Title of Invention

"A METHOD OF TREATING WASTEWATER AND GROUND WATER".

Abstract Periphyton filtration is a known method for performing bioremediation of polluted water. The present system (10) improves upon this method by adding a strong oxidizer, such as ozone from an ozone generator (18) to the influent, and in some cases to the effluent to make organically bound nutrients available to a target culture in a periphyton bed (24) or to aquatic plants to reduce the population of undesirable microinvertebrates and to make organically bound nutrients available to the periphyton. A pesticide (P) may be added to control insect populations.
Full Text BACKGROUND OF THE INVENTION
The present invention relates to A METHOD OF TREATING WASTEWATER AND GROUND WATER AND SYSTEM FOR THE SAME and generally to systems and-method for improving water quality, and more particularly; to such systems and methods for bioremediating water with an attached algal colony, and, most particularly, to treating water against undesired toxins, microorganisms, and other water-borne pollutants in concert with an attached algal colony.
Algae comprise a group of plants, existing in approximately 18,000 different species, whose primary nutrients include carbon, nitrogen, and phosphorus, as well as a suite of micronutrients essential to plant growth.
The removal of contaminants from wastewater and ground water has become an important problem in restoring ecological balance to polluted areas.
It is known that some algal species are capable of absorbing heavy metals into their cell walls, thus reducing their toxic effects on the environment. Algae can also take up nutrients and micronutrients that may be present in overabundance, such as phosphorus, potassium, nitrogen, iron, aluminum, and calcium, and can thus be utilized to remediate an ecosystem. Such remediation can occur when water flows over stationary algae, also absorbing carbon dioxide and releasing oxygen in the process as a result of respiration and photosynthesis. Further, the water passing over the PF experiences an increase in pH owing to the removal of carbon The filtration can occur through adsorption, absorption, physical trapping, and other more complex means.
A system used to effect this uptake is known as a periphyton filter, the periphyton comprising a culture of a family of fresh, brackish, and/or salt-water aquatic plants known as attached microalgae. Unlike such organisms as free-floating plankton, benthos or attached algae is stationary community of epiphytes that will grow on a wide variety of surfaces. When

occurring in the path of flowing water, the stationary algae remove nutrients and other compounds from the passing water, while absorbing CO2 and releasing O2 as a result of respiration and photosynthesis. Once a colony is established, roots or holdfasts cover the culture surface. If the plant bodies are harvested, leaving the roots behind, the nutrients and other pollutants contained in the plant bodies are: removed from the water, causing a natural filtration effect.
A further advantage to this technique is that the enriched algae can be harvested and used as fish or animal feed, which serves to return the nutrients to the food chain.
Periphyton filters (PF) have the potential for use in a variety of applications. For example, the turf can be used to replace biological or bacteriological filters in aquaria. As mentioned, natural periphyton can be used to remove nutrients and other contaminants from polluted waters. In addition, by harvesting the algal mass, various processes can be used to produce a biomass energy source such as methane or ethanol, fertilizer, a human or animal food additive or supplement, cosmetics, or Pharmaceuticals.
The high productivity of the algae in a fibrous form has also yielded uses in the paper and paper products industry, as the harvested algae are stronger and easier to process than wood fiber. This capability has resulted in a sustainable method of managing human impact on aquatic ecosystems.
Periphyton filters behave differently in water with varying location, speciation, chemical characteristics, and other parameters. Experience in situ has in some cases resulted in weak or poor productivity owing to low concentrations of available nutrients. It has been shown that if a fraction of the primary nutrients are not available, then the periphyton filters struggle to develop

tie critical mass necessary to invoke a substantial precipitation and physical trapping capability and concurrent filtration characteristics. In particular, the presence of microinvertebrates and tfieir eggs can compromise the success of a periphyton filtration system by consuming desirable periphyton and by eating the root or holdfast of the algal filament.
Toxic cyanobacteria pose a particularly formidable set of filtration challenges in that the toxins are very persistent in the environment and can exist both inside and outside the algal cell, It is known to treat toxin-containing water with ozone because of its strong oxidizing effect when mixed in water; however, the nutrients in ozonated water become available and are reconsumed by the toxic algae.
Studies in algal turf production are known in the art. Algal turf techniques have been disclosed in Adey's U.S. Patent No. 4,333,263, and the present inventor's U.S. Patent Nos. 5,131,820, 5,527,456, 5,573,669, 5,591,341, 5,846,423, and 5,985,147, the disclosures of which are incorporated herein by reference.
Drawbacks of the Prior Art
As stated in the Background Section, one of the problems addressed is the site-dependent problem of poor productivity owing to low concentrations of available nutrients, another problem in the prior art is the presence of microinvertebrates that consume periphyton. A further problem is the presence of toxic cyanobacteria, which are not consumed by periphyton alone
Montagnon et al. (US 5,037,550) is directed to a Biological Contactor for Purifying Water, and teaches the use of ozone for "eliminatfingj viruses" [col. 5, line 61]. Montagnon does not teach the step of "flowing the water over a colony of attached algae to remove-undesired matter" from the water to be treated, or the element of "means for directing the ozone exposed water from the water-exposing means to the algal colony."

Rather, in Montagnon the algae are considered a detriment to the system, as they clog the biological bed. and are used as a monitor for determining when a washing cycle should be initiated. The algae are not taught to provide any cleansing benefit.
Adey (US 5,851,398) teaches the use of attached algal colonies for cleansing water. However, it has been shown that the use of algae alone does not remediate the water from certain nutrients to a desired level. This is believed to be owing to some of the nutrients being tied up within microorganisms.
Therefore, the present invention recites the steps of exposing water to ozone, which is believed to disrupt cell membranes and release the sequestered nutrients, making them available for algal colony uptake. This is believed to represent a significant advance over Adey, one not taught or suggested by either Montagnon or Adey, since neither teaches the combined use of these elements to achieve a desired level of remediation.
A Declaration of Mr. G. Thomas Bland, Jr., President and CEO of the Assignee, is attached, detailing the awarding of a contract from the South Florida Water Management District for the present invention. It is believed that the awarding of this contract is supportive of the novelty and nonobviousness of the present invention over other systems and methods known in
the art.
Biological Material
As stated in the Background section, the biological material used includes a periphyton filter, comprising a culture of a family of fresh, brackish, and/or salt-water aquatic plants known as attached rnicroalgae. Unlike such organisms as free-floating plankton, benthos or attached algae is stationary community of epiphytes that will grow on a wide variety of surfaces.

The microalgae comprise the major groups of benthic algae. Algae comprise a group of plants, existing in approximately 18,000 different species, whose primary nutrients include carbon, nitrogen, and phosphorus, as well as a suite of micronutrients essential to plant growth.
The US patents that have been incorporated by reference into the subject application are: 5,131,820, 5,527,456, 5,573,669, 5,591,341, 5,846,423, and 5,985,147, which detail various inventions utilizing periphyton filtration.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a system and method for pretreating and/or post-treating water in concert with a periphyton filtration bed.
It is another object to provide such a system and method for reducing a population of undesirable microinvertebrates in a periphyton filtration bed.
It is an additional object to provide such a system and method for reducing or eliminating toxins from inflow water as well as a toxicity level of harvested algal mass.
These objects and others are attained with the system and method of the present invention. The system comprises means for adding a strong oxidizer to the influent, and, in some cases, to the effluent. A particular embodiment comprises ozonating the water.
The method of treating water comprises the steps of exposing water desired to be treated to ozone in sufficient quantity to reduce a concentration of undesired microorganisms therein and flowing the water over a colony of attached algae to remove undesired matter therefrom, such as, but not intended to be limited to, nutrients.

The features that characterize the invention, both as to organization and method of operation, together with further objects and advantages thereof, will be better understood from the following description used in conjunction with the accompanying drawing. It is to be expressly understood that the drawing is for the purpose of illustration and description and is not intended as a definition of the limits of the invention. These and other objects attained, and advantages offered, by the present invention will become more fully apparent as the description that now follows is read in conjunction with the accompanying drawing.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
FIG. lisa schematic illustration of a first embodiment of the invention. FIG. 2 is a schematic illustration of a second embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A description of the preferred embodiments of the present invention will now be presented with reference to FIGS. 1 and 2.
It is known to use ozone to treat water because of the properties of the unstable 03 molecule, which is a strong oxidizer. Ozone is typically generated, for example, by ultraviolet radiation or corona discharge. Since ozone is a gas, it must be dissolved or broken into small bubbles to optimize contact with the target microorganisms in the influent and, in some cases, the effluent. An optimal residence time should be achieved in the water to be treated to maximize particle contact. This may be achieved, for example, with a mixing chamber or a mixing pump.

If the location of the periphyton filter is at some distance from the water to be treated, mixing may occur, for example, downstream and generally adjacent a supply pump or pipe entrance, with a single or multiple static mixers agitating the water/ozone combination. The residence time is then equal to the travel time to the periphyton filter, which can be tested for sufficiency of contact time. In addition, further static mixers and ozone injection points may be positioned along the pathway to the periphyton filter to increase effectiveness and efficiency.
In an alternate embodiment a covered pond may be used, such a pond covet-having an ozone destruct port at the highest location to catch ozone prior to escaping into the atmosphere. A subsurface "well-style" tank may be used to increase contact time, such a tank having a high-pressure ozone injection at its bottom for optimal dispersion of ozone into the water column.
The present invention provides the following benefits:
Ozone breaks up planktonic algae, bacteria, and other organically bound particles in lake water, thereby making nutrients available for use and concurrent growth of the periphyton.
After the nutrients are available and removed by the periphyton, the water can be returned to the water body from which it came, or to another water body in a state that will limit the ability of toxic algae to regrow, thereby effecting remediation.
Ozone destroys certain toxic compounds found in cyanobacteria (blue-green algae) recently found to be dangerous to humans and other animals. These toxic compounds, as well as nontoxic compounds, are then available to be taken

up by filamentous algae grown for industrial use, such as in the paper products
industry
Ozone destroys both micro invertebrates and their eggs, which often settle,
hatch, and grow as they consume desirable periphyton, thus reducing the
effectiveness of filtration.
Other devices to be used alone or in conjunction with ozone to enhance performance are plasma sparkers and ultraviolet light treatment systems, such as are known in the art.
Two embodiments of the present invention are illustrated schematically in FIGS. 1 and 2. In the first embodiment (FIG. 1) of the system 10 water is shown being taken in from deep water 11, shallow water 12, or a tributary 13 by way of pipes 14 and pumps 15-17, respectively. An ozone generator 18 provides ozone to an ozone injection apparatus 19 so that the water desired to be treated can be contacted with ozone in chamber 20. Alternately, as mentioned above, a submersible plasma sparker may be used. Ozonated water is carried via transfer piping 21 to a distribution manifold 22, which distributes the water to the inlet end 23 of a periphyton bed 24, which is tilted to permit the water to flow downward to the outlet end 25. The treated water is then collected into a transfer pipe system 26, and is then either returned to a waterway 27 or transferred to a drinking water treatment system 28 of ground water aquifers 29.
In the second embodiment (FIG. 2) of the system 30, inflowing water 31 is pumped into ozone distribution piping 32, into which is also injected ozone from an ozone generator 33. Prior to exposure to ozone, the water may be exposed to at least one of ultraviolet radiation and acoustic energy 43. Following passage through an ozone

injection diffuser 34, the water proceeds via transfer piping 35 into multiple ozone contact chambers 36. Three are shown here, but this is not intended as a limitation When fully ozonated, the water exits via discharge piping 37.
In either of the above-described embodiments, an additional step may be taken of adding a pesticide to the algal colony for controlling insects. The pesticide may be selected, for example, from a group consisting of an insecticide, a pyrethroid, or a natural pyrethrum, although these are not intended as limitations.
In a particular embodiment, the pesticide may comprise bacillus therengensus isralioans (BTI). A further element of either of the systems 10,30, shown in FIG. 1, comprises a BTI culturing system 40, wherein BTI is substantially continuously cultured, or cultured as needed, and a continuous drip of BTI is provided via line 41 leading to drip hose 42 adjacent the inlet 23 of the periphyton bed 24.
As an additional or alternative embodiment, further systems and methods are envisioned for detoxifying one or more elements of the system 10,30. As an example (FIG. 1), the algal colony 24 may be harvested by means known in the art from its base 44, and a pesticide P may be added to the harvested algae to form a mixture 24'. This mixture 24' is exposed to sunlight or other means to provide detoxification and then ground to form a mulch 24". Such a mulch may then be used atop the base 44 to form a subsequent algal colony 24. The pesticide may be selected from a group consisting of natural pyrethrum, natural pepper, garlic, elder, and lemon sage, although these are not intended as limitations..
Further, the algal colony 24 may be harvested by means known in the art. and pesticide P may be added to the base 44 wherein water is not flowing, and allowed to

detoxify the base 44. Following sufficient time for detoxification, an agonist may be added, such as an alkaline solution, to detoxify the pesticide prior to restarting water flow over the algal colony 24. In this case, the pesticide may comprise at least one of a synthetic pyrethroid or a natural pyrethrum.
It may be appreciated by one skilled in the art that additional embodiments may be contemplated, including alternate methods of introducing ozone and the use of alternate oxidizing agents to the treatment water.
In the foregoing description, certain terms have been used for brevity, clarity, and understanding, but no unnecessary limitations are to be implied therefrom beyond the requirements of the prior art, because such words are used for description purposes herein and are intended to be broadly construed. Moreover, the embodiments of the apparatus illustrated and described herein are by way of example, and the scope of the invention is not limited to the exact details of construction.




We claim:
1. A method of treating wastewater and ground water comprising the steps
of:
exposing water desired to be treated to ozone in sufficient quantity to oxidize nutrients therein to a form amenable to bioassimilation by a colony of attached algae; and
flowing the water over a floway comprising attached algae to remove the oxidized nutrients therefrom, the algae experiencing an enhanced photosynthetic activity upon bioassimilation of the oxidized nutrients
2. The method as claimed in Claim 1, wherein the nutrients comprise tannic
and humic compounds.
3. The method as claimed in Claim 1, comprising the step of adding a
pesticide to the algal colony for controlling insects, the pesticide selected
from a group consisting of an insecticide, a pyrethroid, or a natural
pyrethrum.
4. The method as claimed in Claim 1, comprising the step of adding a
pesticide to the floway for controlling insects, the pesticide comprising
bacillus therengensus isralioans.
5. The method as claimed in Claim 4,
wherein the pesticide-adding step

comprises delivering a substantially continuous supply of bacillus therengensus isralioans to an inlet of the algal colony.
6. The method as claimed in Claim 1, comprising the step of pumping water
out of a body of water into a supply pipe, and wherein the exposing step
comprises injecting ozone at a plurality of injection locations along the
supply pipe, the ozone present in sufficient quantity to reduce a
concentration of undesired microorganisms therein.
7. The method as claimed in Claim 1, comprising the steps of harvesting the
algae, adding a pesticide to the harvested algae, exposing the mixed algae
and pesticide to sunlight for achieving detoxification, and using the
detoxified mixed algae and pesticide to form a base for another algal
colony.
8. The method as claimed in Claim 7, wherein the pesticide comprises one or
more pesticides selected from a group consisting of natural pyrethrum,
natural pepper, garlic, elder, and lemon sage.
9. The method as claimed in Claim 8, comprising the step of adding a pesticide to the algal colony for controlling insects, the pesticide comprising bacillus therengensus isralioans.
10. The method as claimed in Claim 9, wherein the pesticide-adding step comprises delivering a substantially continuous supply of bacillus therengensus isralioans to an inlet of the algal colony.

11. The method as claimed in Claim 1, comprising the steps of:
extracting the water to be treated from a body of water prior to the exposing step; and
returning the treated water the to body of water following the water-flowing step.
12. The method as claimed in Claim 1, wherein the ozone-exposing step comprises covering a body of water and injecting ozone into the body of water.
13. The method as claimed in Claim 1, wherein the ozone-exposing step comprises :
pumping water out of a body of water into a supply pipe;
injecting ozone into the supply pipe; and
directing the water to an inlet end of the algal colony.
14. The method as claimed in Claim 13, wherein the ozone-injecting step comprises injecting ozone at a plurality of injection locations along the supply pipe.

15. The method as claimed in Claim 1, comprising the step, following the water-flowing step, of repeating the ozone-exposing step and the water-flowing step by recirculating the water emerging from the algal colony.
16. The method as claimed in Claim 1, comprising the steps, following the water-flowing step, of harvesting the algal colony, adding a pesticide to the harvested algae, exposing the mixed algae and pesticide to sunlight for achieving detoxification, and using the detoxified mixed algae and pesticide to form a base for another algal colony.
17. The method as claimed in Claim 16, wherein the pesticide comprises one or more pesticides selected from a group consisting of natural pyrethrum, natural pepper, garlic, elder and lemon sage.
18. The method as claimed in Claim 1, wherein the colony is attached to a base,
and further comprising the steps, following the water-flowing step, of harvesting
the algal colony, adding a pesticide to the colony base, and detoxifying the base.
19. The method as claimed in Claim 18, wherein the pesticide is selected from a
group consisting of a synthetic pyrethroid and a natural pyrethrum.
20. A system for treating wastewater and ground water comprising:

means for exposing water desired to be treated to ozone in sufficient
quantity to reduce a concentration of undesired microorganisms therein and to liberate available nutrients therefrom;

a colony of attached algae for removing undesired matter from the ozone-exposed water; and
means for directing the ozone-exposed water from the water-exposing means to the algal colony
21. The system as claimed in Claim 20, wherein the water-exposing means
comprises a mixing chamber, means for injecting ozone into the mixing chamber, a pump
for pumping the water to be treated into the mixing chamber, and a mixer for mixing the
water to be treated with the injected ozone.
22. The system as claimed in Claim 20, ^gmprioingAnoons for generating">
>.xt2oae|y┬╗mprising at least one of means for exposing air to ultraviolet radiation and
means for creating a corona discharge.
5
23. The system as claimed in Claim 20, comprising means for exposing the
water to be treated to at least one of ultraviolet radiation and acoustic energy.
24. The system as claimed in Claim 20, comprising:
a tube having a bottom end and a top end;
a pump for pumping the water into the tube bottom end and upward toward the top end;

means for injecting ozone adjacent the tube bottom end of the tube, for permitting the water and the ozone to mix while being pumped toward a top end of the tube.
25. The system as claimed in Claim 20, comprising means for treating the water with ozone downstream of the algal colony.

26. The system as claimed in Claim 20, comprising the otcp.of passiag.the
*
water through an activated carbon filter following the water-flowing step.



27. The system as claimed in Claim 20, comprising means for adding a pesticide to the algal colony for controlling insects, the pesticide selected from a group consisting of an insecticide, a pyrethroid, or a natural pyrethrum.
28. The system as claimed in Claim 20, comprising means for adding a
pesticide to the algal colony for controlling insects, the pesticide comprising bacillus
therengensus isralioans.
29. The system as claimed in Claim 28,
wherein the pesticide-adding means comprises

means for delivering a substantially continuous supply of bacillus therengensus isralioans to an inlet of the algal colony.

30. The system as claimed in Claim 20, comprising:
means for extracting the water to be treated from a body of water; and means for returning the treated water the to body of water downstream of the algal colony.
31. The system as claimed in Claim 20, wherein the ozone-exposing means
comprises a cover over a body of water and means for injecting ozone into the body of
water.
32. The system as claimed in Claim 20, wherein the ozone-exposing means
comprises:
a supply pipe having an inlet end and an outlet end; a pump positioned to extract water out of a body of water into the supply pipe inlet end and to pump the extracted water to an inlet end of the algal colony; and means for injecting ozone into the supply pipe.
33. The system as claimed in Claim 20, comprising means for redirecting
water from an outlet end of the algal colony to the ozone-exposing means for
recirculating the water emerging from the algal colony.
34. The system as claimed in Claim 20, comprising means for harvesting the
algal colony following exposure to water to be treated and means for adding a pesticide
to the harvested algae.

35. The system as claimed in Claim 34, wherein the pesticide comprises one
or more pesticides selected from a group consisting of natural pyrethrum, natural pepper,
garlic, elder, and lemon sage.
36. The system as claimed in Claim 20, comprising a base to which the algal
colony is attached, and further comprising means for harvesting the algal colony, means
for adding a pesticide to the colony base, and means for detoxifying the base.
37. The system as claimed in Claim 36, wherein the pesticide is selected from
a group consisting of a synthetic pyrethroid and a natural pyrethrum.



Documents:

1743-delnp-2003-abstract.pdf

1743-DELNP-2003-Assignment.pdf

1743-delnp-2003-claims.pdf

1743-delnp-2003-complete specification (granted).pdf

1743-delnp-2003-correspondence-others.pdf

1743-delnp-2003-correspondence-po.pdf

1743-delnp-2003-description (complete).pdf

1743-delnp-2003-drawings.pdf

1743-delnp-2003-form-1.pdf

1743-delnp-2003-form-13.pdf

1743-delnp-2003-form-19.pdf

1743-delnp-2003-form-2.pdf

1743-delnp-2003-form-26.pdf

1743-delnp-2003-form-3.pdf

1743-delnp-2003-form-4.pdf

1743-delnp-2003-form-5.pdf

1743-delnp-2003-pct-101.pdf

1743-delnp-2003-pct-210.pdf

1743-delnp-2003-pct-220.pdf

1743-delnp-2003-pct-401.pdf

1743-delnp-2003-petition-137.pdf

1743-delnp-2003-petition-138.pdf


Patent Number 218126
Indian Patent Application Number 1743/DELNP/2003
PG Journal Number 40/2008
Publication Date 03-Oct-2008
Grant Date 31-Mar-2008
Date of Filing 24-Oct-2003
Name of Patentee AQUAFIBER TECHNOLOGIES CORPORATION [US/US];
Applicant Address 1150 LOUISIANA AVENUE, SUITE 5C, WINTER PARK, FL 32789 (US)
Inventors:
# Inventor's Name Inventor's Address
1 JENSEN, KYLE, R.; 9442 BEAR LAKE ROAD, APOPKA, FL 32703 (US)
PCT International Classification Number C02F 3/32
PCT International Application Number PCT/US02/12808
PCT International Filing date 2002-04-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/285,001 2001-04-19 U.S.A.
2 09/940,977 2001-08-28 U.S.A.