Title of Invention

DEVICE FOR BLOWING A FLUID ONTO AT LEAST ONE FACE OF A THIN ELEMENT AND ASSOCIATED BLOWING UNIT.

Abstract The invention relates to a device for blowing a fluid onto at least one face of a thin element of the band type, comprising, within a containment (2) having a horizontal longitudinal axis (XX') corresponding to the axis of travel of the band, at least one radial-flow fan (3) with a vertical axis (ZZ'), having at least one outlet connected to at least one pipe (51, 52) for feeding nozzles (43) directed towards said face, the nozzles (43) induce fluid jets in at least one plane perpendicular to the direction (XX') of travel of the said band.
Full Text 2 FIELD OF THE INVENTION
The present invention relates to the field of devices intended for blowing a gas onto a moving surface, such as a band material; blowing may be carried out either on a single face or both faces of the band.
BACKGROUND OF THE INVENTION
Such devices are used, in particular, in the thermal treatment of bands of material, such as bands of glass, fabrics, sheet metals or other materials.
The abovementioned blowing allows heat exchange (heating, cooling) of the band which is movable in relation to the blowing device. Preferably, the band is in movement and the blowing device is stationary.
Many devices of this type are known, in particular devices for blowing hot air onto the two faces of a moving glass band.
Thus, the Patent US 5647882 describes a treatment containment, through which a glass sheet travels. Hot-air blowing takes place on both faces of the glass, particularly by means of fans associated with heating means and cooperating with nozzles which blow directly onto both faces of the traveling sheet. The assembly is symmetrical with respect to the plane of the sheet.
The fans are of the crossflow type, and they are fastened to a longitudinal wall of the containment both above and below the sheet.

This arrangement has, in particular, the disadvantage of not blowing the air onto the entire surface of the glass in a highly homogeneous manner and of having poor air output efficiency, particularly because of the tangential fans.
The Patent US 5150534 is also, known, which discloses another arrangement of elements for blowing on both faces of a glass band.
This arranqement has a central point of symmetry, with two fans arranged "head to foot" above and two fans likewise arranged "head to foot" below the surface of the glass.
The fans are of the crossflow-type, and they are fastened to the side walls of the containment. These fans, associated with heating means, feed hot air to an assembly of nozzles which discharge the air perpendicularly to the direction of travel of the glass plate.
The assembly is complex and difficult to implement because only the simultaneous functioning of the four fans can make it possible to achieve some degree of homogeneity in the distribution of the flows on the two sides of the glass.
Moreover, such assemblies are difficult to arrange in series on continuous furnaces, particularly on account of the different temperatures generated by each assembly.
Furthermore, the document DE 4219003 is known, according to which fans fastened to the upper wall of the treatment containment and associated with

4
pipes and with a battery of nozzles make it possible to blow hot air onto one of the faces of the glass band by means of at least one assembly of nozzles arranged parallel to the direction of travel of the glass band.
This orientation, moreover, may include defects in the glass.
Furthermore, the fact that the nozzles discharge the air only one of the faces of the glass at a given location may give rise to stresses, deformations and other defects which are not desirable.
DE 4010288 discloses an apparatus for the bilateral blowing of a treatment gas onto a web-shaped material comprises a treatment space for the approximately rectilinearly moved web-like or sheet-like material, nozzle ribs arranged on both sides of the web-like or sheet-like material for introducing the treatment gas stream into the treatment space and radial fans for generating the treatment gas stream on the one hand and symmetrical extraction of the treatment gas form the treatment space on the other hand; each radial fan is installed into a 360° spiral housing; the two radial fans are arranged point symmetrical at 180o and each blow into a blow-out duct disposed on the longitudinal side of the apparatus; and each blow-out duct comprises a first region of constant or approximately constant cross-section and a distributor piece with cross-section diminishing in the flow direction.

4A
OBJECTS OF THE INVENTION
It is therefore an object of the invention to propose device for blowing a fluid onto at least one face of a thin element of the band type an air-blowing device of the type, which, in particular, overcomes the abovementioned disadvantages.
Another object of the invention to propose device for blowing a fluid onto at least one face of a thin element of the type which is both simple and reliable to solve the problem of homogenizing the temperature of the air flow which sweeps over the surface (or both surfaces) of a glass band.
A further object of the invention to propose device for blowing a fluid onto at least one face of a thin element of the band type which is easy to implement.
A still further object of the invention to propose device for blowing a fluid onto at least on efface of a thin element of the band type which produces heated zones..

5
of limited dimensions, with different temperatures, this being useful, in particular, in the case of application to continuous furnaces.
SUMMARY OF THE INVENTION
The subject of the present invention is therefore, a device for blowing a fluid onto at least one face of a thin element of the band type, comprising, within a containment having a horizontal longitudinal axis (XX') corresponding to the axis of travel of the band, at least one radial-flow fan with a vertical axis (ZZ'), having at least one outlet connected to at least one pipe for feeding nozzles directed towards the said face.
According to the invention, the nozzles induce fluid jets in at least one plane perpendicular to the direction (XX') of travel of the said band, and the axis (ZZ') of the said fan is arranged generally in the vicinity of the longitudinal axis of the containment. In general, the axis (ZZ') is perpendicular to the direction (XX'). The axis (ZZ') may, for example, be at a distance from the longitudinal axis of the containment of at least 35% of the internal width of the containment or even of less than 25% of the internal width of the containment. The axis (ZZ') may intersect the longitudinal axis of the containment, particularly when the device according to the invention comprises, on one side of the thin element, in cross section, only a single fan with two radial outlets (as regards the device of Figure
1).
This characteristic arrangement has the advantage of a greater homogeneity in the flow.

6
Preferably, the device according to the invention comprises two diametrically opposite radial pipes, each feeding at least one series of transverse parallel nozzles defined between plates, and the cross section of the said pipe is not constant.
Advantageously, the said nozzles originating from each of the pipes are arranged alternately using the longitudinal axis (XX') of the containment, the pitch being at least one nozzle.
This arrangement of the intermingled nozzles ensures a good distribution of the flow. Moreover, if one of the feed pipes is obstructed (malfunction), the flow nevertheless arrives uniformly on the surface by means of the other pipe which delivers the flow to the other series of nozzles.
According to one embodiment of the invention, a device which comprises a single fan having two radial outlets is provided.
According to another embodiment of the invention, two fans are envisaged, which each have one radial outlet and which are arranged according to the characteristics of claim 1.
According to an additional characteristic of the invention, the cross section of the pipe (or pipes) for feeding the nozzles is not constant.
Whatever the shape of the traveling band, the said nozzles induce air jets directed perpendicularly to the surface of the thin band element. In general, the nozzles are not contiguous, so that the air emanating from the nozzles can

circulate between them. In this case, the air jets emanating from the nozzles strike the thin band-type element, and the air can flow back rearwards, circulate between the nozzles and refeed the fan.
Preferably, the said nozzles originating from each of the pipes have an overlap zone over all or part of the width of the containment.
The device according to the invention applies a highly homogeneous treatment over the entire width of the thin element. To be precise, for a given nozzle, the fluid flow which it ejects does not, in general, have exactly the same characteristics (speed and/or temperature) at its two ends. In the device according to the invention, then, the homogeneity defect brought about by a nozzle fed by one of the pipes (51) are immediately compensated by the same defects brought about by another nozzle fed by the other pipe (52), since these pipes (51, 52) are arranged alternately along the axis (X, X')- The fact that the nozzles are not contiguous also contributes to achieving high homogeneity because the fluid circulates more easily.
The present invention does not apply solely to flat thin elements. The elements may be curved, for example of semi-cylindrical shape.
Furthermore, in application to the heating of thin bands, the device according to the invention comprises means for heating the fluid in the containment, such as, for example, electrical resistors or gas burners.
The heating means may be of the radiant type, with, for example, one or more electrical resistors.

8
Without departing from the scope of the invention, the blowing device may be arranged on both faces of the thin band.
Moreover, the containment may comprise a plurality of fans aligned along its longitudinal axis.
Thus, the device according to the invention comprises means intended for individually controlling and adjusting the temperature and/or the flow rate nf the fluid emanating from each fan, in order to have particular temperature profiles in the region of blowing on the thin band.
The invention is aimed, moreover, at a unit for blowing a fluid onto the two faces of the thin element of the band type, comprising a blowing device on one of the faces, associated with another blowing and/or heating means of the radiant or convective type on other face. The said other face may likewise be subjected to heat transfer by conduction (conductive means); this applies, in particular, to the situation where the thin element is displaced under the action of successive rollers, contact between the thin element and the rollers being capable of causing a transfer of heat by conduction from the rollers towards the thin element, or vice versa.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
Other characteristics, details and advantages of the invention will emerge more clearly from a reading of the following description given in an illustrative and in no way limiting way, with reference to the accompanying drawings in which:

- Figure 1 is a simplified cross section of an embodiment of the
invention;
- Figure 2 is a top view of the invention, and
- Figure 3 is a simplified longitudinal section of the said embodiment of
the invention.
- Figure 4 is a perspective view of a pair of nozzles arranged alternately
and alternating at a pitch of one nozzle. The pair of nozzles comprises
an overlap zone (R). In this figure, the nozzles are not contiguous, so
that the air can circulate between them. This figure is a view from the
side for the feed of fluid to the nozzles. The fluid arriving via the pipes
(51, 52) passes into the orifices (61, 62) in order to be ejected through
the nozzles (43) in the direction of the thin element.
- Figure 5 is a simplified cross section of an embodiment of the
invention comprising two fans which each have a single radial outlet.
DETAIL DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
Figure 1 illustrates, in cross section, the main elements of an embodiment of the
invention.
The thin band 7 is displaced perpendicularly to the sectional plane on rollers 1 parallel to one another, of any type known per se and with a horizontal axis YY'.

10
The band 7 passes through the paralleipiped containment 2, within which the component means of the invention are located. The containment 2 may comprise five walls consisting of insulating material made from ceramic fibres.
According to this embodiment of the invention, the lower limit of the. containment 2 is formed by the assembly of rollers 1 which support and transport the thin sheet 7.
Above the band 7 issue nozzles 43 defined by plates 41, 42 parallel to one another so that the fluid jets discharged from the nozzles 43 towards the this band 7 are contained in "transverse" planes, that is to say planes perpendicular to the plane of the band 7 and to the longitudinal axis XX' of the containment 2.
One or more feed pipes 51, 52 connect the fins 41, 42 to the outlet (or outlets) of a fan 3 having preferably a vertical axis ZZ' and located centrally, that is to say near the longitudinal axis XX' of the containment 2.
According to the embodiment illustrated in Figures 1 to 3, each blowing unit comprises a fan 3 having two diametrically opposite radial outlets which are each connected to a feed pipe 51, 52 which itself distributes the fluid through the fins 41, 42 forming the nozzles 43.
As becomes clearer from Figure 2, the plates originating from each pipe 51, 52 are arranged so as to form nozzles 43 discharging the fluid emanating alternately from one pipe 51 and from the other 52.
The pitch between the nozzles of varying origin may be one or more nozzles.

11
Moreover, the nozzles 43 originating from each pipe 51, 52 may have a greater or lesser overlap zone, depending on the width of the containment: in Figures 1 and 2, this overlap zone is substantially equal to the entire width of the containment 2; this arrangement is selected so as to ensure greater homogeneity.
A smaller overlap zone may, of course, be provided, without departing from the scope of the present invention.
Preferably, but not necessarily, the cross section increasing from each pipe 51, 52 is not constant: to be precise, Figure 2 shows a cross section increasing from each outlet of the fan as far as the region of the fins 41, 42.
Furthermore, heating elements 6 may be provided, within the feed pipes 51, 52. These means may be of the radiant type, such as resistors or else gas burners.
They may be fastened to the side walls of the containment.
The general movement of the fluid within the containment 2 is as indicated by the arrows B in Figures 1 and 3.
This movement, quasi-symmetrical with respect to the vertical axis 12! of each of each blowing unit, allows an optimum and a homogenous distribution of the fluid on the surface to.be treated.
Moreover, the arrangement of the various components, in particular the fans 3 and the heating means 6, ensures easy reliable access in the event of repair and/or maintenance.

12
When the containment comprises a plurality of fans 3, means are likewise envisaged for separately adjusting and controlling the temperature and/or the flow rate of the fluid emanating from each of the fans. Any means known per se may be used for this function.
Particular temperature profiles suitable for the level of blowing on the band are thus obtained. This modularity is then highly esteemed by users.
Furthermore, the subject of the invention is a blowing/heating unit comprising either a device, as described above, on each of the faces of the band or a device, described above, which blows onto one face, associated with another blowing and/or heating means of the radiant or convective type on the other face.

13
WE CLAIM
1. Device for blowing a fluid onto at least one face of a thin element of 6elt
type, comprising, within a containing (2) having a horizontal longitudinal
axis (XX') corresponding to the axis of travel of the belt, at least one
radial-flow fan (3) with a vertical axis (ZZ'), having at least one outlet
connected to at least one conduit for feeding nozzles (43) directed
towards said face, characterized in that the nozzles (43) induce fluid jets
in at least one plane perpendicular to the direction (XX') of travel of said
belt, and in that the atleast one conduit comprises two diametrically
opposed radial pipes (51, 52) each radial pipe feeding at least one series
of transverse parallel nozzles (43) which is not fed by the other radial
pipe.
2. Device as claimed in any one of the preceding claims, wherein said
nozzles (43) originated from each of the pipes (51, 52) are arranged
alternately along the longitudinal axis (XX') of the containment (2).
3. Device as claimed in claim 1 or 2, wherein the nozzles (43) alternate with
a pitch of at least one nozzle.
4. Device as claimed in any one of the preceding claims, wherein the axis
(ZZ') of said fan (3) is arranged in the vicinity of the longitudinal axis of
the containment (2).

14
5. Device as claimed in any one of the preceding claims, comprising a single
fan (3) having two radial outlets (51, 52).
6. Device as claimed in any one of the preceding claims, wherein the vertical
axis (22') crosses the longitudinal axis (XX').
7. Device as claimed in any one of the claims 1 to 5, wherein each of the two
fans having one radial outlet.
8. Device as claimed in any one of the preceding claims, wherein the cross
section of the pipes (51, 52) for feeding the nozzles (43) is not constant.
9. Device as claimed in any one of claims 1 to 7, wherein said nozzles (43)
originating from each of the pipes (51, 52) have an overlap zone over all
or part of the width of the containment.
10. Device as claimed in any one of the preceding claims, wherein said
nozzles (43) induce air jets directed perpendicularly to the surface of the
thin belt element.
11. Device as claimed in any one of the preceding claims, comprising means
(6) for heating the fluid in the containment (2) constituting either of the
radiant type or of the convective type.

15
12. Device as claimed in claim 11, wherein the heating means (6) are of the
radiant type and comprise at least one electrical resistor.
13. Device as claimed in any one of the preceding claims, comprising means
for the transfer of heat of the conductive type with the thin element
14. Device as claimed in any one of the preceding claims, wherein the nozzles
are not contiguous, so that the air emanating from the nozzles can flow
back rearwards and circulate between the nozzles.
15. Device as claimed in any one of the preceding claims, wherein the
containment (2) comprises a plurality of fans (3) aligned along its
longitudinal axis (XX').
16. Device as claimed in any one of the preceding claims, comprising means
for individually controlling and adjusting the temperature and/or the flow
rate of the fluid emanating from each fan (3), in order to have particular
temperature profiles in the region of blowing on the thin belt (7).
17. Device as claimed in any one of the preceding claims, wherein the device
is disposed on both faces of the thin element.
18. Device as claimed in any one of the preceding claims, wherein the thin
element is moved under the action of successive rollers.

16
19.A system for blowing a fluid onto the two faces of a thin element of belt type, comprising a blowing device as claimed in any one of the claims 1 to 18 disposed on one of the faces; and one of a blowing and heating means of the radiant or convective type on the other face.
20. A system for blowing a fluid onto the two faces of a thin element of belt type, comprising a blowing device as claimed in any one of claims 1 to 18 disposed on one of the faces; and means for the transfer of heat of the conductive type on the other face.
The invention relates to a device for blowing a fluid onto at least one face of a thin element of the band type, comprising, within a containment (2) having a horizontal longitudinal axis (XX') corresponding to the axis of travel of the band, at least one radial-flow fan (3) with a vertical axis (ZZ'), having at least one outlet connected to at least one pipe (51, 52) for feeding nozzles (43) directed towards said face, the nozzles (43) induce fluid jets in at least one plane perpendicular to the direction (XX') of travel of the said band.

Documents:


Patent Number 213410
Indian Patent Application Number 00997/KOLNP/2003
PG Journal Number 01/2008
Publication Date 04-Jan-2008
Grant Date 02-Jan-2008
Date of Filing 04-Aug-2003
Name of Patentee SAINT-GOBAIN SEVA.
Applicant Address F-71100 CHALON SUR SAONE FRANCE.
Inventors:
# Inventor's Name Inventor's Address
1 BANCON GEORAGES N28, RUE DU DOCTEUR MAUCHAMP F-71100 CHALON SUR SAOBNE
2 BRIS JEAN-JACQUES 28, RUE DU DOCTEUR MAUCHAMP F-71100 CHALON SUR SAONE FRANCE.
3 BONNAMOUR FRANCOIS 12 GRANDE RUE F-71100 CHALON SUR SAONE FRANCE
PCT International Classification Number 36B
PCT International Application Number PCT/FR02/00540
PCT International Filing date 2002-02-13
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 01/02707 2001-02-23 France