Title of Invention

A POLYURETHANE POLYOL COMPOSITION AND A METHOD FOR PREPARING THE SAME

Abstract A polyurethane polyol composition comprising the reaction product of (a) a polyisocyanate, (b) a polyo, and (c) a Guerbet alcohol having at least 12 carbon atoms or a Guerbet alcohol mixture having an average of at least 12 carbon atoms.
Full Text POLYURETHANE POLYOL COMPOSITIONS AND COATING COMPOSITIONS COMPRISING THE SAME
This Invention relates to polyurethane polyof compositions comprising the reaction product of a polyisocyanate, a polyol, and a Guerbet alcohol having at least 12 carbon atoms, and to coating compositions comprising such polyurethane polyol compositions.
Background of the Invention
Polyurethane polyol compositions comprising the reaction product of a
polyisocyanate, a polyol, and a monofunctional alcohol are generally known,
e.g., from patent publication WO 96/40813. This publication discloses in
general terms that the monofunctional alcohol can be linear or branched, cyclic
or acyclic, and that the alcohols and thiols can be primary, secondary or
tertiary.
it is known to use polyurethane poiyol compositions as part of coating compositions and in multi-component coating systems. Such coating compositions and multi-component coating systems also comprise a Crosslin ker.
It has been found that polyurethane poiyol compositions prepared using "Guerbet alcohols having at least 12 carbon atoms result in polyurethane polyol compositions which, when used in coating compositions and multi-component coatings systems, produce a finished coating that has surprisingly improved monoalcohols having less than 12 carbon atoms. The finished coating shows /

better flexibility.) Additionally, the uncured polyurethane polyoi compositions have a lower VOC content and lower viscosity.
Summary of the Invention
In one embodiment, the current invention is a polyurethane polyoi composition
comprising the reaction product of (a) po/ylsocyanate, (b) a pclyoi, and (c) a
Guerbet alcohol having at least 12 carbon atoms or a Guerbet alcohol mixture
having an average of at least 12 carbon atoms.
Another embodiment of the invention encompasses a method of making such
polyurethane polyoi compositions.
The "invention is also directed to coating systems and coating compositions
comprising such polyurethane polyoi composition and a crosslinker.
Detailed Description of the Invention
Polyisocyanates useful in the current invention typically have a functionality of 2 to 5. Due to variations in the preparation of such isocyanates, commercially available polyisocyanates may contain a mixture of functionalities. Such mixtures of polyisocyanates can be used in the current invention.
Non-limiting examples of polyisocyanates useful in the current invention are 1,6-hexamethylene diisocyanate, isophorone diisocyanate, tetramethylxylylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 2,2,4-trimethyl-1,6-hexame-thylene diisocyanate, 1,12-dodecane diisocyanate, methylene bis(4-cyclohexyl isocyanate), the biuret of 1,6-hexamethylene diisocyanate, the isocyanurate of 1,6-hexamethylene diisocyanate, the isocyanurate of isophorone diisocyanate, and the triisocyanate functional adduct of tetramethyl xylene diisocyanate and trimethylolpropane. The preferred polyisocyanate is the isocyanurate of hexa-methylene diisocyanate (isocyanurate of HDI).

Non- limiting examples of polyols useful in the current invention are a, (3 and a, y diols^ and mixture thereof, for instance 2-ethyl-l,3-hexane did, 1 ,2-hexane diol, 1,2-octane diol, 1 ,2- decane diol, 2,2,4-trimethyl-l ,3 pentane diol, and 2-butyl-2-ethyl-2,3-propane diol, and mixture thereof
Guerbet alcohols are branched, primary monofunctional alcohols that have two linear carbon chains with the branch point always at the second carbon position. Guerbet alcohols are chemically described as 2-alkyl-l-alkanols. The Guerbet alcohol used in the current invention is an alcohol having at least 12 carbon atoms or a Guerbet alcohol mixture having an average of at least 12 carbon atoms. The Guerbet alcohol preferably used in the current invention is one having at least 16 carbon atoms or a Guerbet alcohol mixture having an average of at least 16 carbon atoms. Preferably, the Guerbet alcohol used in the current invention is one having not more than 36 carbon atoms, more preferably not more than 32 carbon atoms. The most preferred Guerbet alcohols are 2-hexyl-1 -decanol, 2-octyl-l -decanol, 2-octyl-l -dodecanol, 2-hexyl- 1-dodecanol, 2-decyl-1-tetradecanol, and mixtures thereof The Guerbet alcohols used according to the present invention may be represented by the following formula: (R1) (R2) CHCH2OH
wherein
R1 is a linear alkyl group,
R is a linear alkyl group,
the sum of the carbon atoms in R1 and R2 is 10 to 34, and
both R1 and R2 are present.
Guerbet alcohols are commercially available from Sasol Chemie GmbH as Isofol® alcohols and from Cognis as Guerbetol.
The polyurethane polyol compositions of the current invention can be combined with crosslinkers to produce coating compositions. Any hydroxyl group-reactive

crosslinker may be employed in the coating compositions and multi-component coating systems of the current invention, for non-limiting example, polyisocyanates, blocked polyisocyanates, urea, and melamine resins. Mixtures of such crosslinkers may also be used. Melamine crosslinkers are chosen for one-package coating systems and isocyanates are typically used in two component systems.
The coating composition can also comprise catalysts for the curing reaction between the hydroxyl groups in the polyurethane polyol composition and the hydroxyl-reactive group of the crosslinker. For non-limiting examples with isocyanates as crosslinkers, dibutyl tin dijaurate, triethyl amine, and metal catalysts and the like are preferred. Non-limiting examples for aminoplast crosslinkers include sulfonic acid catalysts like blocked dodecyl benzene sulfonic acid. The coating compositions can also contain pigments. Inorganic as well as organic pigments may be used. The composition can further comprise conventional additives, such as stabilizers, surfactants, fillers, UV-absorbers, and various additives and solvents.
The coating composition of the present invention can be applied to any substrate. The substrate may be, for example, metal, plastic, wood, glass, ceramic, or another coating layer. The other coating layer may be comprised of the coating composition of the cun"ent invention or it may be a different coating composition. The coating composition of the current invention shows particular utility as clear coats, base coats, and pigmented top coats. The coating compositions can be applied by conventional means such as by spray gun, brush or roller, spraying being preferred. Curing temperatures preferably are between 0_and 130°C and more preferably between 20 and 120°C. The compositions are particularly suitable in the preparation of coated metal substrates, in particular transportation vehicles such as trains, trucks, buses, and airplanes.

Due to the flexibility of the resulting cured coating, the coating composition of the present invention is particularly useful for flexible plastic substrates and on articles that are a combination of plastic and other materials.
The invention is further illustrated by the following examples.
EXAMPLES:
Comparative Example 1
A 2-liter, 4-neck round-bottomed flask equipped with a stirrer, a condenser, a heating mantel, a thermocouple, a Masterflex peristaltic pump, and a nitrogen inlet was charged with:
480.0 g 2-butyl-2-ethyl propane diol, 228.9 g n-butyl acetate,
0.5 g 10% solution dibutyl tin dilaurate in n-butyl acetate.
This mixture was heated to 70°C under a nitrogen blanket. When the mixture reached 70°C, the following isocyanate solution was added over a 2-hour period using a Masterflex peristaltic pump:
588.0 g Desmodur N-3300 (isocyanurate of HDI) and
228.9 g n-butyl acetate.
After completion of the isocyanate. addition, the reaction temperature was maintained at 70°C for an additional 2 hours, at which point Fourier Transform Infrared Spectroscopy (FTIR) was used to determine that there was no residual isocyanate. The resulting solution of polyurethane polyol was a resin solution having a non-volatile content of 66.7% wt and a Brookfield viscosity of 1,420 cps.

Example 2
A 2-liter, 4-neck round-bottomed flask equipped with a stirrer, a condenser, a heating mantle, a thermocouple, a dropping funnel, and a nitrogen inlet was charged with:
588.0 g Desmodur N-3300 (isocyanurate of HDI)
234.45 g n-butyl acetate, and
0.5 g 10% solution dibutyl tin dilaurate in n-butyl acetate
The mixture was heated to 70°C under a nitrogen blanket. When the mixture reached 70°C, 186.0 g 2-butyl-1-octanol (lSOFOL-12 from Sasol Chemie GmbH) were added through the dropping funnel over a one-hour period. During the addition, the reaction temperature w is maintained between 70°C and 75°C. After the addition, the resulting prejsdv/mer was maintained at 70°C for an additional hour.
A separate 3-liter, 4-neck round-bottomed flask equipped with a stirrer, a condenser, a heating mantle, a themnocouple, a Masterflex peristaltic pump, and a nitrogen inlet was charged with:
320.0 g 2-butyl-2-ethyl propane diol and
234.45 g n-butyl acetate.
This mixture was heated to 70°C, and then the prepolymer prepared above was added over a 2-hour period using a Masterflex peristaltic pump. The reaction temperature was maintained between 70°C and 75°C. After completion of the prepolymer addition, the reaction temperature was maintained at 70°C for an additional 2 hours, at which point it was determined by FTIR that there was no indication of residual isocyanate.

The properties of the resulting polyurethane poiyol are reported in Table 2.
Examples 3 through 6 and Comparative Examples 7 through 10 The polyurethane poiyol compositions of Examples 3 through 6 and Comparative Examples 7 through 10 were prepared according to the procedure of Example 2 using the reactants and amounts indicated in Table 1. The total amount of n-butylacetate used in each Example is given in Table 1. In each Example, half the total amount is used to prepare the prepolymer and half is used to prepare the polyurethane poiyol. All monoalcohol substitutions are at the same molar level. The properties of the resulting polyurethane poiyol compositions are reported in Table 2.
Comparative Example 11
An acrylic poiyol v/as prepared by conventional free radical polymerization typically used in the coatings industry. The properties of the resulting acrylic poiyol are given in Table 2.
Coating compositions
Clear coat coating compositions were prepared with melamine resin Cymel 303 commercially available from Cytec Industries and polyurethane poiyol compositions of Comparative Examples 1, 7, 8, and 11 and Examples 2 through 6 according to the following formulation:
70.0 g . polyurethane poiyol (based on resin solids)
28.9 g Cymel 303 (based on resin solids)
1.0 g blocked dodecylbenzene sulfonic acid (based on actives)
0.1 g Byk 310, silicone flow agent (based on actives)
Preparation of test panels and coating properties:
Using a #44 draw down bar, the clear coats were applied on 4" x 12" (10.16 cm
to 30.48 cm) Bonderite 1000 steel panels commercially available from ACT

Laboratories and then baked at 121°C for 30 minutes. The target dry film thickness was 1.0 ± 0.1 mil (25.4 ± 2.5 microns). After the bake, the following properties were tested on the panels:
• Room Temperature Conical Mandrel Flexibility (1/4" to 2" (0.635 cm to 5.08 cm) mandrel diameter): GM 9503P
• Reverse Impact (40 inch-pound): Chrysler LP-463PB-19-01
Further, acid etch testing was conducted as follows:
Using a #44 draw down bar the clear coats were applied on 3" x 18" (7.62 cm x 45.72 cm) black E-coated steel panels and then baked at 250 F (12rC) for 30 minutes. The target dry film thickness was 1.0 ± 0.1 mil (25.4 ± 2.5 microns). After the bake, the panels were placed on a gradient temperature bar ranging from 60°C to 90°C. When the pane s reached thermal equilibrium with the gradient bar, a 10% wt solution of aqueous sulphuric acid was spotted along the panel in 3°C increments. The panels were exposed to the acid and temperature gradient for 30 minutes and then rinsed with distilled water. The temperature at which the first signs of etching are visible and the severity of etch at 77°C are reported.
Table 3 summarizes these test results. It should also be noted that the clear coat formulations using the polyol of Comparative Examples 7 and 8 crystallized after sitting for 1 day.
One component, melamine cured clearcoat compositions based on the polyurethane polyols of Examples 2 and 3, were applied to plastic substrates (TPO). Prior to the application of the clearcoat, each TPO substrate was coated with an adhesion promoter and a one component basecoat. Visual observations after bending of the coated substrate confinned that these coating compositions on flexible substrates have surprising resistance to cracking.











We Claim:
1. A polyurethane polyol composition comprising the reaction product of
(a) a polyisocyanate,
(b) a polyol, and
(c) a Guerbet alcohol having at least 12 carbon atoms or a Guerbet alcohol mixture having an average of at least 12 carbon atoms.

2. The polyurethane polyol composition as claimed in claim 1 , wherein the Guerbet alcohol is a Guerbet alcohol having 16 to 32 carbon atoms or a Guebert alcohol mixture having an average of 16 to 32 carbon atoms.
3. The polyurethane polyol composition as claimed in claim 2, wherein the Guerbet alcohol is selected from the group consisting of 2-hexyl- 1-decanol, 2-octyl-1 -decanol, 2-octyl-l -dodecanol, 2-hexyl-1 -dodecanol, 2-decyl- 1 -tetradecanol, and mixtures thereof.
4. The polyurethane polyol composition as claimed in any one of the preceding claims, wherein the polyol is selected from the group consisting of a, p diols, a, y diols and mixtures thereof.
5. The polyurethane polyol composition as claimed in claim 4, wherein the
polyol is selected from the group consisting of 2-ethyl-l,3-hexane diol, 1,2,-

hexane diol, 1,2-octane diol, 1,2-decane diol, 2,2,4-trimethyl-l,3-pentane diol, 2-butyl-2-ethyl-2,3-propane diol, and mixtures thereof.
6. The polyurethane polyol as claimed in any of the preceding claims, wherein
the polyisocyanate is the isocyanurate of hexamethylene diisocyanate.
7. A method of preparing a polyurethane polyol composition comprising reacting a
polyisocyanate and a Guerbet alcohol having 12 to 32 carbon atoms to produce a
prepolymer and reacting the prepolymer with a polyol to produce a polyurethane
polyol composition.
8. The method of preparing a polyurethane polyol composition as claimed in
claim 7, characterized in that the Guerbet alcohol is a Guerbet alcohol having 16
to 32 carbon atoms.
9. The method of preparing a polyurethane polyol composition as claimed in claim
8, characterized in that the Guerbet alcohol is selected from the group consisting
of 2-hexyl-l -decanol, 2-octyl-l -decanol, 2-octyl-l-docanol,2-hexyl-l-dodecanol,
2-decyl-l -tetradecanol and mixtures thereof

10. The method of preparing a polyurethane polyol composition as claimed in any one of claims 7 to 9, characterized in that the polyol is selected from the group consisting of a, P diols, α ,γ diols, and mixtures thereof
11. A method of preparing a polyurethane polyol composition as claimed in claim 10, wherein the polyol is selected from the group consisting of 2-ethyl-l ,3-hexane diol, 1,2-hexane diol, 1,2-octane diol, 1,2-decane diol, 2,2,4-trimethyl- 1, 3-pentane diol, 2-butyl-2-ethyl-2, 3-propane diol, and mixtures thereof.
12. The method of preparing a polyurethane polyol composition as claimed in any one of claims 7 to 11, characterized in that the polyisocyanate is the isocyanurate of hexamethylene diisocyanate.
13. A coating composition comprising a polyurethane polyol composition as
claimed in any one of claims 1 to 6 and a crosslinker.
14. The coating composition as claimed in claim 13, wherein the crosslinker is
selected from the group consisting of polyisocyanates, blocked polyisocyanates,
aminoplasts, melamine resins, and mixtures thereof.

15. The flexible substrate coated with the coating composition of any one of claims 13 to 14.

Documents:

988-chenp-2003 abstract.pdf

988-chenp-2003 assignment.pdf

988-chenp-2003 claims-duplicate.pdf

988-chenp-2003 claims.pdf

988-chenp-2003 correspondences-others.pdf

988-chenp-2003 correspondences-po.pdf

988-chenp-2003 description (complete)-duplicate.pdf

988-chenp-2003 description (complete).pdf

988-chenp-2003 form-1.pdf

988-chenp-2003 form-18.pdf

988-chenp-2003 form-26.pdf

988-chenp-2003 form-3.pdf

988-chenp-2003 form-5.pdf

988-chenp-2003 others.pdf

988-chenp-2003 pct.pdf

988-chenp-2003 petition.pdf


Patent Number 214326
Indian Patent Application Number 988/CHENP/2003
PG Journal Number 13/2008
Publication Date 31-Mar-2008
Grant Date 11-Feb-2008
Date of Filing 20-Jun-2003
Name of Patentee AKZO NOBEL N.V
Applicant Address Velperweg 76, NL-6824 BM Arnhem,
Inventors:
# Inventor's Name Inventor's Address
1 YAHKIND, Alexander, L 4078 Marlwood Drive, West Bloomfield, Michigan 48323,
2 FEISEL, Robert, Brian 25500 Friar Lane Southfield, Michigan 48034,
3 RENDER, Michael, Todd 664 Crescent Lake Road, Waterford, Michigan 48327,
4 PAREKH, Dhruv, Vrajlal 3577 Wakefield Drive Troy, Michigan 48083,
PCT International Classification Number C08G 18/28
PCT International Application Number PCT/EP2001/014985
PCT International Filing date 2001-12-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/257,471 2000-12-22 U.S.A.
2 01200734.0 2001-02-28 U.S.A.