Title of Invention

METHOD FOR THE PREPARATION OF ENANTIOMERICALLY ENRICHED COMPOUNDS

Abstract Process for the preparation of a diastereomerically enriched phenylglycine amide derivative in which an enantiomerically enriched phenylglycine amide is converted into the corresponding Schiff base with the aid of compound R<sub>2</sub>-C(O)-R<sub>3</sub>, and the Schiff base obtained is subsequently converted into the diastereomerically enriched phenylglycine amide derivative with the aid of a cyanide source, a reducing agent or an allyl organometallic compound. The phenylglycine amide derivatives obtained are interesting starting materials for the preparation of for example enantiomerically enriched $g(a)- and/or $g(b)-amino acids and derivatives thereof, such as amides and esters, and amines.
Full Text METHOD FOR THE PREPARATION OF ENANTIOMERICALLY ENRICHED
COMPOUNDS The invention relates to a process for the preparation of a diastereomerically enriched compound having formula 1
(1)
where R1, is a substituted or unsubstituted phenyl group,
R2, R3 and R4 each differ from one another and R2 and R3 represent H, a
substituted or unsubstituted (cyclo)alkyl group, (cyclo)alkenyl group, aryl!
group, cyclic or acyclic heterolysis group or heteroaryl group with one or
more N, O or S atoms, or (CH2)-COR6, where n = 0,1,2 ...6 and R6 = OH,
a substituted or unsubstituted alkyl group, aryl group, alkoxy group or
amino group and
R4 = CN, H or a substituted or unsubstituted allyl group and
R5 is H or alkyl with 1-6 C atoms, in which an enantiomericaily enriched
phenylglycine amide having formula 2
(2)
where R1 and R5 have the aforementioned meanings, is, with the aid of a compound having formula 3
(3)
where R2 and R3 have the aforementioned meanings, converted into the corresponding Schiff base or the tautomeric enamine, and the Schiff base

obtained is subsequently converted into the diastereomericaliy enriched compound having formula 1 with the aid of a cyanide source, for instance HCN or an alkali cyanide, a reducing agent (for example H2) or an ally! organometallic compound (as shown In Fig. 1, wherein R represents a substituted or an unsubstituted ally! group).
In this process an enantiomerlcally enriched phenylglycine amide is used as a chiral auxiliary in diastereoselective reaction concepts. The literature refers to a number of examples of processes in which chiral auxiliaries are used, for example enantiomerically enriched a-phenylglycinol or enantiomerlcally enriched a-methyl benzyl amine.
A drawback of the known chiral auxiliaries is that they are very costly and thus less suitable for commercial use, as the chiral auxiliaries are consumed during the process.
The applicant has now found that phenylglycine amides according to formula (2), for example phenylglycine amide, p-hydroxyphenylglycine amide or a-methylphenylglycine amide, are particularly suitable for use as chiral auxiliaries in the preparation of enantiomerically enriched compounds, in particular a-amino acids, p-amino acids, or derivatives thereof and amines (e.g. as represented in Figs 2, 3 and 4). This is the more surprising since phenylglycine amides are known to be susceptible to recompilation. Phenylglycine amides, for example phenylglycine amide or a-methyl phenylglycine amide are available on large scale.
Another major advantage of the invention Is that, in most cases, the phenylglycine amide derivatives formed in the process of the invention result in crystalline products. This means that compounds that are not completely diastereomericaliy pure can be purified to diastereomericaliy pure compounds via a simple crystallization step. This is in contrast with the hitherto commonly used chiral auxiliaries. These often yield oils, and, therefore, cannot be diastereomericaliy enriched by crystallization. Consequently, these oils (derivatised or non-derivatised) are for instance separated by means of for example (chiral) chromatography.
Suitable compounds having formula (3) are for example aldehydes, ketones, ketoacids, ketoesters, ketoamldes and glyoxylic acid (derivatives), in particular pivaldehyde, methyl isopropyl ketene, acetophenone, isobutyraldehyde, pyruvic acid, trimethylpyruvic acid and ethyl acetoacetate.

Diastereomerically enriched compounds that can particularly well be prepared with the process of the invention are for example compounds according to formula 1 where R4 = CN. It has also been found that either of the two diastereomers may crystallise preferentially, while the other one remains in solution and epimerises in situ. This means that, under the chosen conditions, regardless of the intrinsic diastereomeric excess, complete conversion into one diastereomer may occur (the intrinsic diastereomeric excess is obtained via asymmetric induction by the chiral auxiliary under homogeneous conditions).
The aminonitrile obtained may subsequently be converted, in any one of various manners known for aminonitriles (Fig. 2), Into amino acids, amino acid amides and amino acid esters, for example through acidic hydrolysis, basic hydrolysis, enzymatic hydrolysis or through metal-catalyzed hydrolysis. A suitable embodiment is for example treatment with a strong acid at elevated temperature to form the corresponding diacid, which subsequently, after hydrogenolysis according to a known method (for example with the aid of H2 and a Pd/C or Pd(0H)3 catalyst), yields the corresponding amino acid.
The aminonitrile obtained may also be converted into the corresponding diamide, for example by treating it with a strong acid, which diamide subsequently, after hydrogenolysis of the auxiliary group, yields the corresponding amino acid amide. If desired, the amino acid amide may be converted, in a known manner (for example with a strong acid), into the corresponding amino acid.
Another conversion comprises for example treating the aminonitrile obtained with a strong acid in alcohols (for example with methanol) to form the corresponding monoester or diester, which subsequently, after hydrogenolysis of the auxiliary group, yields the corresponding amino acid ester. If desired, the amino acid ester may be converted by means of a known method (for example using a strong acid) into the corresponding amino acid.
Other compounds that can particularly well be prepared using the process of the invention are for example enantiomerically enriched amines. These amines can be prepared for instance through reduction of the Schiff base followed by hydrogenolysis according to a known method, for example with the aid of H2 and a Pd/C or a Pd(0H)2 catalyst (Fig. 3).
Reduction of the Schiff base can be effected for example with the aid of NaBHa, LiAIH4 or derivatives thereof (e.g. alkoxy derivatives such as NaBH(0Ac)3), with hydrogenation catalysts, for example Pd, Pt or Raney-Ni in

combination with H£Or under transfer-hydrogenation conditions. Especially Raney-Ni or Pd was found to be a suitable catalyst for fiydrogenation reactions leading to high diastereoselectivities.
Amines and p-amino acid derivatives (e.g. as represented in figs 3 and 4), too, may be particularly well prepared through selective addition to the Schiff base of allyl organometallic compounds. Particularly suitable allyl organometal compounds were found to be for example Zn or Mg, preferably Zn, derivatives. After addition of a substituted or unsubstituted allyl organometal compound to the Schiff base, the allyl compound obtained can for example be converted into a p-amino acid or a derivate thereof. A suitable embodiment is for example conversion of the double bond according to known oxidative methods, for example by catalytic oxidation, stoechiometric oxidizing agents or via ozonolysis, followed by oxidative treatment and subsequent hydrogenolysis into the corresponding p-amino acid (Fig. 4), or p-amino acid ester.
Particularly suitable appeared to be the conversion via ozonolysis in the presence of a base, for instance NaOH, and an alcohol, for example methanol, of the double bond into a p-amino acid ester derivative via a method as described in J. Org. Chem., 1993, 58, 3675-3680, and the subsequent hydrogenolysis into the corresponding p-amino acid ester.
Furthermore it has been found that the ally! compound obtained can be converted In a 3-amino alcohol derivative, for instance by ozonolysis followed by reductive work up, for instance using NaBH4. Subsequently the 3-amino alcohol can be liberated by hydrogenolysis.
Amines can be obtained through reduction of the substituted or unsubstituted allyl group followed by hydrogenolysis {fig. 3, wherein R represents a substituted or unsubstituted ally! group and R*^ represents the hydrogenated form of R).
The compounds having formula 1, where Ri, R2, R3, R4, R5, are as previously defined, and the compounds with formula 1 wherein R,, R2, Rand R5 are as previously defined and R4 represents C(R7R3 )-C02Rio or C(R7R8)-CHRgOH with R?, Rg and Rg are each independently an alkyl or an aryl group and R,o represents an alkyl group, are novel compounds. The compounds preferably have a diasfereomeric excess of > 80%, in particular > 90%, more particularly > 98%. The invention also relates to such compounds. The term diastereomeric excess relates to the chiral canters designated in formula (1) by asterisks.

In addition, it was found that, because of the crystalline behavior of the phenylglycine amide derivatives obtained as intermediates, in the case of incomplete diastereoselectivity, purification by means of a single crystallization process often leads to > 98 % diastereomeric excess.
The phenylglycine derivatives obtained may be converted into the corresponding amines by means of hydrogenolysis with Ha using for example a Pd catalyst.
The (hetero)alkyl groups or alkoxy groups referred to in the context of the present invention preferably have 1-20 C atoms, in particular 1-5 C atoms; the (cyclo)alkenyl groups preferably have 2-20, in particular 2-9 C atoms; and the (hetero)aryl groups 2-20, in particular 3-8 C atoms. If so desired, the {hetero)alkyi, alkoxy, alkenyl, aryl, ally!, heteroaryl or amino groups may be monosubstituted or polysubstituted with for example halogen, in particular chlorine or bromine, a hydroxy group, an alkyl or (hetero)aryl group with for example 1-10 C atoms and/or an alkoxy group or acyloxy group with for example 1-10 C atoms.
The invention will now be illustrated with reference to the examples without however being limited thereto.
EXAMPLES
Example 1
Striker reaction with aldehydes.
Addition of KCN to the Schiff base of (R)-phenylglycine amide and 2,2-dimethylpropanal yielding (R,S)-aminonitrile.
3.0 ml (50 mmol) of glacial acetic acid was added to 7.5 g (50 mmol) of (R)-phenylglycine amide suspended in 50 ml of water at 70°C. Next, at the same temperature, 4.3 g (50 mmol) of 2,2-dimethylpropanal and 3.25 g (50 mmol) of KCN were added. The mixture was stirred for 24 hours at a temperature of 70°C. After cooling to 30°C, the precipitate was filtered and washed with 10 ml of water.
10.4 g (42.5 mmol, 85%) of (R,S)-aminonitrile was obtained as a white solid.
Absolute configuration was determined after conversion into (S)-t-leucine. (R,S)-aminonitrile d.e. 98%, determined by ^H NMR analysis.

"H NMR (CDCI3): 0.94 (S, 9H, tBu), 2.66 (d, 1H, NH). 2.77 (d, 1H, CHCN), 4.37 (s, 1H, CHPh), 5.36 (broad s, 1H, CONH) 5.90 (broad s, 1H, CONH), 7.16-7.36 (m, 5H, Ar).
Example II
Strecker reaction with aldehyde.
Addition of KCN to the Schiff base of (S)-pheny[glycine amide and 2,2-dimethylpropanal yielding (S,R)-aminonitrile.
3.0 ml (50 mmol) of glacial acetic acid was added to 7.5 g (50 mmol) of (S)-phenylglycine amide suspended in 50 ml of water at 70°C. Next, 4.3 g (50 mmol) of 2,2-dimethylpropanal and 3.25 g (50 mmol) of KCN were added at the same temperature. The mixture was stirred for 24 hours at a temperature of 70""C. After cooling to 30 C the solid precipitated was filtered and washed with 10 ml of water,
10.7 g (43.3 mmol, 87.3%) of (S,R)-aminon!trile was obtained as a white solid. Absolute configuration was determined after comparison with the conversion of the {S,R)-aminonitrile to (R)-t-leucine.
CS,R)-aminonitrile: d.e. 98%, determined by means of ^H NMR analysis.
1H NMR (CDCI3): 0.94 (s, 9H, tBu), 2.55 (d, 1H, NH), 2.79 (d, IN,
CHCN), 4.35 (s, 1H, CHPh), 5.34 (broad s, 1H, CONH), 5.90 (broad s, 1H, CONH), 7.10-7.38 (m, 5H, Ar).
Example III
Strecker reaction with ketone.
Addition of NaCN to the Schiff base of (R)-phenylg!ycine amide and 3,4-dimethoxyphenylacetone.
To 18.6 g (100 mmol) of (R)-phenylglycine amide.HCI salt in 150 ml of MeOH and 25 ml of H2O were added, at 20-25°C, 16.5 g (100 mmol) of 30% NaCN in water and 19.3 g (100 mmol) of 3,4-dimethoxyphenylacetone. The clear solution was stirred at 20-25°C. After 82 hours the crystals that had formed were filtered and washed with 3 x 15 ml methanol/water (v/v 70:30).
21.6 g (61.1 mmo[, 61 %) of aminonitrile was obtained as a white, solid; d.e. > 98%, determined by means of "H NMR analysis.

"H NMR (CDCI3): 1 -48 (s, 3H, CH3), 2.60 (s, 1H, NH), 2.81 {s, 2H. CH2), 3.82 {s, 3H, OCHa), 3.86 (s, 3H, OCH3), 4.47 (s, 1H, CHPh), 6.05 (broad s, 1H, CONH), 6.70 (broad s, 1H, CONH), 6.84-6.90 (m, 3H, Ar), 7.26-7.38 (m, 5H, Ar).
Example IV
Hydrolysis of the aminonitrile of (R)-phenylglycine amide and 2,2-
dimethylpropanal, conversion into diamide.
To a solution of 9.4 g (38.4 mmoi) of aminonitrile in 50 ml of dichloromethane was added, at approx. - 10°C, 56 ml of concentrated H2S04at such a rate that the temperature remained between -10 and 0°C. Next, the mixture was stirred for 16 hours at 20-25°C. The mixture was poured onto ice, neutralised with 25% aqueous NH3, and extracted with 3 x 200 ml of ethyl acetate. The combined ethyl acetate layers were dried on MgS04, filtered and, after concentration by evaporation, 9.5 g of (R,S)-diamide (36.1 mmol, 94%) was obtained as a white solid.
"H NMR (CDCI3}: 0.87 (s, 9H, tBu), 2.46 {broad s, 1 H, NH), 2.53 (broad s, 1H, CH), 4.08 (s, IN, CH), 6.35 (broad s, 1H, CONH) 6.40 (broad s, 2H, CONHa), 6.51 (broads, 1H, CONH) 7.15-7.40 (m, 5H, Ar).
Example V
Hydrogenolysis of the amino diamide of (R)-phenylglycine amide and 2,2-
dimethylpropanal: synthesis of (S)-2-amino-3.3-dimethylbutane amide.
9.0 g (36.7 mmol) of amino diamide was dissolved in 250 ml of 96% ethanol, after which 0.5 g of 10% Pd/C was added. The mixture was hydrogenated for 20 hours at 0.2 MPa H2 and 20-25°C. After removal of the Pd/C by means of filtration through celile, the solution was concentrated by evaporation at reduced pressure. The crude reaction mixture was purified by means of column chromatography (Si02, dichloromethane/methanot 9:1). After evaporation of organic solvents 2.2 g (46%) of (S)-2-amino-3,3-dimethylbutane amide was obtained as a solid.
"H NMR (CDCI3): 0.96 (s, 9H, tBu), 1.48 (broad s, 2H NH2), 3.07 (s. 1H. CH), 5.49(broads, 1H, CONH) 6.50 (broad s, 1H, CONH).

Example VI
Hydrolysis of (S)-2-amino-3,3-dimethylbutane amide: Synthesis of (S)-2-amino-3,3-dimethylbutane acid {(S)-t-leucine).
2.0 g (15.4 mmol) of (S)-2-amino-3,3-dimethylbutane amide in 500 mi of 6N HCl was heated at 100°C for 24 hours. After cooling to 20-25X, the mixture was transferred to a Dowex 50 Wx8 column in the NH/ form. The column was washed with 250 ml of water and then eluted with approx. 400 ml of 10% aqueous NHa. After evaporation and drying 1.7 g (86%) of {S)-2-amino-3,3-dimethylbutane acid ((S)-t-leucine) was obtained.
^H NMR (DjO): 1.06 (s, 9H. tBu), 3.44 (s, 1H, CH).
Example VII
Synthesis of the Schiff base of {R)-phenylglycine amide and 3,3-dimethyl-2-
butanone.
To 7.5 g (50 mmol) of {R)-phenylglycine amide were successively added 10.0 g (100 mmol) of 3,3-dimethyl-2-butanone, 40 ml of toluene, 50 ml of cyclohexane and 0.1 g (0.53 mmol) of p-toluene sulphonic acid. The mixture was heated with stirring to reflux (approx. 90°C). The water formed was collected during the reaction by 4A sieves in a soxhiett apparatus. After approx. 48 hours the solution was concentrated by evaporation at reduced pressure. 11.2 g (48.2 mmol, 97%) of the Schiff base was obtained as a white solid, which was utilised as such, without further purification, in the next step.
"H NMR (DMSO-dg): 1.15 (s, 9H, t-Bu), 1.75 (s, 3H, Me), 4.85 (s, 1H, a-H), 7.2-7.4 (m, 5H-arom.)
Example VHI
Reduction of the Schiff base of {R)-phenylglycine amide and 3,3-dimethyl-2-
butanone with Pt/C and H2.
11.2 g (48.2 mmol) of the Schiff base of (R)-phenylglycine amide and 3,3-dimethylbutanone were dissolved in 100 ml of absolute ethanol whereupon 0.2 g of 5% Pt/C was added. The mixture was hydrogenated for 5 hours at 5 bar H2 and 20"C. On removal of the Pt/C through filtration, the solution was concentrated through evaporation at reduced pressure. The yellow oil obtained was dissolved in 100 ml of ethyl acetate and washed with 2 x 20 ml of water. After drying on MgSOa.the solution was concentrated through evaporation

and was then crystallised from 90 ml of hexane. The solid was filtered, washed with 2 X 10 ml of hexane and dried to constant weight.
Yield: 6.6 g {57% based on (R)-ph6nylglycine amide). "H NMR revealed only one stereoisomer (R,S).
" H-NMR {CDCI3): 0.9 (s, 9H, tBu); 1.0 (d, 3H. Me), 2.35 (q, 1H, CHN), 4.25 (s, 1H, aH), 5.6-5.8 (s, 1H, NH), 7.25-7.40 (m, 5H, ar).
Example IX
Reduction of the Schiff base of (R)-phenylglycine amide and 3,3-dimethyl-2-
butanone with Raney-Ni and H2.
4.0 g (17.2 mmol) of the Schiff base of (R)-phenylglycine amide and 3,3-dimethyl-2-butanone were dissolved in 50 ml of absolute ethanol, after which 5 g of wet Raney-Ni (previously washed with 3 x 30 ml of absolute ethanol) was added. Next, the mixture was hydrogenated with 0.1 MPa H2. The conversion was monitored over time. Conversion was virtually complete after approx. 7 days. The catalyst was removed by filtration and the filtrate was concentrated by evaporation at reduced pressure. The resulting oil was crystallized from hexane to give the amine as a single diastereomer.
Yield: 2.6 g (64% based on {R)-phenylgtycine amide). ^H NMR: identical as in example VMI.
Example X
Hydrogenolysis of amino amide obtained in Example VIII; synthesis of (S}-3,3-
dimethyl-2-butylamine.HCI
6.6 g (28.2 mmol) amino-amide was dissolved in 100 ml of absolute ethanol whereupon 0.3 g of 10% Pd/C was added. The mixture was hydrogenated for 20-24 hours at 0.5 MPa H2 and 50°C. On cooling and filtration of the Pd/C through Celite, 3 ml of 37% HCI was added. At that point the pH of the mixture was approx. 3.5. Next, the solution was concentrated by evaporation at reduced pressure and the oil obtained was combined with 50 ml of H2O. The water layer was subsequently extracted with 4 x 25 mi of ethyl acetate in order to remove phenylacetamide. Next, the water layer was concentrated by evaporation and remaining water was removed from the residue by adding 2 x 30 ml of absolute ethanol followed by distillation. The residue was then crystallised from 50 ml of ethyl acetate.

The solid was filtered, washed with 10 ml of ethyl acetate and dried to constant weight.
3.6 g (26.2 mmol, 93.3%) of (S)-3,3-dimethyl-2-butylamine. HCI was obtained. The rotation of the product indicated that the S-isomer had formed.
The enantiomeric excess was determined through chiral HPLC: e.e.{S) = 99%.
"H NMR (DMSO-de): 0.95 (s, 9H, tBu), 1.15 (d, 3H, Me), 2.95 (q, 1H, CHN), 8.0 (broad, 3H, NH3CI).
Example XI
Synthesis of the Schiff base of (R)-phenylglycine amide and isobutyraldehyde To 7.5 g (50 mmol) of (R)-phenylglycine amide in 100 ml of
dichloromethane were added 5.4 g (50 mmol) of isobutyraldehyde and 0.7 g of 4A
sieves. The mixture was stirred for 4 hours at 20-25°C. After filtration, the solution
was concentrated by evaporation.
10.8 g (45.0 mmol, 95%) of the Schiff base of (R)-phenylglycine
amide and isobutyraldehyde was obtained in the form of a white solid.
"H NMR (CDCI3): 1.06 (m, 6H), 2.46 (m, 1H), 4.67 (s, 1H), 5.68 (broad s, 1H), 6.90
(bs, 1H), 7.21-7.37 (m,5H), 7.60 (d,1H,a-H).
Example XII
Allylation of the Schiff base of (R)-phenylglycine amide and isobutyraldehyde.
To a mixture of 4.8 g (20.0 mmof) of the Schiff base of (R)-phenylglycine amide and isobutyraldehyde and activated Zn (2 eq) in 100 ml of dry THF was added, with stirring, 2.4 g (20 mmol) of allylbromide, whereby an exothermic reaction occurred. The mixture was stirred for 1 hour at 20-25°C, whereupon 100 ml of a saturated solution of NaHCOs m water was added, followed by addition of 100 ml of ethyl acetate. The ethyl acetate layer was separated and the water layer was again extracted with 100 ml of ethyl acetate. After drying with MgSOj, filtration and concentration by evaporation, 4.3 g of the homoallylamine (15.4 mmo!, 77%) was obtained.
"H NMR (CDCI3): 0.72 (d, 3H), 0.85 (d, 3H), 1.87 {m, 2H), 2.17 (m,1 H), 2.37 (m, 1H), 4.25 (s, 1H), 5,03 (s, 1 H), 5.07 (d, 1 H), 5.76 (m, 1H), 6.02 (broad s, 1H), 7.20-7.34 (m, 6H).
"H NMR revealed only one stereoisomer: (R,R)

Example XIII
Hydrogenation of {R)-phenylglycine amide-(R)-isopropylhomoallylamine.
Homoaiiyiamine (3.7 g, 15.0 mmol) obtained as described in example XII was dissolved in MeOH (100 mi). Water (10 ml), acetic acid (2.5 mi), and Pd{10%)/C {0.6 gram) were added successiveiy. The mixture was shaken under pressurized H2(30 psi) for 18 hours at room temperature. The MeOH was evaporated under reduced pressure. The residue was diluted with water (50 ml) and bacified to pH = 10 with 10 % aqueous NaOH. The water phase was extracted with CH2CI2 (3 x 40 mL). The combined organic phases were dried on MgS04 and filtered. After evaporation of the CH2CI2, pentane was added to the residue. Phenylacetamide was removed via filtration. Evaporation of the pentane yields 2-methyl-3-(R;-am(na-hexane as a colourless oil (1.1 g, 64%),
The enantiomeric excess was determined through chJrai HPLC: e.e.{R) i 98%.
"H NMR (CDCb): 5 0.74-0.84 (m, 8H), 0.85-1.40 (m, 8H), 2.38-2.44 (m, IN).
Example XIV
Oxidative ozonolysis of (R)-phenyigiycine amide-(R)-isopropyihomoaiiylamine
Homoaiiyiamine (3.14 g, 12.8 mmoi) obtained as described in example XII was dissolved in dichloromethane (100 ml). A 2.5 M msthanolic NaOH solution (26 ml) was added. The mixture was cooled to -YS^C and ozone was passed through the reaction mixture for 3 hours. The solution turns bright orange. A mixture of water and diethyl ether was added and the mixture was warmed to room temperature. The organic phase was separated and the water layer was extracted with diethyl ether. The combined organic phases were dried over Na2S04. Filtration and evaporation of the solvent furnished a yellow oil (crude yield: 2.7 gr). The pure product (1.0 g, 31%) was obtained as a pale yellow oil after purification by column chromatography (silica/ethyl acetate).
"H-NMR (CDCI3): 0.75 (d, 3H), 0.91 (d, 3H), 2.10-2.23 (m, 2H), 2.41-2.51 (m. 1H), 3.0 (m,1H), 3.70 (s,3H), 4.34 (s, 1H), 7.25-7.37 (m, 5H).

Example XV
Ozonolysis followed by reduction of of (R)-phenylglycine amide-(R)-
isopropylhomoallylamine
A solution of 1.49 g (6.0 mmol) of the homoallylamine obtained as described in example 12 in dichloromethane (90 ml) and methanol (30 ml) was cooled to -78°C, and treated with ozone. The progress of the reaction was monitored with TLC (Heptane/ethyl acetate 1/1). After nine minutes, no starting material was found. The mixture was purged with nitrogen and 0.55 g NaBH4 was added at once. The mixture was allowed to reach room temperature and 150 ml water was added. The phases were separated. The aqueous phase was extracted with dichloromethane (2 x 100 ml) and ethyl acetate (50 ml). The combined organic phases were washed with brine (50 ml), dried (Na2S04), and evaporated. The resulting solid was purified by column chromatography (silicagel, EtOAc) to give the aminoalcohol as a colorless solid (700 mg, 47%).
"H-NMR (CDCI3): 0.75 (d, 3H), 0.91 (d, 3H), 1.25 (m, 1H), 1.60 (m, 1H),2.0(m, 1H),2.6(m, 1H), 3.7(m, 2H), 4.4(s, 1H), 7.2-7.4 (m, 5H).


WE CLAIM
1. Process for the preparation ot a diastereomerically enriched amino acid
amide derivative having formula I

where R1 is a substituted or unsbstituted phenyl group, R2, R3 and R4 each differ from one another and R2 and R3 represent H, a substituted or unsubstituted (cyclo)alkyl group, ailtenyl group, aryl group, cyclic or acyclic heteroalkyl group or heteroaryl group with one or more N, 0 or S atoms, or (CH2)n-COR6, where n = 0,1,2 ...6 and R6 = OH, a substituted or unsubstituted alky! group, aryl group, alkoxy group or amino group and R4 = CN, H or a substituted or unsubstituted alkyl group and Rg is H or alkyl with 1-6 C atoms, in which an er>antiom©rica!ly enriched phenylglycine amide having formula 2
(2)
where R, and R5 have the aforementioned meanings, is, with the aid of a compound having formula 3
R2 - CiO) - R3 (3)
where R2 and R3 have the aforementioned meanings, converted into the corresponding Schiff base, and the Schiff base obtained is subsequently converted into the diastereomerically enriched compound having formula 1

with the aid of a cyanide source, a reducing agent or an allyl organometallic compound.
2. Process according to Claim 1 in which R4 represents CN and in which the obtained nitrile having formula 1 is isolated via crystallization.
3. Process according to Claim 1 or Claim 2 in which R4 represents CN and in which the nitrite group of the diastereomerically enriched compound with formula 1 is subsequently converted into the corresponding acid, amide or ester and the acid, amide or ester thus obtained is converted through hydrogenolysis into the corresponding enantiomerically enriched amino acid derivative having formula 4
(4)
where R10 represents OH, NH2 or alkoxy.
4. Process according to Claim 1, in which R4 is H and in which the
diastereomerically enriched compound having formula 1 is subsequently
converted through hydrogenolysis into an enantiomerically enriched
compound having formula 5
(5)
in which R2 and Ra have the same meanings as in Claim 1 except that neither is H.
5. Process according to Claim 1, in which R4 represents a substituted or
unsubstituted allyl group and in which the diasfereomericalty enriched
compound having formula 1 is subsequently hydrogenated to form an
enantiomerically enriched compound having formula 6
(6)

in which R4 represents the hydrogenated form of the substituted or unsubstituted allyl group, and R2 and R3 have the same meanings as in claim 1 except that neither is the same as R4".
6. Process according to claim 1, in which R4 represents a substituted or unsubstituted
allyl group, and in which the diastereomerically enriched compound having formula 1 is
I subsequently subjected to an oxidation in which the -CH = C- group is converted into a
- CO2R group with R is H or an alkyl group.
7. Process according to claim 1, in which R4 represents a substituted or unsubstituted
allyl group, and in which the obtained enantioraerically enriched compound having
formula 1 is subsequently subjected to an oxidation followed by a reduction whereby the

8. Process according to any of claims 5 to 7 in which R4 represents allyl.
9. Amino acid amide derivative having formula 1,


where R1 is a substituted or unsubstituted phenyl group, R2, R3 and R4 each differ from one another, each R2 and R3 is H, a substituted or unsubstituted (cyclo)alkyl group, alkenyl group, aryl group, cyclic or acyclic heteroalkyl group or heteroaryl group with
one or more N, O or S atoms, or is {CH2)n-COR6, where n=0,l,2 6 and R6 -OH, a
substituted or unsubstituted alkyl group, aryl group alkoxy group or amino group R4-CN, H or a substituted or unsubstituted ally! group, and R5 is H or alkyl with 1-6 Carbon atoms, with proviso that if Ri is unsubstituted phenyl, R2 is CH(CH3)2,R3 is COOH, and R4 is H, then R5 cannot be H, wherein said compound has a diastereomerically excess greater than 80%.
10. A compound as claimed in claim 9, wherein R4 represents C(R7-R7)-CHR70H or
C(R7R7)-C02R8 in which each R7independently is alkyl or aryl and Rg is alkyl.
11. Compound according to claim 9 or 10 with a diastereomeric excess greater than
80%.
12. Compound according to claim 11 with a diastereomeric excess greater than 90%.
13. Compound according to claim 12 with a diastereomeric excess greater than 98%.

Documents:

in-pct-2002-0822-che abstract duplicate.pdf

in-pct-2002-0822-che abstract.pdf

in-pct-2002-0822-che claims duplicate.pdf

in-pct-2002-0822-che claims.pdf

in-pct-2002-0822-che correspondence others.pdf

in-pct-2002-0822-che correspondence po.pdf

in-pct-2002-0822-che description (complete) duplicate.pdf

in-pct-2002-0822-che description (complete).pdf

in-pct-2002-0822-che drawings.pdf

in-pct-2002-0822-che form-1.pdf

in-pct-2002-0822-che form-19.pdf

in-pct-2002-0822-che form-26.pdf

in-pct-2002-0822-che form-3.pdf

in-pct-2002-0822-che form-5.pdf

in-pct-2002-0822-che pct.pdf

in-pct-2002-0822-che petition.pdf


Patent Number 216148
Indian Patent Application Number IN/PCT/2002/822/CHE
PG Journal Number 13/2008
Publication Date 31-Mar-2008
Grant Date 10-Mar-2008
Date of Filing 03-Jun-2002
Name of Patentee DSM N. V.,
Applicant Address Het Overloon 1, NL-6411 TE Heerlen,
Inventors:
# Inventor's Name Inventor's Address
1 Wilhelmus, Hubertus, Joseph BOESTEN Brountslaan 9, NL-6132 BJ Sittard,
2 Harold, Monro MOODY Hoogzwanenstraat 148, NL-6211 BZ Maastricht,
3 Bernardus KAPTEIN Irenelaan 33, NL-6133 BE Sittard,
4 Johannes, Paulus, Gerardus SEERDEN Fivelstraat 20, NL-9715 BG Groningen,
5 Marcelles VAN DER SLUIS Zwanestraat 2-IIIB, NL-9712 CL Groningen,
6 Ben LANGE DE Burgemeester Luytenstraat 29, NL-6151 GE Munstergeleen,
7 Quirinus, Bernardus BROXTERMAN Gelrestraat 11, NL-6151 JA Sittard,
PCT International Classification Number C07C 209/62
PCT International Application Number PCT/NL00/00892
PCT International Filing date 2000-12-04
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 1013789 1999-12-08 Netherlands
2 1014365 2000-02-11 Netherlands