member 36, at
another end, which takes the form of a chamber having a one-way valve
to allow gas refilling of the conduit 20. A threaded pipe 38 is provided,
in communication with the closure member 36, and directly adjacent
thereto, to allow connection of a gas supply and prompt refilling of the
conduit 20.
The regulator 14, comprises a chamber 40, of dome-like form. The
chamber40 has an inner cavity. The chamber 40 has an aperture defined
by a wall 42. The fastener 24 of the housing is threaded onto the outside
of wall 42. This step is preceded by introducing the valve stem 26 into
the chamber 40. The chamber 40 has an annular recess 44. The recess 44
houses a diaphragm 46, on which the valve head 27 of the valve stem26
acts. An opening 48 in the chamber 40 allows gas to escape from the
chamber to the atmosphere.
The pipe 16 comprises a first pipe part 50 and a second pipe part 52,
which are, respectively; arranged before and after the temperature-
sensitive safety valve device 12.The first part 50 has an outlet defined by
a valve seat 54. The second part52 has an inlet 56. The outlet54 and the
inlet 56 are in communication with the chamber 40 of the regulator 14.
The secondary stem 26a is arranged so that the valve head 26b is
arranged inside the seat 54 of the pipe part 50. Inside the chamber 40, a

spring 58 is arranged between an underside of the diaphragm 46 and the first
pipe part 50.
Suitable K-values for the springs 30 and 28 are utilized.
Other features of the temperature-sensitive valve assembly can be seen from
FIGURE 1.
In use, the first pipe part 50 of the gas pipe 16 is connected to a mains gas
supply. Ordinarily, the closure member 34 (i. e. the bulb 36 in one preferred
embodiment of the invention) is intact. Therefore pressure caused by presence
of a high pressure gas (such as air) in the conduit 20 acts on the diaphragm 32 to
force the valve head 28 and the valve stem 26 down, against the bias of the
spring 30. Consequently, the valve head26b moves away from the seat 54 to
allow gas there through. Gas is then diverted by the diaphragm 46 into the
second pipe part 52 of the pipe 16. In this way, gas is free to move through the
second pipe part 52 of the pipel6 to other parts, for example, to a network of
pipes in a building.
In the case of a high temperature, for example a fire, the
closure member 34 fails. In the embodiment shown, shattered pieces of
the bulb 36 fall downwards so as to not obstruct the conduit
20. The pressure in the conduit 20 falls leading to the valve stem 26 and
the valve secondary stem 26a moving towards the conduit 20 (i. e. upwards in
Figure 1), under the force of the spring 58, until the valve head 26b of
the secondary stem 26a moves into sealing contact with the valve
seat 54 of the first pipe part 50 of the gas pipe 16. In this way, the temperature
sensitive safety valve assembly 10 in accordance with the invention
quickly, efficiently, cheaply and simply shuts off the gas pipel6.
Referring to FIGURE 2, a temperature-sensitive safety valve assembly
100, in accordance with another embodiment of the invention, is fitted
in series with a gas supply line 102 and a gas meter 104, from which a
gas pipe 106 is ducted to, say, part of a building.
The line 102 has a mechanical shut off lever 108 to stop gas entering the
temperature-sensitive safety valve assembly 100 and building. The
temperature-sensitive safety valve assembly 100 has a tube 110 arranged
between a regulator part 112 and a housing parti 14 of the temperature-
sensitive safety valve assembly.
The conduit 116 is, as in the previous embodiment, fitted to the
temperature-sensitive safety valve assembly 100 via a T-piece connector
to the housing part 114. The conduit 116 extends generally horizontally.
At one end of the conduit 116 there is a valve closure member 118. At
the other end of the conduit 116, the conduit extends slightly vertically
downwards and a bulb-type closure member 120 is arranged thereon. It
will be appreciated that the temperature-sensitive safety valve assembly
100 works in a manner similar to the arrangement of FIGURE 1 and as
such a full description of the working can be omitted.
Referring to FIGURE 3, a balding 150 has a plurality of floors Outside
the building 150 a gas mainline 152 communicates with a main

temperature-sensitive safety valve assembly 154. The main temperature safety
valve assembly 154 is in communication with secondary safety valve
assemblies 156, 158, 160, 162, 164 on, say, each floor. Of course, this
distribution of the secondary temperature safety valve assemblies could be
varied depending on requirements. A gas line 166 extends through the floors,
leading to secondary gas lines 168, 170, 172, 174, 176, supplying gas to each
floor. An airline 178 also extends from the main temperature-sensitive safety
valve assembly 154 to the secondary temperature-sensitive safety valve
assemblies 156-164 via, respectively, secondary airlines, 180, 182, 184, 186,
188. In use, failure, and the consequent shut- off, of a secondary temperature-
sensitive safety valve 156-164 depressurises the airline 178 so as to shut-off the
main temperature-sensitive safely valve assembly 154, outside the building.
This is of course advantageous in that a fire inside the building is not fuelled.
Referring to Figure 4, another temperature-sensitive safety valve assembly in
accordance with the invention is shown. A furnace 200 has an on-off gas supply
switch 202. Actuation of the switch 202 opens and closes an inlet (not shown) to
allow gas to communicate via pipe 204 with the burner of the furnace. A burner
region206 is shown. Above this, there is arranged a flue 208. A temperature-
sensitive safety valve assembly 210 is arranged on an inside surface of an
inclined wall of the flue 108. A one-way valve 212 of the safety valve assembly
210 is arranged on a line 214 to a bulb 216 in the flue 208. In the event that the
flue 208 becomes blocked hot gases will return down the flue causing the bulb
to break, which in turn will close off the temperature-sensitive safety valve
assembly 210 by thereby stopping gas flowing through the pipe 204 to the
burner.

Referring to Figures 5 to 9, a safety valve assembly250 in accordance
with the invention comprises a body258 defining a. chamber for air bolts
251, as inflation point 252, a 15 mm outlet253 and a 28 mm outlet 254.
The 15 mm outlet 253 is in communication via. a conduit (not shown)
with a closure member as described with reference to Figure 1. The 28
mm outlet 254 is in communication with a fuel line (not shown).
The assembly 250 has a lower body 255 defining a gasket chamber 257,
which supports a rod262, a rubber washer261, a spring 263, and a rod
holder 270 (optionally of PVC).
Figure 9 shows the spoked, wheel-like, structure of the rod holder 270.
The lower body 255 comprises a28 mm inlet269, which is put in
communication with a fuel line (not shown).
Operation of the assembly 250 follows, in general, the principles of
operation of the assembly 10 described above.
Referring to Figures 10 to 13, another safety valve assembly 280
comprises some similar parts to the safety valve 250 and therefore such
parts will not be described again.
Referring to FigurelO, the total height of the body equals the height A of
the upper body (A=30 mm) and the height B of the lower body (B = 87
mm). The inflating point 282, outlet284, outlet 286, and inlet 288 are,
respectively 1/2" BSP, 1/2" BSP, 1" BSP and 1" BSP.
Referring to Figure 11, the distance C between diametrically opposed
bolts is 58 mm.
Referring to Figure 12, the distance D from the bottom of the body to
the centre of the outlet286 is49. 5 mm. The distance E from the centre
of the outlet 286 to the centre of the outlet 284 is 52. 5 mm. The
distance G from the bottom of the body to the lower
edge of the region about the outlet286 is 27 mm. The distance across the
region about the outlet 286 is 45mm.
Referring to Figure 13, a valve assembly290 comprises a diaphram 292,
spring seats294, a spring296, a centre rod 298, a rubber sea1300 and a
backing washer302.
The valve in accordance with the invention can be made to tolerate
pressures up to6000 PSI.
The conduit can be a flexible hose.

WE CLAIM:
1. A temperature-sensitive safety valve assembly (10) for a gas supply line
comprising a first region (16) for a first pressurised gas/air , the first region
having a first outlet (54), a second region (20) for a second pressurised
gas/air the second region comprising a heat-sensitive sealing means (34), a
valve (26, 26a, 26b, 27, 28) between the first and second regions arranged
to be actuated by the pressure of a second pressurised gas/air in the second
region against biasing means (58) such as a spring to open the first outlet,
wherein the heat-sensitive sealing means in the second region fails at high
temperature so to de-pressurise the second region, thereby actuating the
valve to move under the biasing means to close the first outlet and seal the
first region, characterised in that the heat-sensitive sealing means is
designed to shatter at the temperature of fire.
2. A temperature-sensitive safety valve assembly (10) as claimed in
claim 1 comprising a first region(16) for a first pressurised gas/air the first
region having a first outlet (54), a second region (20) for a second
pressurised gas/air , wherein in that the second region eompriaing a glass
bulb (34, 36), a valve (26, 26a, 26b, 27, 28) between the first and second
regions arranged to be actuated by the pressure of a second pressurised
gas/air in the second region against biasing means (58) such as a spring to
open the first outlet, wherein the glass bulb in the second region fails at high
temperature so to de-pressurise the second region, thereby actuating the
valve to move under the biasing means to close the first outlet and seal the
first region.

3. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 1 or 2, wherein the heat-sensitive sealing means (34, 36) comprises a
fragile part.
4. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein the first region (16) is designed to accommodate a
liquid.
5. A temperature sensitive valve assembly (10) as claimed in any of
claims 1 to 3, wherein the first region (16) is designed to accommodate a
gas.
6. A temperature-sensitive safety valve assembly (10) as claimed in any
of the Claims 1 to 5, wherein the second region (20) is designed to
accommodate a liquid.
7. A temperature-sensitive safety valve assembly (10) as claimed in any
of Claims 1 to 5, wherein the second region (20) is designed to
accommodate a gas.
8. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 5, wherein the gas is a flammable gas.
9. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 7, wherein the gas is air.
l0. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein heat-sensitive sealing means (34) is provided
outside the first region (16).
11. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein the heat-sensitive sealing means (34) is located on
an outside surface of the assembly.
12. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein the second region (20) comprises a receptacle (20)
made of non-metal temperature-sensitive material.
13. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 12, wherein the receptacle (20) is made at least partly of plastics
material.
14. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 12 or 13, wherein the receptacle (20) comprises a conduit (20).
15. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 14, wherein the conduit (20) is frangeable at high temperature to
depressurise the second region.
16. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 14 or 15, wherein the conduit (20) is more than one metre long.
17. A temperature-sensitive safety valve assembly (10) as claimed in
Claim 14, 15 or 16, wherein the conduit (20) follows a gas supply pipe
along at least part of its length.
18. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein the heat-sensitive sealing means is designed to fall
so that it does not still seal the receptacle.
19. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein the heat sensitive sealing means (34) is designed
to face downwards.
20. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein a diaphragm (32) is arranged between the first
region and the second region.
21. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein the second region (20) comprises an inlet valve
(36, 38) for refilling of gas.
22. A temperature-sensitive safety valve assembly (10) as claimed in any
preceding claim, wherein one or more temperature-sensitive safety valve
assemblies are provided and wherein each temperature-sensitive safety
valve assembly is in communication with the temperature-sensitive safety
valve assembly so that failure of the heat sensitive sealing means on the
second region is communicated to the temperature-sensitive safety valve
"assembly to shut down gas/air at the temperature-sensitive safety valve
assembly.
23. A temperature-sensitive valve assembly (10) as claimed in Claim 22,
wherein each further temperature- sensitive safety valve assembly is in
communication with the temperature-sensitive safety valve assembly.
24. A building having a temperature-sensitive safety valve assembly (10)
as claimed in any of Claims 1 to 23.
25. A burner region comprising a flue, wherein a temperature-sensitive
safety valve assembly (10) as claimed in any of claims 1 to 23 is arranged
on an inside surface of an inclined wall of the flue.
26. A temperature-sensitive safety valve actuator assembly (12) for fitting
to a valve assembly of claim 1 for a gas/air supply line (16), and actuating a
valve assembly to close a region for containing gas/air, the
temperature-sensitive safety valve actuator assembly comprising a region
(20) for a pressurized gas/air, and heat sensitive sealing means (34)
arranged on the region for a pressurised gas/air so as to close the region for
a pressurized gas/air, wherein the heat sensitive sealing means is being
designed to shatter at high temperature to de-seal and de-pressurise the
region for a pressurised gas/air, the temperature-sensitive safety valve
actuator assembly also comprising a valve actuator (26), de-pressurisation
of the region for a pressurised gas/air causing movement of the valve
actuator.

27. A temperature-sensitive safety valve actuator assembly (12) as
claimed in claim 26 for fitting to a valve assembly of claim 1 for a gas/air
supply line (16), and actuating a valve assembly to close a region for
containing gas/air, the temperature-sensitive safety valve actuator assembly
comprising a region (20) for a pressurised gas/air, and a glass bulb (34, 36)
arranged on the region for a pressurised gas/air so as to close the region for
a pressurised gas/air, the glass bulb being de-sealable at high temperature to
de-pressurise the region for a pressurized gas/air, the temperature-sensitive
safety valve actuator" assembly also comprising a valve actuator (26),
de-pressurisation of the region for a pressurised gas/air causing movement
of the valve actuator.
28. A temperature-sensitive safety valve actuator assembly (12) as
claimed in Claim 26 or 27, wherein the region (20) for a pressurised gas/air
comprises a conduit, and the conduit has another closure member, in the
form of a chamber (36) having a one-way valve, to allow gas refilling of the
conduit.
29. A temperature-sensitive safety valve actuator assembly (12) as
claimed in Claim 28, wherein the temperature-sensitive safety valve
actuator assembly comprises a threaded pipe (38) in communication with
the closure member to allow connection of a gas supply and prompt refilling
of the conduit.
30. A temperature-sensitive safety valve actuator assembly (12) as
claimed in Claim 28 or 29, wherein the conduit is generally U-shaped.
31. A temperature-sensitive valve assembly (10) substantially as
described herein and with reference to one or more of the accompanying
drawings.
The present invention relates to a temperature-sensitive safety valve
assembly (10); the assembly (10) comprising a first region (16) for a first
pressurized fluid, a second region (20) for a second pressurized fluid, a
valve (26, 28, 27, 26a and 26b) between the first and the second regions (16,
20) designed to be actuated by the pressure of a first pressurized fluid in the
first region against biasing means (58) to open an outlet (54), for a first
pressurized gas, from the first region, and heat sensitive sealing means (34)
on the second region (20), being de-sealable at high temperature to
depressurize the second region, thereby actuating the valve (26, 28, 27, 26a,
26b) to close the outlet and seal the first region (16).

Documents:

818-kolnp-2004-granted-abstract.pdf

818-kolnp-2004-granted-claims.pdf

818-kolnp-2004-granted-correspondence.pdf

818-kolnp-2004-granted-description (complete).pdf

818-kolnp-2004-granted-drawings.pdf

818-kolnp-2004-granted-form 1.pdf

818-kolnp-2004-granted-form 18.pdf

818-kolnp-2004-granted-form 2.pdf

818-kolnp-2004-granted-form 26.pdf

818-kolnp-2004-granted-form 3.pdf

818-kolnp-2004-granted-form 5.pdf

818-kolnp-2004-granted-letter patent.pdf

818-kolnp-2004-granted-reply to examination report.pdf

818-kolnp-2004-granted-specification.pdf

818-kolnp-2004-granted-translated copy of priority document.pdf


Patent Number 218579
Indian Patent Application Number 00818/KOLNP/2004
PG Journal Number 14/2008
Publication Date 04-Apr-2008
Grant Date 02-Apr-2008
Date of Filing 15-Jun-2004
Name of Patentee THE LINDEN SHIELD LIMITED
Applicant Address 1/17, BROMFORD CRESCENT ERDINGTON, BIRMINGHAM B24 9RJ GREAT BRITAIN
Inventors:
# Inventor's Name Inventor's Address
1 LINDEN SEAN 1/17, BROMFORD CRESCENT, ERDINGTON BIRMINGHAM GREAT BRITAIN
PCT International Classification Number D 04 B 15/48
PCT International Application Number PCT/GB02/04981
PCT International Filing date 2002-11-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0127969.4 2001-11-22 U.K.