Title of Invention

A PROCESS FOR GENRATING A HYDROGEN-RICH EFFLUENT FROM A HYDROCARBON FEED AND A LAYERED CATALYST THEREFOR

Abstract A process for generating a hydrogen-rich effluent from a hydrocarbon feed which comprises the steps of: (a) introducing a preheated inlet stream comprising a hydrocarbon feed, water and air into an autothermal reactor containing a layered catalyst member and contacting the stream with the member at a temperature sufficient to initiate and sustain both catalytic partial oxidation and steam reforming' (b) catalytically partially oxidizing at least part of the hydrocarbon feed to produce an effluent comprising hydrogen and carbon oxides using a partial oxidation catalyst comprising platinum and palladium, the partial oxidation generating heat; and (c) steam reforming hydrocarbons remaining in the feed to produce a hydrogen-rich effluent using heat generated by the partial oxidation and a steam reforming catayst comprising at least one of rhodium, ruthenium, platinum, palladium, nickel, cobalt, iridium and osmium and at least one metal oxide selected from rare earth metal oxides and alkaline earth metal oxides, said member comprising a monolith substrate containing on a surface thereof at least one layer of a steam reforming catalyst in contact with at least one layer of a catalytic partial oxidation catalyst.
Full Text FIELD OF THE INVENTION
The invention pertains to a process for catalytically generating hydrogen-rich gases (frequently referred to as "synthesis gas" or "syn gas") using a layered catalyst member in an autothermal reactor (also referred to in the prior art as an autothennal reformer)
BACKGROUND OF THE INVENTION
Processes for catalytically partially oxidizing and/or catalytically steam reforming a hydrocarbon feed to produce hydrogen-rich gases are well known in the prior art. Typically, such processes utilize one reactor to catalytically partially oxidize a hydrocarbon feed to produce hydrogen-rich gases or to catalytically steam reform a hydrocarbon feed to produce hydrogen-rich gases. Alternatively, the prior art discloses processes for carrying out both the catalytic partial oxidation reaction and the catalytic steam reforming reaction in one autothennal reactor. Other prior art discloses carrying out both reactions in a single autothermal reactor containing catalyst zones within which each type of reaction is carried out. Exemplary prior art disclosing such processes include the following patents and published patent applications: USj3,481,722; US 3,976,507; US 4,501,823; US 4,522,894; US 4,844,837; US 4,927,857; US 5,112,527; EP0ll2 613 A2; EP 0 495 534 A2; EP 0 673 074Bl; WO 96/00186; WC 99/48804; and WO 99/48805.
The prior art processes referred to above are more complex than the process of the present invention which may be carried out in a single autothennal reactor without the need to provide multiple sequential catalyst zones in the reactor. The catalytic partial oxidation reaction is exothermic in nature and the heat generated thereby is used to carry out the steam reforming reaction which is endothennic in nature. By having the catalytic partial oxidation layer(s) in intimate contact with the steam reforming catalyst layer(s), the process heat can be more effectively managed in an adiabatic reactor, i.e. an autothermal reactor. By having the two catalyst layers in contact with one another, heat loss which otherwise occurs from the use of multiple autothennal reactors or an autothennal reactor containing multiple catalyst zones is significantly minimized.





-2-
The process of the present invention also results in savings in reactor volume and monolith substrate costs as well as less pressure drop throughout the catalytic partial oxidation and steam reforming reactions. The process of the present invention thereby provides more efficient utilization and uniform usage of the heat generated by the exothermic catalytic partial oxidation reaction, thus allowing the endothermic steam reforming reaction to be carried out at a somewhat higher temperature due to lower heat loss and concomitant higher reaction rate and under adiabatic conditions. The result is that the catalytic partial oxidation reaction temperature is somewhat lowered, estimated to be by about 50 degrees and concomitantly, the steam reforming reaction temperature is estimated to be raised by about 50 degrees, thereby improving catalyst lift and resulting in higher steam reforming reaction rates. Moreover, by utilizing the catalytic partial oxidation and steam reforming catalysts as layers in contact with one another, adverse reactions such as the reaction of oxygen with rhodium and the reaction of oxygen with platinum, may be avoided.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a process which will result in a more efficient generation of hydrogen-rich gases than prior art processes.
A further object of the present invention is to provide a process which will result in a more economical generation of hydrogen-rich gases than prior art processes.
r.V> "^""iW'W^^-'*"*^^3^*"''**if*11^
The present invention pertains to the generation of hydrogen-rich gases by the following steps:
(a) introducing a preheated inlet stream comprising a hydrocarbon feed,
water and air into an autothermal reactor containing a layered catalyst
member and contacting the stream with the member at a temperature
sufficientto initiate and sustain both catalytic partial oxidation and steam
reforming (for the purposes of this invention, the term "water" will be
understood to encompass "steam");
(b) catalytically partially oxidizing at least part of the hydrocarbon feed to
produce an effluent comprising hydrogen and carbon oxides; and
(c) steam reforming hydrocarbons remaining in the feed to produce a
hydrogen-rich effluent.

The layered catalyst member comprises a monolith substrate containing on a surface thereof at least one layer of a steam reforming catalyst in contact with at least one layer of a catalytic partial oxidation catalyst. The steam reforming catalyst layers) and the catalytic partial oxidation catalyst layer(s) comprise the components described
below.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWING FIG. 1 is a perspective view of a preferred orientation of a first embodiment of
the layered catalyst member employed in the process of the present invention.
FIG. 2 is a perspective view of a preferred orientation of a second embodiment
of the layered catalyst member employed in the process of the present invention.
FIG. 3 is a perspective view of a preferred orientation of a third embodiment of
the layered catalyst member employed in the process of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the first step of the process of the present invention, an inlet stream comprising the hydrocarbon feed from which the hydrogen-rich gas is to be generated together with air (or an oxygen-containing gas) and water is preheated to a temperature of about 200 to about 900cC and is fed into a suitable autothermal reactor which is typically maintained at a temperature of about 250 to about 1100°C. The inlet stream is typically fed into the autothermal reactor at a volumetric hourly rate of about 2,000 to about 500,000 volumes per volume of monolith substrate. The autothermal reactor contains the layered catalyst member which is more fully described below. The stream is contacted with the layered catalyst member at a temperature sufficient to initiate and sustain both catalytic partial oxidation and steam reforming.
The hydrocarbon feed may consist of C5 and heavier hydrocarbons, but is preferably a normally gaseous or readily vaporizable hydrocarbon such as a CrC4 alkane, e.g., methane, propane, butane, etc. The amounts of the hydrocarbon feed, water and air in the inlet stream introduced into the autothermal reactor are typically controlled to maintain a water to carbon ratio of at least about 0.3:1 and an oxygen to carbon ratio of from about 0.2 to 0.7:1.
In general, adiabatic conditions will prevail in the autothermal reactor due to the fact that the partial oxidation reaction is exothermic in nature and the heat generated in the course of such reaction is usually sufficient to initiate and sustain the steam reforming reaction which is endothermic in nature. Accordingly, by proper selection of


-4-
the preheat temperature, reactor design, volumetric hourly rate, etc., both reactions may be carried out within the reactor while the reactor temperature is kept within the range of about 250 to about 1100cC without the need to supply external heat or cooling to the reactor. However, it is within the scope of the present invention to supply heat or cooling to the reactor as desired in order to continuously maintain both reactions at high reaction rates.
In the second step of the process, the hydrocarbon feed is catalytically partially oxidized by contact with the catalytic partial oxidation catalyst layer(s). The resultant effluent will comprise hydrogen and carbon oxides.
In the third step of the process, hydrocarbons remaining in the feed which are not catalytically partially oxidized are steam reformed by contact with the steam reforming catalyst layer(s), thereby producing a hydrogen-rich effluent
Preferably, the hydrogen-rich gas effluent from the third step of the process is subjected to a further water-gas shift reaction. In the course of the steam reforming reaction, the hydrocarbon reacts with water to yield a product gas containing primarily hydrogen and carbon monoxide, plus any unreacted hydrocarbons. In order to reduce the carbon monoxide level and increase the hydrogen gas level, the effluent may be passed into a converter in which the effluent is contacted with a catalyst, e.g., Fe/Cr oxides or Cu/Zn oxide, such that the carbon monoxide will react with water to yield carbon dioxide and further amounts of hydrogen.
The layered catalyst member employed in the process of the present invention comprises a monolith substrate and at least one layer of a catalytic partial oxidation catalyst in contact with at least one layer of a steam reforming catalyst. Either the layer of the catalytic partial oxidation catalyst or the layer of the steam reforming catalyst or both layers may be disposed on the surface of the monolith substrate, provided that the layer of the catalytic partial oxidation catalyst is in contact with the layer of the steam reforming catalyst. It should also be understood that the layered catalyst member may also comprise multiple steam reforming layers and/or multiple catalytic partial oxidation catalyst layers with each such layer comprising a different steam reforming catalyst composition and/or a different partial oxidation catalyst composition. It is particularly preferred that the preheated inlet stream initially comes into contact with the catalytic partial oxidation catalyst layer.
Preferably, the catalytic partial oxidation catalyst and the steam reforming catalyst layers are disposed such that one layer is present on top of, and in contact with, the other layer. It is particularly preferred that the steam reforming catalyst layer is

-5-
present on the surface of the monolith substrate and the catalytic partial oxidation layer overlies, and is in contact with, the steam reforming catalyst layer. Alternatively, the steam reforming catalyst and catalytic partial oxidation catalyst layers aie "zoned"or "graduated" and disposed in the same plane of the monolith substrate such that they are in overlapping contact with each other. For the purposes of the present invention, the terms "zoned" or "graduated" are used interchangeably and are understood to mean that the thickness of each layer, and hence the concentration of the catalyst components) in each layer, is gradually changed In a particularly preferred embodiment, the thickness of the catalytic partial oxidation catalyst layer is at its maximum thickness at the point of initial contact with the pre-heated inlet stream and is gradually reduced in thickness along the length of the monolithic substrate. Concurrently, the thickness of the steam reforming catalyst layer is very low at the point of initial contact with the preheated inlet stream and is gradually increased in thickness along the length of the monolithic substrate. These arrangements are discussed in greater detail below.
The Monolith Substrate
The catalytic partial oxidation catalyst layer and/or the steam reforming catalyst layer are disposed on the surface of a monolith substrate of the type comprising one or more monolithic bodies having a plurality of finely divided gas flow passages extending therethrough. Such monolith substrates are often referred to as "honeycomb" type substrates and are well known in the prior art. A preferred form of the substrate is made of a refractory, substantially inert, rigid material which is capable of maintaining its shape and a sufficient degree of mechanical conditions at high temperatures of about 1450 °C. Typically, a material is selected for use as the substrate which exhibits a low thermal coefficient of expansion, good thermal shock resistance and preferably low thermal conductivity.
Two general types of materials of construction for monolith substrates are known. One is a ceramic-like porous material composed of one or more metal oxides, e.g., alumina, alumina-silica, alumina-silica-titania, mullite, cordierite, zirconia, zirconia-ceria, zirconia-spinel, zirconia-mullite, silicon-carbide, etc. A particularly preferred and commercially available material for use as the substrate for operations below about 1093°C is cordierite, which is an alumina-magnesia-silica material. For applications involving operations above about 1093°C, an alumina-silica-titania material is preferred.

-6-
Monolith substrates are commercially available in various sizes and configurations. Typically, the monolithic substrate would comprise, e.g., a cordierixe member of generally cylindrical configuration (either round or oval in cross section) and having a plurality of parallel gas flow passages of regular polygonal cross sectional extending therethrough. The gas flow passages are typically sized to provide from about 50 to about 1,200, preferably 200-600, gas flow channels per square inch of face area.
The second major type of preferred material of construction for the monolith substrate is a heat- and oxidation-resistant metal, such as stainless steel or an iron-chromium alloy. Monolith substrates are typically fabricated from such materials by placing a flat and a corrugated metal sheet one over the other and rolling the stacked sheets into a tubular configuration about an axis parallel to the configurations, to provide a cylindrical-shaped body having a plurality of fine, parallel gas flow passages, which may range, typically, from about 200 to about 1,200 per square inch of face area.
The monolith substrate may also be present in the form of a ceramic or metal foam. Monolith substrates in the form of foams are well known in the prior art, e.g., see US Patent 3,111,396 and SAE Technical Paper 971032, entitled "A New Catalyst Support Structure For Automotive Catalytic Converters" (February, 1997). The monolith substrate may also be present in the form of a heat exchanger, e.g., a shell-and-tube exchanger or a fin-type exchanger of the type commonly employed in automobile radiators.
The steam reforming catalyst layer and/or the catalytic partial oxidation catalyst layer may be deposited directly on the surface of the monolith substrate. However, it is preferred that a binder coating be deposited on the surface of a metallic monolithic substrate, i.e, interposed betweentiie surface of the monolithic substrate and the steam reforming catalyst layer and/or the catalytic partial oxidation catalyst layer. Such binder coating will typically be present in an amount of up to about 1.0g/in3 of the monolith substrate and typically comprises a high surface area alumina.
The Catalytic Partial Oxidation Catalyst Layer
The catalyst employed in the catalytic partial oxidation catalyst layer desirably should meet several criteria. The catalyst should be able to operate under conditions which vary from oxidizing at the inlet of the reactor to reducing conditions at the exit of the reactor. The catalyst should be capable of operating effectively and without significant temperature degradation over a temperature range of about 400 to 1050°C. The catalyst should operate effectively in the presence of carbon monoxide, olefins,

-7-
aromatic hydrocarbons and sulfur compounds. The catalyst should provide for low levels of coking such as by preferentially catalyzing the reaction of carbon with water to form carbon monoxide and hydrogen thereby permitting the formation of only a low level of carbon on the surface of the catalyst The catalyst must be able to resist poisoning from such common poisons such as sulfur and halogen compounds. Moreover, all of the foregoing requirements must be satisfied simultaneously.
The catalytic partial oxidation catalyst layer preferably comprises one or more "platinum group" metal components which have been found to satisfy the requirements . stated above. As used herein, the term "platinum group" metal means platinum, palladium, rhodium, indium, osmium, ruthenium and mixtures thereof. Preferred platinum group metal components are palladium and platinum and optionally, rhodium, Preferably, the catalytic partial oxidation catalyst layer comprises, on an elemental metal basis, about 10 to about 90% by weight of palladium components and about 10 to about 90% by weight of platinum components. Typically, the catalytic partial oxidation catalyst layer will be present in an amount of about 0.1 to about 310 g/iri3 of the substrate.
The platinum group metal components may optionally be supplemented with one or more base metals, particularly base metals of Group VHI, Group IB, Group VB and Group VIB of the Periodic Table of Elements. Preferably, the base metal is one or more of iron, cobalt, nickel, copper, vanadium and chromium.
The Steam Reforming Catalyst Layer
The catalytically active metals for the steam reforming catalyst layer comprise any of the catalytic metal components known for such purpose, e.g., nickel, cobalt and mixtures thereof. Preferably, the steam reforming catalyst comprises a platinum group metal component such as platinum, palladium, rhodium, indium, osmium, ruthenium and mixtures thereof. Particularly preferred steam reforming catalysts for use in the steam reforming catalyst layer include platinum, palladium and rhodium metal components, especially a mixture comprising, on an elemental metal basis, about 10 to about 100 % by weight of rhodium components and about 90 to about 0 % by weight of ^platinum components. Typically, the steam reforming catalyst layer will be present in anjunountofjibout0. ljto about 5.0 j/in3 of the substrate.
The steam reforming catalyst layer(s) and the catalytic partial oxidation catalyst layers) will be present in the form of washcoats which are "painted" on the surface of the monolith substrate. Such washcoats typically comprise alumina which has been impregnated with the steam reforming catalyst and the catalytic partial oxidation

-8-
catalyst Preferably, each layer comprises a catalyst mixed with one or more rare earth metal oxides and/or one or more alkaline earth metal oxides, e.g., one or more oxides of lanthanum, cerium, zirconium, presidium, yttrium, calcium, barium, strontium, magnesium and mixtures thereof Typically, the rare earth metal oxides and/or the alkaline earth metal oxides will be present in an amount of about 2 to about 10 weight percent, based on the weight of the oxides plus gamma-alumina and each washcoat will be present in an amount of about 0.02 to about 5.0 g/in3 of the monolith substrate.
The initial catalyst layer is deposited upon the surface of the monolith substrate. This step will be illustrated with the deposition of the steam reforming catalyst layer which is the preferred version of the first embodiment of the layered catalyst member employed in the process of the present invention. The steam reforming catalyst, e.g., one _ or more platinum group metal components such as a mixture of platinum and rhodium components (preferably containing one or more rare earth and/or alkaline metal oxides), is typically applied by immersing the monolith substrate in an aqueous slurry containing platinum-rhodium (and preferably one or more rare earth and/or alkaline earth metal oxides) A typical platinum-rhodium solution may be prepared by dissolving 42 g platinum in the form of H2Pt(OH)6 in monoethanolamine and 18g Rh in the form of Rh(NO3)-2H2O and combining the materials in water to provide a solution having a volume of 1,186 ml and a pH of 0.7 after adjustment with concentrated nitric acid. The resultant monolith substrate is immersed in the Pt-Rh solution, dried, e.g., for about 30 minutes at about 120°C, to reduce the moisture content, and men baked in an air stream at a temperature of about 400 to about 650°C for about 0.5 to about 4 hours, thereby resulting in a monolith substrate having a layer of a steam reforming catalyst comprising Pt and Rh components deposited upon the surface of the monolith substrate.
The above procedure is repeated for deposition of the second catalyst layer, i.e., the catalytic partial oxidation catalyst layer, upon the surface of the first catalyst layer, i.e., the steam reforming catalyst layer. The catalytic partial oxidation catalyst comprising, e.g., Pd and Pt components, is prepared by dissolving salts of the metals in water, .e.g., palladium chloride and chloroplatinic acid. The monolith substrate containing the layer of the steam reforming catalyst is then immersed in the mixed Pd-Pt aqueous solution, dried, e.g., for about 30 minutes at about 120°C, to reduce the moisture content, and then baked in a hydrogen stream or an air stream at a temperature of about 300 to about 650 °C for about 0.5 to about 4 hours, thereby resulting in the finished layered catalyst member comprising the monolith substrate having a steam

-9-
reforming catalyst layer on top of the substrate surface and a catalytic partial oxidation catalyst layer on top of the steam reforming catalyst layer.
A layered catalyst member having multiple layers of different steam reforming catalyst formulations and/or multiple layers of different catalytic partial oxidation catalyst formulationsi_majJ^grepgredjn the same manner as indicated above. Each layer of the steam reforming catalyst formulation is applied in the same manner; driecP and baked in the air stream before the next layer is applied.
The "zoned" layered catalyst member illustrated in FIG3 may be prepared as
follows: The catalytic partial oxidation catalyst and steam reforming catalyst slurries are
prepared in accordance with the procedures described above. In the first step, the
substrate is.immersed in a given slurry to a controlled length. In the second step, excess
slurry is removed usingfan air knife. In the third step, the coated substrate is dried for
one hour at 120°C. Thereafter, the first-third steps are repeated until the target catalyst
concentration and location on the substrate are achieved Finally, the coated substrate
is baked as described above. , -
Detailed Description of theJprawings
FIG. 1 illustrates layered catalyst member 10 in accordance with the first embodiment. Layered catalyst member 10 comprises monolith substrate 12 containing v channel 13 through which the inlet stream (comprising the hydrocarbon feed, water and air) flows. Steam reforming catalyst layer 14 is deposited upon the surface of monolith substrate 12 and catalytic partial oxidation catalyst layer 15 is deposited upon the surface of steam reforming catalyst layer 14 such that it is preferably in contact with layer 14 throughout its entire length. Catalyst member 10 is preferably oriented such the inlet stream enters the autotfaermal reactor (not shown) from the left and initially contacts catalytic partial oxidation catalyst layer 15.
FIG. 2 illustrates layered catalyst member 20 in accordance with the second embodiment. Layered catalyst member 20 comprises monolith substrate 22 containing channel 23 through which the inlet stream (comprising the hydrocarbon feed, water and air) flows. Steam reforming catalyst layer 24a is deposited upon the surface of monolith substrate 22 and steam reforming catalyst layer 24b is deposited upon the surface of steam reforming catalyst layer 24a (steam reforming catalyst layers 24a and 24b contain different steam reforming catalyst formulations). Catalytic partial oxidation catalyst layer 25a is deposited on the surface of steam reforming catalyst layer 24b and catalytic

-10-
partial oxidation layer 25b is deposited upon the surface of catalytic partial oxidation layer 25a (catalytic partial oxidation catalyst layers 25a and 25b contain different catalytic partial oxidation catalyst formulations). Layers 24a, 24b, 25a, and 25b are preferably in contact with each other throughout their entire length. As illustrated in JFTG. 2, catalyst member 20 is preferably oriented such the inlet stream enters the autothermal reactor (not shown) from the left and initially contacts catalytic partial oxidation catalyst layer 25a.
FIG. 3 illustrates layered catalyst member 30 in accordance with the third embodiment. Layered catalyst member 30 comprises monolith substrate 32 containing channel 33 through which the inlet stream (comprising the hydrocarbon feed, water and air) flows. However, in contrast to the first embodiment illustrated in FIG. 1, catalytic partial oxidation catalyst layer 35 and steam reforming catalyst layer 34 are "zoned" or "graded". Catalytic partial oxidation catalyst layer 35 possesses its maximum thickness at the extreme left end of member 30, while steam reforming catalyst layer 34 possesses its maximum thickness at the extreme right end of member 30. The thickness of catalytic partial oxidation catalyst layer 35 gradually diminishes over the length of member 30 from its maximum at the extreme left end of member 30 to practically zero at the extreme right end of member 30, while the thickness of steam reforming catalyst layer 34 gradually diminishes over the length of member 30 from its maximum at the extreme right end of member 30 to practically zero at the extreme left end of member 36. Layers 35 and 34 are preferably in contact with each other throughout their entire length. Layered catalyst member 30 is preferably oriented such the inlet stream enters the autothermal reactor (not shown) from the left and initially contacts catalytic partial oxidation catalyst layer 35.
The invention will be further illustrated by the following nonlimiting examples in which all parts and percentages are on a weight basis, unless otherwise indicated to the contrary.
Example A - Preparation of Catalytic Partial Oxidation Catalyst Layer
Two y-alumina powders ("SBA 150" having a surface area of 150 m2/g and "VGL 15" having a surface area of 225 m2/g were blended in a 2/1 ratio in a mixer for 5 minutes. The blended Y-alumina powder was then impregnated with a dilute solution ofH2Pt(OH)6 in monoethanolamine and thereafter impregnated with a dilute solution of palladium nitrate to obtain a loading of 0.5% Pt and 4.8% Pd on the Y-alumina powder.

-11-
This powder was then mixed with a composite of cerium and zirconium oxides and thereafter placed in a 2 gallon ball mill jar where the components were further mixed with a mixed solution of cerium acetate, strontium acetate, lanthanumacetate, zirconium acetate, acetic acid and barium hydroxide. Additional water was then added to the bail mill jar to provide a slurry having a solids content of 45%.
The slurry was ball-milled until the particle size was 90% The catalytic partial oxidation catalyst layer is achieved by dipping a monolith substrate into the catalytic partial oxidation catalyst slurry and the excess slurry is then removed with an air knife to obtain the target wet gain of the washcoat on the monolith substrate. The resultant substrate is then dried for one hour at 120 °C, and then calcined at 550 °C in air for two hours. The resultant washcoat contains 0.928g/in3 AI2O3! 0.04g/in3 CeO2, 0.30g/in3 ceria/zirconia composite, 0.04g/in3 SrO, 0.033g/in3 LaO, 0.04g/in3 ZrO and 0.04g/in3 BaO.
Example B- Preparation of Steam Reforming Catalyst Layer
Two Y-alumina powders ("SBA 150" having a surface area of 150 m2/g and "VGL 15" having a surface area of 225 m2/g were blended in a 2/1 ratio in a mixer for 5 minutes. The blended y-alumina powder was then impregnated with a dilute solution of H2Pt(OH)6 in monoethanolamine and thereafter impregnated with a dilute solution of rhodium nitrate to obtain a loading of 0.96% Pt and 0.48% Rh on the y-alumina powder. This powder was then mixed with a composite of cerium and zirconium oxides and thereafter placed in a 2 gallon ball mill jar where the components were further mixed with a mixed solution of cerium acetate, strontium acetate, zirconium acetate, acetic acid and barium hydroxide. Additional water was then added to the ball mill jar to provide a slurry having a solids content of 45%.
The slurry was ball-milled until the particle size was 90% The steam reforming catalyst layer is achieved by dipping a monolith substrate into the steam reforming catalyst slurry and the excess slurry is then removed with an air knife to obtain the target wet gain of the washcoat on the monolith substrate. The

-12-
resultant substrate is then dried for one hour at 120°C, and then calcined at 550°C in air for two hours. The resultant washcoat contains 1.70g/in3 A12O3> 0.052g/in3 CeO2 0.50g/m3ceria/zirconia composite, 0.040g/in3 SrO, 0.052g/in3 ZrO and 0.096g/in3 BaO.
Example C - Preparation of Double Layer Catalyst
The slurries as prepared in Examples A and B are employed in preparing the substrate containing the double layer catalyst The steam reforming catalyst layer is achieved by dipping a monolith substrate into the steam reforming catalyst slurry and the excess slurry is then removed with an air knife to obtain the target wet gain of the washcoat on the monolith substrate. The resultant substrate is then dried for one hour at 120°C, and then calcined at 550°C in air for two hours.
The substrate containing the steam reforming catalyst layer is then dipped into the catalytic partial oxidation catalyst slurry and the excess slurry is then removed with an air knife to obtain the target wet gain of the washcoat on the monolith substrate. The resultant substrate is then dried for one hour at 120°C, and then calcined at 550°C in air for two hours.
A comparison was made between two catalyst members: a double-layered catalyst member in accordance with Example C and two single layer catalyst members made in accordance with Examples A and B. The double-layered member as we is the two single layer catalyst members utilized a monolith substrate consisting of a high surface area alumina obtained from Corning Glass Works; each member was cylindrical in shape and had a diameter of 1.91 cm, a length of 7.62cm and 400 cells per in2. The same catalytic partial oxidation catalyst and steam reforming catalyst formulations were used for all members. The composition of the catalytic partial oxidation and steam reforming layers are set forth below. To the extent possible, each member was treated in a manner such that the amount of the catalytic partial oxidation and steam reforming layers in the double-layered catalyst member of the invention equaled the total amount of the catalytic partial oxidation layer and the steam reforming catalyst layer in the two single-layered catalyst members.
In the case of the double-layered catalyst member of the invention, the bottom layer consisted of 2.40 g/in3 of the steam reforming catalyst formulation and the top layer consisted of 1.42 g/in3 of the catalytic partial oxidation catalyst layer. In the case of the two single-layered catalyst members, one member consisted of 1.42 g/in3 of the catalytic partial oxidation catalyst layer on one monolith substrate and the second member consisted of 2.40 g/in3 of the steam reforming catalyst layer on the second monolith

-13-
substrate. The procedure for preparing the catalyst members was that described in Examples A, B and C. The formulations were as follows:

The resultant catalyst members were then placed in a laboratory autothermal reactor and an inlet stream was subjected to catalytic partial oxidation and steam reforming. The composition of the inlet stream (i.e., methane, ethane, nitrogen, oxygen and water) and the results obtained by the use of the dual-layered catalyst member of the invention versus the two single catalyst members at varying oxygen:carbon and waterxarbon ratios are set forth in Tables I and II below. The tests were carried out in an autothermal reactor in which the inlet stream was heated to a temperature of 200° C and was admitted into the reactor at a space velocity of 44,000 volumes /hour. After the inlet gas was stabilized, the reactor temperature was raised from 200 ° C to about 550c C. The methane conversion and the product gas composition was measured by an Agilent Micro Gas Chromatograph. The results are set forth below in Tables I and II.

-14-


-15-
As may be seen from the results in Tables I and II, the double-layered catalyst member of the invention produced more product hydrogen and more carbon monoxide, but less carbon dioxide than the two single-layered catalyst members. Note that the carbon monoxide can be readily converted into further quantities of hydrogen by contacting the product effluent with a shift catalyst in the presence of water. Such results clearly indicate that the double-layered catalyst member of the invention is much more efficient than two single-layered catalyst members containing the same composition.

-16-
WE CLAIM:
1. A process- for generating a hydrogen-rich affluent from a hydrocarbon feed which comprises the steps ofs
(a) introducing " preheated inlet stream comprising a hydrocarbon feed* water and air into an autothermal reactor containing a layered catalyst member and contact the stream with the member at a temperature sufficient to initiate and sustain both catalytic partial oxidation and steam reforming?
(b) catalytically partially oxidizing at least part of the hydrocarbon feed to produce a.n effluent comprising hydrogen and carbon oxides using a partial oxidation catalyst comprising platinum and palladium, the partial oxidation generating heat; and
(c) steam reforming hydrocarbons remaining in the feed to produce a hydrogen-rich effluent using heat generated by the partial oxidation and steam reforming catalyst comprising at least one of rhodium* ruthenium* platinum* palladium* nickel* cobalt* iridium and osmium and at least one metal oxide selected from rare earth metal oxides and alkaline earth metal oxides*
said member comprising a monolith substrate containing on a surface thereof at least one layer of a steam reforming

o17-
catalyst in contact with at least one layer of a catalytic partial oxidation catalyst.
2. The process as claimed in claim 1 wherein the monolith
substrate contains on a surface thereof at least one layer of the
steam reforming catalyst and at least one layer of the catalytic
partial oxidation catalyst with said layer of the catalytic
partial oxidation catalyst overlying, and in contact with, said
steam reforming catalyst layer.
3. The process as claimed in claim i wherein the steam
reforming catalyst layer is present in the form of multiple steam
reforming catalyst layers in which each of such multiple layers
comprises a different steam reforming catalyst composition.
4. The process as claimed in claim 1 wherein the catalytic
partial oxidation catalyst layer is present in the form of
multiple catalytic partial oxidation catalyst layers in which
each of such multiple layers comprises a different catalytic
partial oxidation catalyst composition.

o18-
3. The- process as claimed in clmim 1 wahwr in the monolith substrate contains on a surface thereof a graduated layer of the steam reforming catalyst in contact with a graduated layer of the catalytic partial oxidation catalyst.
6. The process as claimed in claim i wherein the catalyat
member is oriented in respect to the inlet stream such that the
inlet stream initially comes in contact with the catalytic
partial oxidation catalyst layer.
7. The process as claimed in claim 1 including the further
step of withdrawing the hydrogen-rich gas effluent resulting from
step (c) and subjecting such effluent to a water gas shift
reaction whereby such effluent is contacted with a catalyst such
that carbon monoxide present in such effuent will react with
water to produce carbon dioxide and a further quantity of
hydrogen.
3. The process as claimed in claim 1 wherein the inlet stream
o is preheated to a temperature of about 200 to 9ØØ C prior
to introduction into the autothermal reactor.

19
9. The proctsfl as claimed in claim 1 wherain the au-feothe-rm*!
reactor is maintained at a temperature of 230 to ateottt
o 1100 C.
10. The proctsi as claimed in claim 1 wherein the stream is
introduced into the reactor at a volumetric hourly rate of
2,ØØØ to Abetrfc 300*000 volume* p-er volume of monolith substrate.
11. The process as claimed in claim 1 wherein the monolith
substrate comprises a porous ceramic.
12. The process as claimed in claim 11 wherein the porous
ceramic is selected from the group consisting of alumina*
alumina-si 1ica* alumina-silica-titania" mullite* cordierite*
zirconii) zirconia-ceria* zirconia-spinel* rirconia-mul1ite and
silicon-carbide.
13. The process as claimed in claim claim 12 wherein the
porous ceramic is present in the form of a foam.
14. The process as claimed in claim 1 wherein the mono
lith substrate comprises a heat-and oxidation-resistant metal.
15. The process as claimed in claim 14 wherein the metal is
selected from the group consisting of stainless steel and iron/chromium alloy.

-20-
16. The proctst as claimed in claim 14 wherein the metal is
present in the form of a foam.
17. The process as claimed in claim 1 wherein the monolith
substrate is present in the form of a heat exchanger.
18. The process as claimed in claim 14 wherein a surface of
the monolith substrate contains a binder coating interposed
between such surface mnd the steam reforming catalyst layer or
the catalytic partial oxidation catalyst layer.
19. The process as claimed in claim 18 wherein the binder
comprises a high surface area alumina.
20. The process as claimed in claim 1 wherein the steam
FefBfring Ei#iiy$" iayar and the catalytic partial oxidation
Catalyst layar are present in the form of washcoats comprising
alumina which has been impregnated with the steam reforming
catalyst and alumina which has been Impregnated with the
catalytic partial oxidation catalyst.
21. The process as claimed in claim 20 wherein the alumina
comprises gamma-alumina mixed with one or more rare earth metal
oxides and/or one or more alkaline earth metal oxides.

-21-
22. The process as claimed in claim 21 wherein the gamma-
alumina is mixed with on a or nort oxides of lanthanum, cerium,
zirconium, praesidium, yttrium, calcium, barium, strontium*
magnesium and mixture* thereof.
23. The process, a* claimed in claim 21 wherein the rare earth
metal oxide* and/or the alkaline earth metal oxides are present
in an amount of abet*t 2 to afanau-t 10 weight percent, based on the
weight of the oxide* plus gamma-alumina.
24. The process as claimed in claim 20 wherein each washcoat
3 is present in an amount of afcrotrt 0.02 to 5.0 g/in of the
monolith substrats.
25. The process a" claimed in claim 1 wherein "the catalytic
partial oxidation catalyst layer comprises* on an elemental metal
basis* at""M*t 10 to abeut 90% by weight of palladium components
and about 10 to about 90% of platinum components.
26. The process as claimed in claim 1 wherein the catalytic
partial ooxidation catalyst layer is present in an amount -of
3 about 0.1 to about 3.0 g/in of monolith substrate.
27. The process as claimed in claim 1 wherein the steam
reforming catalyst layer comprises a nickel component, a cobalt
component or a mixture of nickel and cobalt components.

-22-
28. The process as claimed in claim 1 wherein the ateam
reforming catalyst layer comprises, on "n elemental metal basis,
abewt 10 to 1ØØ% by weight of rhodium component, and about
90 to 0% by of platinum component*.
29. The proce"" as claimed in claim 1 wherein the steam
reforming catalyst layer is present in art amount of about 0.1 to
3 about 9.0 g/in of the monlith substrate.
30. A layered catalyst member for generating a hydrogen-
rich effluent from a hydrocarbon feed comprising a monolith
substrate containing on a surface thereof at least one graduated
layer of a steam reforming catalyst in contact with at least
one layer of a catalytic partial oxidation catalyst, the
catalytic partial oxidation catalyst comprising platinum and
palladium and the ©team reforming catalyst comprising at least
one of rhodium, ruthenium, platinum, palladium, nickel, cobalt,
iridium and osmium and at least one metal oxide selected from rare
earth metal oxides and alkaline earth metal oxides* the steam
reforming catalyst capable of using heat generated by the catalytic
partial oxidation catalyst to effect steam reforming.
31. The layered catalyst member as claimed in claim 30
wherein the monolith substrate contains on a surface thereof at

-23-
least one layer of the steam reforming catalyat and at least on" layar of the catalytic partial oxidation catalyst with- said layer of the catalytic partial oxidation catalyst overlying, and in contact withf said steam reforming catalyst layer-.
32. The layered catalyst member as claimed in claim 30
wherein the steam reforming catalyst layer is present in thm form
of multiple steam reforming catalyst layers in which each of such
4
multiple layers comprises a different steam reforming catalyst composition.
33. The layered catalyst member as claimed in claim 30
wherein the catalytic partial oxidation catalyst layer is present
in the form of multiple catalytic partial oxidation catalyst
layers in which each of such multiple layers comprises a
different catalytic partial oxidation catalyst composition,
34. The layered catalyst member as claimed in cl*im 30
wherein the monolith substrate contains on a surface thereof a
graduated layer of the steam reforming catalyst in contact with a
graduated layer of the catalytic partial oxidation catalyst.
35. The layered catalyst member as claimed in claim 30
wherein the catalytic partial oxidation layer is disposed in the

-24-
catalyst member such that the hydrocarbon feed initially corns* in contact with the catalytic partial oxidation catalyst layer.
36. Th" layered catalyst member as claimed in claim 30
wherein the monolith substrate comprises a porous ceramic.
37. The layered catalyst ammtomr as claimed in claim 36
wherein the porous ceramic is selected from the group consisting
of alumina* alumina-silica* alumina-silica-titania" mullite*
cordierite" srirconiat zirconia-ceria" zirconia-spinel" airconia-
mullite and silicon-carbide.
38. The layered catalyst member as claimed in claim 36
wherein the porous ceramic is present in the form of a foam.
39. The layered catalyst member as claimed in claim 30
wherein the monolith substrate comprises a heat- and oxidation-
resistant metal.
40. The layered catalyst member as claimed in claim 39
wherein the metal is selected from the group consisting of
stainless steel and iron/chromium alloy.
41. The layered catalyst member as claimed in claim 39
wherein the metal is present in the form of a foam*

-25-
42. The layered cartalywt member am claimed in claim 30
wherein the monolith substrate is pre"ent in the form of * heat
exchanger.
43. The layered catalyst member as claimed in claim 3#
wherein a surface of the monolith substrate contains a. binder
coating interposed between such surface and the steam reforming
catalyst layer or the catalytic partial oxidation catalyst layer.
44. The layered catalyst member as claimed in claim 43
wherein the binder comprises a high surface area alumina.
45. The layered catalyst member as claimed in claim 30
wherein the steam reforming catalyst layer and the catalytic
partial oxidation catalyst layer are present in the form of
washcoats comprising alumina which has been impregnated with the
steam reforming catalyst and alumina which has been impregnated
with the catalytic partial oxidation catalyst.
46. The layered catalyst member as claimed in claim 45
wherein the alumina comprises gamma-alumina mixed with one or
more rare earth metal oxides and/or one or more alkaline earth-
metal oxides.

-26-
47. The layered catalyst member as claimed in claim 44
wherein the gamma-alumina is. mixed with one or more ©j*td>e* of a
metal selected from the group consisting of lanthanum* cerium*
zirconiumi praesidium* yttrium* calcium* barium, strontium*
magnesium and mixtures thereof.
48. The layered catalyst member as claimed in claim 47
wherein the rare earth metal oxides and/or the alkaline earth
metal oxides are present in an amount of atoont 2 to about 10
weight percent* based on the weight of the oxides plus gamma-
alumina.
49. The layered catalyst member as claimed in claim 45
wherein each washcoat is present in an amount of a#et*t 0*02 to
3 abotrt 9.0 g/in of the monolith substrate.
50. The layered catalyst member as claimed in claim 30
wherein the catalytic partial oxidation catalyst layer comprises*
on an elemental metal basis* about 10 to a*>et±* 90% by weight of
palladium components and abotefc 10 to about 90% by weight of
platinum components.
51. The Xmymrm-d catalyst member as claimed in claim 30'
wherein the catalytic partial oxidation catalyst layer is present

-27-
3 in an amount of Ø.1 to 3.0 g/in of monolith
substrate.
S2. The layered catalyst member as claimed in claim 30 wherein the steam reforming catalyst layer comprises a nickel component* a cobalt component or a mixture of nickel and cobalt components.
53. The layered catalyst member as claimed in claim 35*
wherein the steam reforming catalyst layer comprises, on an
elemental metal basis, afeewrt 10 to about 100% by weight of
rhodium components and abottt 90 to about 0tt by weight of platinum
components.
54. The layered catalyst member as claimed in claim 30
wherein the steam reforming catalyst layer is present in an
3 amount of Ø.1 to 5.Ø g/in of the monolith substrate.

A process for generating a hydrogen-rich effluent from a hydrocarbon feed which comprises the steps of: (a) introducing a preheated inlet stream comprising a hydrocarbon feed, water and air into an autothermal reactor containing a layered catalyst member and contacting the stream with the member at a temperature sufficient to initiate and sustain both catalytic partial oxidation and steam reforming' (b) catalytically partially oxidizing at least part of the hydrocarbon feed to produce an effluent comprising hydrogen and carbon oxides using a partial oxidation catalyst comprising platinum and palladium, the partial oxidation generating heat; and (c) steam reforming hydrocarbons remaining in the feed to produce a hydrogen-rich effluent using heat generated by the partial oxidation and a steam reforming catayst comprising at least one of rhodium, ruthenium, platinum, palladium, nickel, cobalt, iridium and osmium and at least one metal oxide selected from rare earth metal oxides and alkaline earth metal oxides, said member comprising a monolith substrate containing on a surface thereof at least one layer of a steam reforming catalyst in contact with at least one layer of a catalytic partial oxidation catalyst.


Documents:

00214-kolnp-2003 abstract.pdf

00214-kolnp-2003 assignment.pdf

00214-kolnp-2003 claims.pdf

00214-kolnp-2003 correspondence.pdf

00214-kolnp-2003 description(complete).pdf

00214-kolnp-2003 drawings.pdf

00214-kolnp-2003 form-1.pdf

00214-kolnp-2003 form-18.pdf

00214-kolnp-2003 form-2.pdf

00214-kolnp-2003 form-3.pdf

00214-kolnp-2003 form-5.pdf

00214-kolnp-2003 g.p.a.pdf

00214-kolnp-2003 letters patent.pdf

00214-kolnp-2003 priority document.pdf

214-kolnp-2003-granted-abstract.pdf

214-kolnp-2003-granted-assignment.pdf

214-kolnp-2003-granted-claims.pdf

214-kolnp-2003-granted-correspondence.pdf

214-kolnp-2003-granted-description (complete).pdf

214-kolnp-2003-granted-drawings.pdf

214-kolnp-2003-granted-form 1.pdf

214-kolnp-2003-granted-form 18.pdf

214-kolnp-2003-granted-form 2.pdf

214-kolnp-2003-granted-form 3.pdf

214-kolnp-2003-granted-form 5.pdf

214-kolnp-2003-granted-gpa.pdf

214-kolnp-2003-granted-letter patent.pdf

214-kolnp-2003-granted-reply to examination report.pdf

214-kolnp-2003-granted-specification.pdf

214-kolnp-2003-granted-translated copy of priority document.pdf


Patent Number 212709
Indian Patent Application Number 214/KOLNP/2003
PG Journal Number 50/2007
Publication Date 14-Dec-2007
Grant Date 12-Dec-2007
Date of Filing 20-Feb-2003
Name of Patentee ENGELHARD CORPORATION
Applicant Address 101 WOOD AVENUE, P.O.BOX 770, ISELIN, NJ 08830-0770,
Inventors:
# Inventor's Name Inventor's Address
1 HWANG H. SHINN 62 SHREWSBURY DRIVE, LIVINGSTON, N.J.07039.
2 FARRAUTO ROBERT J 7 LAVENDER DRIVE, PRINCETON, NJ08450 , U.S.A;
PCT International Classification Number C01B3/40,3/38,
PCT International Application Number PCT/US01/26650
PCT International Filing date 2001-08-27
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09/652,710 2000-08-31 U.S.A.