Title of Invention

METHOD AND DEVICE FOR COOLING VAPOR IN DESORPTION COLUMN

Abstract This invention relates to a method for cooling rising vapour (3) in a desorption column (2) by means of a condenser, which is situated at the head of the desorption column, is configured as an indirect heat exchanger and is traversed by a coolant (1). According to said method, the coolant enters at the bottom of the condenser (1) and flows upwards through conduits (8) that are arranged vertically in the condenser. The coolant is enriched with hydrogen sulphide prior to its entry into the condenser (1) and after the absorption of heat, escapes as an overflow (6) from the top of the condenser (1) through upper openings (10) of the conduits (8). The invention also relates to a desorption column (2) for carrying out said method.
Full Text 1
Method and device for cooling vapor in a desorption column
Specification
FIELD OF INVENTION
The invention relates to a method for cooling rising vapors in a desorption column by means of a condenser disposed at the head of the. desorption column, configured as an indirect heat exchanger, through which a coolant flows, whereby the coolant enters into the condenser at the bottom and flows upwards through vertical channels disposed in the condenser.
BACKGROUND OF INVENTION
The head of a desorption column is usually equipped with a condenser that is operated with cooling water and is configured as an indirect heat exchanger. In the operation of an indirect heat exchanger, there is no direct contact between the fluid that absorbs the heat and the fluid that gives off the heat, since the fluids are separated from one another by means of flow guide elements, and the heat transport takes place through the flow guide elements In the case of a load change of the desorption column, there is the risk that the cooling water temperature changes and that carbonate precipitation occurs. This is particularly the case if the cooling water temperature required for the desired operating state of the description column is high

2
at the exit of the condenser. Carbonate precipitation at the heat transfer surfaces increasingly worsens the heat transfer behavior in the condenser and, in the final analysis, results in failure of the apparatus. This problem is circumvented in that: the vapors are cooled by means of a direct heat exchange, e.g. sprinkling of the column head with cooling water. However, this direct heat exchange is difficult to regulate, because the cooling surface is not defined.
The invention is based on the task of indicating a method having the characteristics described initially, in which no carbonate precipitation occurs at the heat exchanger surfaces impacted by the cooling water, independent of the operating state of the desorption column. Furthermore, a good regulation possibility should exist in case of a load change.
SUMMARY OF THE INVENTION
According to the invention, this task is accomplished in that a coolant containing hydrogen sulfide is used, and that the coolant exists as an overflow, by means of top-side openings of the channels, at the top of the condenser, after the heat absorption has occurred. The cooling surface of the condenser is predetermined by the heat exchanger surfaces. In the case of a load change of the desorption column, the temperature of the cooling

3
surfaces can be adjusted very simply and precisely, by means of the cooling water amount. In this connection, deposition of carbonates on the heat exchanger surfaces can be effectively prevented by means of conducting the method in accordance with the invention, with the use of a coolant that contains hydrogen sulfide.
According to a preferred embodiment of the method according to the invention, the overflow flows into the desorption column. By means of applying a cooling water that contains hydrogen sulfide into the desorption column, the hydrogen sulfide is directly separated from the cooling water again after the heat transfer, since the hydrogen sulfide, which has a very low boiling point, leaves the desorption column at the head, together with the cooled vapors, while the water, which has a clearly lower boiling point, flows into the sump of the desorption column. Thus, no additional process step is necessary to remove the hydrogen sulfide from the cooling water again.
The object of the invention is also a desorption column according to dependent claim, to implement the method.

4
BRIEF DESCRITPION OF THE ACCOMPANYING DRAWINGS
In the following, the invention will he explained in detail, using a drawing
that represents an embodiment merely as an example. The drawing
shows: -
Fig. 1 a schematic representation of a condenser disposed at the
head of a desorption column, and
Fig. 2 a detailed representation of the condenser shown in Fig. 1.
DETAIL DESCRIPTION OF THE INVENTION WITH REFERENCE TO THE ACCOMPANYING DRAWINGS
Fig. 1 shows a condenser 1 that is disposed at the head of a desorption column 2. Vapors 3 rise from the desorption column, and are cooled by means of the condenser. The vapors 3 enter into the condenser 1 at the bottom. The non-condensing gases 4 that are cooled at heat exchanger surfaces of the condenser exit at the top of the condenser 1 and flow further upward. The cooling water 5, which has been enriched with hydrogen sulfide, according to the invention, enters into the condenser at the bottom. During the heat absorption, the cooling water 5 flows upward in the condenser and exists at the top of the condenser as an overflow 6. The overflow 6 flows into the desorption column 2.

5
Fig. 2 shows the structure of the condenser 1 according to the invention. The condenser 1 has a distributor device 7 as well as channels 8 that form heat exchanger surfaces, and is disposed in the column head of the desorption column 2. The cooling water 5 can flow through the distributor device 7; the latter serves to distribute the cooling water 5 that flows into the condenser 1. The distributor device 7 is rigidly connected with the channels 8 through which the fluid flows, which channels are disposed vertically. The sections 9 between the channels 8 are selected in such a manner that the rising vapors 3 can flow around the outside surfaces of the channels 8. The channels have top openings 10 from which the coolant exists.

6
WE CLAIM:
1. Method for cooling rising vapours (3) in a desorption column (2) by means of a condenser (1) designed as an indirect heat exchanger which is arranged at the head of the desorption column (2) and is flowed through by cooling water, wherein the cooling water enters the condenser (1) at the bottom and flows upwards through vertical channels (8) arranged in the condenser (1), wherein cooling water containing hydrogen sulphide is used, wherein the cooling water, after heat absorption has occurred, exits as an overflow (6) at the top of the condenser (1) through top openings (10) of the channels (8), and wherein the overflow (6) flows into the desorption column (2).
2. Desorption column for carrying out the method according to claim 1, comprising a column head and a condenser (1) which is arranged therein and which has channels (8) which are flowed through by cooling water, wherein the channels (8) are arranged vertically and can be flowed through from the bottom to the top and form heat exchanger surfaces for cooling rising

7
vapours, and wherein the channels (8) have top openings and as a result form an overflow (6) for the cooling .water, which flows off into the column (2).
This invention relates to a method for cooling rising vapour (3) in a desorption column (2) by means of a condenser, which is situated at the head of the desorption column, is configured as an indirect heat exchanger and is traversed by a coolant (1). According to said method, the coolant enters at the bottom of the condenser (1) and flows upwards through conduits (8) that are arranged vertically in the condenser. The coolant is enriched with hydrogen sulphide prior to its entry into the condenser (1) and after the absorption of heat, escapes as an overflow (6) from the top of the condenser (1) through upper openings (10) of the conduits (8). The invention also relates to a desorption column (2) for carrying out said method.

Documents:

01121-kolnp-2005-abstract.pdf

01121-kolnp-2005-claims.pdf

01121-kolnp-2005-correspondence.pdf

01121-kolnp-2005-description(complete).pdf

01121-kolnp-2005-drawings.pdf

01121-kolnp-2005-form-1.pdf

01121-kolnp-2005-form-18.pdf

01121-kolnp-2005-form-2.pdf

01121-kolnp-2005-form-26.pdf

01121-kolnp-2005-form-3.pdf

01121-kolnp-2005-form-5.pdf

01121-kolnp-2005-letters patent.pdf

01121-kolnp-2005-priority document.pdf

1121-KOLNP-2005-CORRESPONDENCE-1.1.pdf

1121-KOLNP-2005-FORM 27-1.1.pdf

1121-KOLNP-2005-FORM 27.pdf

1121-kolnp-2005-granted-abstract.pdf

1121-kolnp-2005-granted-claims.pdf

1121-kolnp-2005-granted-description (complete).pdf

1121-kolnp-2005-granted-drawings.pdf

1121-kolnp-2005-granted-form 2.pdf

1121-kolnp-2005-granted-specification.pdf

1121-KOLNP-2005-OTHER PATENT DOCUMENT.pdf

1121-KOLNP-2005-PA.pdf

1121-kolnp-2005-translated copy of priority document.pdf


Patent Number 212580
Indian Patent Application Number 1121/KOLNP/2005
PG Journal Number 49/2007
Publication Date 07-Dec-2007
Grant Date 04-Dec-2007
Date of Filing 13-Jun-2005
Name of Patentee UHDE GMBH
Applicant Address FRIEDRICH-UHDE-STRASSE 15, 44141 DORTMUND
Inventors:
# Inventor's Name Inventor's Address
1 THIELERT, HOLGER WESTERWIKSTRASSE 38, 44379 DORTMUND
PCT International Classification Number B01D 53/14
PCT International Application Number PCT/EP03/008681
PCT International Filing date 2003-08-06
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 102 58 067.7 2002-12-11 Germany