Title of Invention

A VARIABLE GEOMETRY TURBOCHARGER ASSEMBLY

Abstract A vane (50) post arrangement for a variable grometry turbocharger (10) employs vanes having a hole in a first end (44) surface receving a post (68) extending from a surface of the nozzle in the turbine housing (12). A second end (46) surface on each vane incorporates an extending tab (64) which is recevied in a repective slot (32) in a unison ring (34) for rotation of the vanes on the posts upon movement of the unison ring.
Full Text THE PATENTS ACT 1970
[39 OF 1970]
&
THE PATENTS RULES, 2003
COMPLETE SPECIFICATION
[See Section 10; rule 13]
"A VARIABLE GEOMETRY TURBOCHARGER ASSEMBLY"
HONEYWELL INTERNATIONAL INC., a Delaware Corporation, of 101 Columbia Avenue, P.O. Box 2245, Morristown, New Jersey 07960, United States of America.
The following specification particularly describes the invention and the manner in which it is to be performed:









5 FIELD OF THE INVENTION
This invention relates generally to the field of variable geometry turbochargers
and, more particularly, to an improved vane design for a plurality of pivoting
aerodynamic - vanes disposed within a turbine housing of a variable nozzle
rurbocharger to provide improved vane operation and extended vane/turbocharger
10 service life.
BACKGROUND OF THE INVENTION
Turbochargers for gasoline and diesel internal combustion engines are devices known in the art that are used for pressurizing or boosting the intake air stream, routed 15 to a combustion chamber of the engine, by using the heat and volumetric flow of exhaust gas exiting the engine. Specifically, the exhaust gas exiting the engine is routed into a turbine housing of a turbocharger in a manner that causes an exhaust gas-driven turbine to spin within the housing. The exhaust gas-driven turbine is mounted onto one end of a shaft that is common to a radial air compressor mounted 20 onto an opposite end of the shaft and housed in a compressor housing. Thus, rotary action of the turbine also causes the air compressor to spin within a compressor housing of the turbocharger that is separate from the turbine housing. The spinning action of the air compressor causes intake air to enter the compressor housing and be pressurized or boosted a desired amount before it is mixed with fuel and combusted 25 within the engine combustion chamber.
In a turbocharger it is often desirable to control the flow of exhaust gas to the turbine to improve the efficiency or operational range of the turbocharger. Variable geometry turbochargers have been configured to address this need. A type of such variable geometry turbocharger is one having a variable exhaust nozzle, referred to as 30 a variable nozzle turbocharger. Different configurations of variable nozzles have been employed in variable nozzle turbochargers to control the exhaust gas flow. One approach taken to achieve exhaust gas flow control in such variable nozzle
-2-

turbochargers involves the use of multiple pivoting vanes that are positioned
annularly around the turbine inlet. The pivoting vanes are commonly controlled to
alter the throat area of the passages between the vanes, thereby functioning to control
the exhaust gas flow into the turbine.
5 In order to ensure the proper and reliable operation of such variable nozzle
turbochargers, it is important that the individual vanes be configured and assembled within the turbine housing to move or pivot freely in response to a desired exhaust gas flow control actuation. Because these pivoting vanes are subjected to millions of high temperature cycles during turbocharger operation it is necessary that any such 10 pivoting mechanism be one that is capable of repeatabiy functionmg under such cycled ternperature conditions without enduring any cycled temperature related material or mechanical problem or failure.
Known multiple vane variable nozzle turbochargers include vanes that are each configured having a shaft projecting outwardly therefrom, each such shafted 15 being positioned within a respective shaft opening in a turbine housing or nozzle wall. While the vanes are commonly actuated to pivot vis-a-vis their shafts within the respective openings, it has been discovered that such conventional vane attachment and pivoting mechanism is not without its problems.
For example, in order to ensure freely pivoting movement of the vane shaft 20 with the opening it is essential that the shaft project perfectly perpendicularly from the vane, to thereby avoid undesired binding or otherwise impairment of the vane pivoting movement. Secondary straightening or machining operations are sometimes necessary to ensure the perpendicularity of the vane shafts., which secondary operations can be both time consuming and costly. Additionally, this type of vane 25 attachment and pivoting mechanism can produce a high cantilevered load on the vane shaft when actuated that can also impair free vane pivoting movement, and that can ultimately result in a vane material or mechanical failure.
It is, therefore, desirable that a vane pivoting mechanism be constructed, for use with a variable nozzle turbocharger, in a manner that provides improved vane 30 operational reliability when compared to conventional vane pivoting mechanisms.
- 3-
**•*■-»« ^12 -^^-aea 9^ ^^

SUMMARY OF THE INVENTION
A variable geometry turbocharger incorporating the present invention includes a turbine housing having an inlet for exhaust gas and an outlet, a volute connected to the inlet, and an integral outer nozzle wall adjacent the volute. A turbine wheel is 5 carried within the turbine housing and attached to a shaft. A plurality of vanes are disposed within the turbine housing, each vane having a hole extending into the vane through an axial vane surface substantially parallel to the outer nozzle wall, each vane hole receiving a respective post projecting outwardly from the outer nozzle wall, the vanes further having actuation tabs extending from an axial vane surface opposite 10 from the holes. An annular unison ring is positioned axially adjacent the vanes, the unison ring having a plurality of slots that each accommodate a respective tab therein. The unison ring is rotated to effect movement of the tabs within respective slots by pivoting movement of the vanes on the posts, wherein such movement of the tabs within the slots causes the vanes to move radially relative to the turbine wheel shaft, 15
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be more clearly understood with reference to the following drawings wherein:
FIG. 1 is an exploded isometric view of a turbine housing for a variable 20 geometry turbocharger employing conventional vanes;
FIG. 2 is a top view of the unison ring and slots showing the engagement with the tabs on the vanes;
FIG. 3 is a detailed view of a vane and post incorporating the present
invention;
25 FIG. 4 is a detailed view of a vane and tab incorporating the present invention;
FIG. 5 is a detailed view of a vane incorporating the present invention showing the internal elements of the vane.
DETAILED DESCRIPTION OF THE INVENTION
30 A variable geometry or variable nozzle turbocharger generally comprises a
center housing having a turbine housing attached at one end, and a compressor
housing attached at an opposite end. A shaft is rotatably disposed within a bearing
to one shaft end and is carried within the turbine housing, and a compressor impeller
4

is attached to an opposite shaft end and is carried within the compressor housing. The turbine and compressor housings are attached to the center housing by bolts that extend between the adjacent housings.
FIG. 1 illustrates a portion of a known variable nozzle turbocharger 10 comprising a turbine housing 12 having a standard inlet 14 for receiving an exhaust gas stream, and an outlet 16 for directing exhaust gas to the exhaust system of the engine. A volute is connected to the exhaust inlet and an integral outer nozzle wall is incorporated in the turbine housing casting adjacent the volute. A turbine wheel and shaft assembly 18 is carried within the turbine housing. Exhaust gas, or other high energy gas supplying the turbocharger, enters the turbine through the inlet and is distributed through the volute in the turbine housing for substantially radial entry into the turbine wheel through a circumferential nozzle entry 20,
Multiple vanes 22 are mounted to a nozzle wall 24 machined into the turbine housing using shafts 26 that, project perpendicularly outwardly from the vanes. The shafts 26 are rotationally engaged within respective openings 28 in the nozzle wall. The vanes each include actuation tabs 30 that project from a side opposite the shafts and that are engaged by respective slots 32 in a unison ring 34, which acts as a second nozzle wall.
An actuator assembly is connected with the unison ring and is configured to rotate the ring in one direction or the other as necessary to move the vanes radially, with respect to an axis of rotation of the turbine wheel, outwardly or inwardly to respectively increase or decrease the flow of exhaust gas to the turbine. As the unison ring is rotated, the vane tabs 30 are caused to move within their respective slot 32 from one slot end to an opposite slot end. Since the slots are oriented with a radial directional component along the unison ring, the movement of the vane tabs within the respective slots causes the vanes to pivot via rotation of the vane shafts within their respective openings and open or close the nozzle area depending on the unison ring rotational direction. An example of a known variable nozzle rurbochargers comprising such elements is disclosed in U.S. Patent Application Serial No. 09/408,694 filed September 30, 1999 entitled VARIABLE GEOMETRY TURBOCHARGER, having a common assignee with the present application, which is incorporated herein by reference.

the unison ring. This movement pattern is generally the same for both known vane

configurations and vane configurations prepared according to principles of this invention as used with variable nozzle turbochargers. Each vane tab 42 is disposed within a respective elongated slot 38 of a unison ring 34. In a closed position "A", the vane tab 42 is positioned adjacent a first end 44 of the slot 38- This position is referred to as a closed position because the vane is not flared radially outward, thereby serving to limit the flow of exhaust gas to the turbine. At an intermediate position "B" the unison ring 40 has been rotated a sufficient amount such that the vane tab 42 is moved within the slot 38 away from the first slot end 44 towards a middle position of the slot. The vane tab movement is provided by the pivoting.action of the vane relative to the nozzle wall, allowing the vane to be rotated a given extent. At position "B" the intermediate radial projection of the vane serves to increas"e the , flow of exhaust gas to the turbine when compared to closed position "A". Atpositibn "C" the unison ring has now been rotated to a maximum position, causing the vane tab 42 to be moved within the slot 38 to a second end 46. Again, such further .vane. movement is facilitated by the pivoting arrangement between the vane and the nozzle. wall, allowing the vane to be rotated to a maximum open position. At position "C" . the maximum radial projection of the vane serves to increase the flow of exhaust gas . to the turbine when compared to the intermediate position "A".
As mentioned above in the background, proper operation of known variable nozzle turbochargers, comprising the multiple vanes as described above.and illustrated in FIG. 1, requires that the vanes be permitted to pivot freely vis-a-vis-the nozzle wail when actuated by"the unison ring. Such free pivoting movement requires that the vane shafts not bind or otherwise be restricted in their rotational movement. ■■ within their respective nozzle holes. The known vane design can produce impairments to free pivoting vane movement if the shafts projecting from the vanes are not perfectly perpendicular. Additionally, the known vane designs can produce an impairment to free pivoting vane movement by the relatively high cantilever load stress imposed on the vane by virtue of the vane shaft and hole attachment mechanism.
FIGS. 3 to 5 illustrate a vane 50 for use with a variable nozzle turbocharger,
constructed according to principles of this invention, comprising an upper or low
pressure airfoil surface 54, an opposite high pressure airfoil surface 52, and axial

within the turbine housing. The vane 50 includes a leading edge 60 and a trailing
6


edge 62 at opposite common ends of the high and low pressure airfoil surfaces 52 and
54. The vane includes a tab 64 projecting outwardly away from the axial surface 58
and positioned adjacent the leading edge 60. The tab is configured to cooperate with
a unison ring slot in the manner described above to facilitate vane actuation.
5 Referring particularly to FIGS. 3 and 5, unlike the known vane design, vanes
50 constructed according to the practice of this invention do not include a shaft. Rather, the vanes of this invention are designed having a hole 66 extending through the axial surface 56 that is sized and configured to accommodate placement of a respective post 68 therein (see FIG, 3), wherein the post projects perpendicularly
10 outwardly away from the turbine housing nozzle wall. Configured in this manner, vane pivoting movement vis-a-vis the nozzle wall is provided by the relative rotational motion between the fixed post and the hole in the vane. The pivoting mechanism provided by the fixed wall post disposed in the rotatable vane hole reduces the amount of cantilever load stress on the vane, when compared to known
15 vane designs and attachment mechanisms, thereby serving to reduce and/or eliminate potential impairments to efficient vane movement and operation.
Each post 68 is configured to be attached to the nozzle wall by press fit or other conventional attachment method, and is positioned within the nozzle wall in a substantially circular pattern the coincides with the desired spaced apart vane
20 arrangement. In an example embodiment, the post 68 is configured having a stepped design with two different diameters, wherein a first enlarged diameter section 70 is sized and configured to provide a secure press fit attachment within the nozzle wall, and wherein a second reduced diameter section 72 is sized and configured to project outwardly from the nozzle wall and fit within the vane hole 66 to provide rotational
25 movement thereupon.
The vane 50 is configured having a thickness, as measured between the high and low pressure airfoil surfaces 52 and 54, that is greater than known vane designs, to accommodate a sufficiently strong post without compromising the structural integrity of the vane. An unexpected and synergistic effect of increasing the vane
30 thickness to accommodate the nozzle wall post is the realization of a wider area turndown ratio for a fixed rotation of the vane, when compared to turbochargers comprising the conventional prior art vanes. Therefore, vanes of this invention can provide a greater. aerodvnamic flow range for a fixed efficiency level than that of turbochargers comprising known vane designs.

10

The vane can be formed from the same types of materials, and m the same manner, as that used to form conventional prior art vanes. The vanes have a substantially solid design or axe alternatively configured having a cored out design. In an example, embodiment, the vane axial surfaces 56 and 58 are configured having a cored out design. The cored out design is preferred as it has been found to provide better formability, a higher stiffness to weight ratio, be more cost effective to produce, and have a reduced mass when compared to conventional prior art vanes.
Having now described the invention in detail as required by the patent statutes, those skilled in the art will recognize.modifications and substitutions to the specific embodiments disclosed herein. Such modifications are withm the scope and intent of the present invention.



8



We Claim:
1. A variable geometry turbocharger assembly comprising:
a center housing having a shaft rotatably disposed therein;
a turbine housing (12) attached at one end to the center housing and having an inlet (14) for exhaust gas and an outlet (16), a volute connected to the inlet, and an integral outer nozzle wall (24) adjacent the volute;
a turbine wheel (18) carried within the turbine housing and attached to an end of the shaft;
a compressor housing attached at an opposite end of the center housing;
a compressor impeller disposed within the compressor housing and attached to an opposite end of the shaft;
a plurality of vanes (50) disposed within the turbine housing, each vane having a hole (66) disposed within a first axial vane surface (56) that is substantially parallel to the outer nozzle wall, the hole having a closed end at a second axial vane surface that is opposite the first axial vane surface, each vane hole receiving a post (68) therein, the post being fixedly attached to and projecting outwardly from the outer nozzle wall, the post having a first diameter section 70 and a second diameter section (72), the post extending a partial distance into the vane hole, the vanes being pivotably mounted on the
respective post, and the vanes further having elongate actuation tabs (42) extending outwardly from the second axial vane surface;

an annular unison ring (34) positioned axially against the second axial surface of the vanes, the unison ring having a plurality of slots (32) each configured to accommodate a respective tab therein, wherein the unison ring is rotatably mounted within the assembly; and
an actuator connected to the unison ring to rotate the unison ring to cause each tab to slide within a respective slot to move the plurality of vanes in unison radially within the turbine housing relative to the shaft.
2. The variable geometry turbocharger assembly as claimed in claim 1 wherein the post first diameter section (70) is fixedly attached to the outer nozzle wall, and the second diameter section (72) is positioned within the vane hole.
3. The variable geometry turbocharger assembly as claimed in claim 2 wherein the post first diameter section is sized larger than the post second diameter section.
4. The variable geometry turbocharger assembly as claimed in any one of claims 1 to 3 wherein each vane includes an inner radial surface (54) directed towards the turbine wheel, an outer radial surface (52) opposite from the inner radial surface, wherein the vane axial surfaces extend between the radial surfaces, and wherein the
10

vane axial surfaces include one or more hollow sections positioned adjacent a vane leading edge (60) or trailing edge (62).
5. The variable geometry turbocharger assembly as claimed in any one of claims 1 to 4 wherein the elongate tabs are positioned adjacent a leading edge of the vane and are elongate in a direction extending from the leading edge towards the trailing edge.
Dated this the 30th day of July, 2002.

[JAVWNTA PAL]
OfRemMr&Sagar
Attorney for thy Applicants
11

Documents:

abstract1.jpg

in-pct-2002-01029-mum-cancelled page(30-7-2002).pdf

in-pct-2002-01029-mum-claims(granted)30-11-2007.pdf

in-pct-2002-01029-mum-clams.doc

in-pct-2002-01029-mum-correspondence(6-12-2007).pdf

in-pct-2002-01029-mum-correspondence-ipo(5-12-2007).pdf

in-pct-2002-01029-mum-drawing(30-11-2007).pdf

in-pct-2002-01029-mum-form 13(03-03-2006).pdf

in-pct-2002-01029-mum-form 18(13-1-2006).pdf

in-pct-2002-01029-mum-form 1a(30-11-2007).pdf

in-pct-2002-01029-mum-form 2(granted).doc

in-pct-2002-01029-mum-form 2(granted)30-11-2007.pdf

in-pct-2002-01029-mum-form 3(30-11-2007).pdf

in-pct-2002-01029-mum-form 3(31-7-2002).pdf

in-pct-2002-01029-mum-form 5(31-7-2002).pdf

in-pct-2002-01029-mum-power of attorney(30-11-2007).pdf

in-pct-2002-01029-mum-power of attorney(31-7-2002).pdf


Patent Number 213720
Indian Patent Application Number IN/PCT/2002/01029/MUM
PG Journal Number 12/2008
Publication Date 21-Mar-2008
Grant Date 10-Jan-2008
Date of Filing 30-Jul-2002
Name of Patentee HONEYWELL INTERNATIONAL INC.
Applicant Address 101 COLUMBIA AVENUE, P.O. BOX 2245, MORRISTOWN, NEW JERSEY 07960
Inventors:
# Inventor's Name Inventor's Address
1 STEVEN DON ARNOLD 3351 DELUNA DRIVE, RANCHO PALOS VERDES, CA 90275
PCT International Classification Number F01D17/16
PCT International Application Number PCT/US02/01397
PCT International Filing date 2002-01-16
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/761277 2001-01-16 U.S.A.