Title of Invention

A SOLID COMPOSITION CONTAINING MAS AND AN ADDITIVE

Abstract A solid composition containing 4,4-dimethyl-5α cholesta-8, 14, 24-triene-3β-o1 and human serum albumin optionally in recombinant form.
Full Text

COMPOSITION FOR IVF
The present invention relates to a solid product which can be used in connection with in vitro fertilisation.
BACKGROUND OF THIS INVENTION
Several meiosis activation substances (hereinafter designated MAS) have been found. When MAS are kept in a medium containing oocytes, the oocytes becomes more prone to become fertilized. However, a major problem with the use of MAS is that, usually, they have a very low solubility.
SUMMARY OF THIS INVENTION
One object of this invention is to develop a composition containing MAS or a derivative thereof which can be dissolved in an aqueous medium.
Another object is to develop a composition containing MAS or a derivative thereof which can be dissolved in an aqueous medium without any physical influence such as heating, stirring, or ultrasound treatment.
DETAILED DESCRIPTION OF THIS INVENTION
The solubility of a preferred MAS, i.e., FF-MAS, in water is very low, i.e., approximately 20 pictogram/ml (corresponding to 2 x 10' ig/ml) , and in ethanol the solubility is substantially higher, i.e., approximately 4 mg/ml. According to our preliminary investigations, the highest solubility of FF-MAS in a mixture of ethanol and water (1:2.5) is approximately 0.4 mg/ml. Several other MAS have a similar low solubility in water.
Surprisingly, it has now been found that a solid composition containing MAS and an additive have a good solubility in water. The additives are components which, when added to MAS, provides a composition which can be used to prepare an aqueous solution containing MAS.

Examples of additives are water soluble proteins such as serum albumin, e.g. human serum albumin (hereinafter designated HSA), optionally in recombinant form, enzymes and phospherglyceridersuch as phosphatidylethanolamin, phosphatidylcholine, phosphatidylser-ine, phosphatidyinositol.
Preferably, the compositions of this invention have a content of water below 10 %, preferably below 5%. more preferred below 1% (weight/weight).
Preferably, the compositions of this invention have a content of organic solvent below 10 %, preferably below 5%, more preferred below 1% (weight/weight).
Preferably, the compositions of this invention have a content of MAS below 1%, preferably below 0.1%, more preferred below 0.05% (weight/weight).
Preferably, the compositions of this invention have a content of additive higher than 99%, more preferred higher than 99.9%.
Preferred compositions of this invention are such which can be treated with an aqueous medium containing no or only low concentrations of organic solvent result in a solution containing MAS. Preferably, these aqueous media contain less than 1%, preferably less than 0.5%, more preferred less than 0,1% of organic solvent (weight/weight).
Earlier, several attempts to prepare compositions fulfilling this requirement have failed.
Herein, the term MAS designates compounds which mediate the meiosis of oocytes. More specifically, MASs are compounds which in the test described in Example 1 below has a percentage germinal vesicle breakdown (hereinafter designated GVB) which is significantly higher than the control. Preferred MAS are such having a percentage GVB of at least 50%, preferably at least 80%. Examples of preferred MASs are 4,4-dimethyl-5a-choiesta"8,14,24-triene-3p-ol (hereinafter designated FF-MAS); 4.4-dimethyl-5a-cholest-8,14,24-trien-3(3-ol hemisuccinate; 5a-cholest-8,14-dien-3p-ol; 5a-cholest-8,14-dien-3(3-ol hemisuccinate; (20S)-cholest-5-en-3p,20'-diol; 3p-hydroxy-4,4-dimethyl-5a-chola-8,14-dien-24"Oic acid-N-(methionine) amide; and cholest-5-en-16p-ol. Further examples of MASs are mentioned in WO 96/00235, 96/27658. 97/00884. 98/28323, 98/54965 and 98/55498, more specifically in Claim 1 thereof.
One way of preparing the compositions of this invention is to mix a solution of MAS in an organic solvent such as ethanol with an aqueous solution of the additive and, thereafter to wait

until the solvent is evaporated. The evaporation can be accelerated by using continuous airflow over the product, vacuum, or any other feasible methods to remove the solvent. The product marketed could be a delivery system having one or more depressions or hollows. Hereinafter, these depressions and hollows are mutually designated hollows. At least one of these hollows contain a composition according to this invention. A convenient way of placing the solid MAS therein is first to place a solution containing MAS and the additive in the hollow and thereafter to evaporate the solution. In this way, the evaporation residue, i.e., the composition according to this invention, is placed directly in the hollow in said device (delivery system).
Since the composition of this invention is to be used for the treatment of oocytes, it is important that the composition of this invention does not contain constituents which influence the oocytes negatively.
One way of using the compositions of this invention is to dissolve the composition in an aqueous medium such as water and then, if desired, to add other constituents which may have a favourable influence on the maturation of the oocytes.
Another way of using the composition is to dissolved it in a media normally used for in vitro maturation.
The present invention is further illustrated by the following examples which, however, are not to be construed as limiting the scope of protection. The features disclosed in the foregoing description and in the following examples may, in any combination thereof, be material for realizing the invention in diverse forms thereof.
Example 1
Method used for determining whether a compound is a MAS or not.
Oocytes were obtained from immature female mice (C57BL/6J x DBA/2J F1, Bomholtgaard, Denmark) weighing 13-16 grams, that were kept under controlled temperature (20-22 'C), light (lights on 06.00-18.00) and relative humidity (50-70%). The mice received an intraperitoneal injection of 0.2 ml gonadotropins (Goal-F, Serono) containing 20 lU FSH and 48

hours later the animals were killed by cervical dislocation. The ovaries were dissected out and the oocytes were isolated in Hx-medium (see below) under a stereo microscope by manual rupture of the follicles using a pair of 27 gauge needles. Spherical oocytes displaying an intact germinal vesicle (hereinafter designated GV) were divided in cumulus enclosed oocytes (hereinafter designated CEO) and naked oocytes (hereinafter designated NO) and placed in a-minimum essential medium (a-MEM without rib nucleosides, Gibco BRL, Cat. No. 22561) supplemented with 3 mg/mi bovine serum albumin (BSA, Sigma Cat. No. A-7030), 5 mg/ml human serum albumin (HSA, State Serum Institute, Denmark), 0.23mM pyruvate (Sigma, Cat. No S-8636), 2 mM glutamine (Flow Cat. No. 16-801), /ml penicillin and 100 ug/ml streptomycin (Flow, Cat No. 16-700). This medium was supplemented with 3 mM hypoxanthine (Sigma Cat. No. H-9377) and designated Hx-medium.
The oocytes were rinsed three times in Hx-medium and oocytes of uniform size were divided into groups of CEO and NO. CEO and NO were cultured in 4-well multidishes (Nunclon, Denmark) in which each well contained 0.4 ml of Hx-medium and the compound to be tested in a concentration of 10 One control well (i.e., 35-45 oocytes cultured in identical medium with no addition of test compound) was always cultured simultaneously with 3 test wells (35-45 oocytes per well supplemented with test compound).
The oocytes were cultured in a humidified atmosphere of 5% CO2 in air for 24 hours at 37°C. By the end of the culture period, the number of oocytes with GV, GVB and polar bodies (hereinafter designated PB), respectively, were counted using a stereo microscope (Wild, Leila MZ 12). The percentage of GVB, defined as percentage of oocytes undergoing GVB per total number of oocytes in that well, was calculated as: % GVB = ((number of GVB + number of PB)/ total number of oocytes) X 100.
Example 2
Method used for determining whether a compound can be used as the additive in the compositions of this invention or not.
An additive for FF-MAS compositions are characterised by ;
Improving the solubility of FF-MAS in ethanol/water (1:2.5 v/v)

Ensuring a clear solution of FF-MAS after reconstitution of the composition in MEM Alpha Medium.
Securing percent GVB is at least 50% preferable 80% when tested on oocytes obtained from immature female mice.
Prepare a saturated ethanolic solution of FF-MAS. Blend with an aqueous solution of the additive in the ration 1:2,5. By visual inspection control that surplus FF-MAS is available in the solution. Rotate the solution for 24 hours at room temperature. Filter the solution through 0,22um filter, determine the content of FF-MAS by-HPLC and calculate the solubility. Transfer 350ul to 4-well dish and evaporate to dryness at room temperature. Add 500ul MEM ALPHA medium (Gibco aL). if a clear solution is obtained within half an hour, the composition is tested on oocytes obtained from immature female mice. % GVB obtained is at least 50%, preferable 80%, vide example 1.
Example 3
Composition containing Human Serum Albumin (HSA).
In this example, 3 products were prepared. Referring to the table below, the stock solution of FF-MAS used for product 1, 2, and 3 contained 50, 500 and 3330 /ml, respectively. For each of the products, the stock solution of HSA contained 20% HSA. The amount of said stock solutions used is stated in the table. For example, for product 1, 400 (il of the FF-MAS stock solution was mixed with 1000 [il of the HSA stock solution. After mixing of these stock solutions, the solutions were clear, and no precipitation was observed therein. After mixing, the amount thereof stated in the table was transferred to 4-well multi-dishes (Nuclon, Denmark). For example, for product 1, 350 of the mixture was transferred to the multi-dish Finally, the solutions were evaporated to dryness at room temperature. After evaporation, some of he products appears as an opalescent, dear film in the dishes, other are invisible to the human eye. The highest concentration of FF-MAS dissolved in this example is 0.95 mg/ml.
Before use, 500 pi MEM ALPHA Medium (Gibcobal) is added, and a clear solution of FF-MAS and HSA is obtained within half an hour at room temperature.


Example 4
Compositions containing Human Semm Albumin (HSA).
Analogously as described in the previous example, solutions of FF-MAS in water/ethanol containing HSA were prepared in the concentrations stated below by sample mixing at room temperature. After preparation, the solutions were clear, and no precipitation was observed. The solutions were transferred to 4-well multi-dishes (Nuclon, Denmark). Finally, the solutions were evaporated to dryness at room temperature.
Before use, 500 pi MEM ALPHA Medium (Gibcobal) is added, and within half an hour at room temperature, a clear solution of FF-MAS and HSA is obtained.
The formulations were tested on oocytes obtained from immature female mice. % GVB for the respective formulation are stated in the table below.


Example 5
Compositions containing Human Serum Albumin (HSA).
Analogously as described in the previous example, solutions of FF-MAS in water/ethanol containing HSA were prepared in the concentrations stated below by sample mixing at room temperature. After preparation, the solutions were clear, and no precipitation was observed. The solutions were transferee to 4-well multi-dishes (Nuclon, Denmark). Finally, the solutions were evaporated to dryness at room temperature.
Before use, 500 pi MEM ALPHA medium (Gibcobal) is added, and within half an hour at room temperature, a clear solution of FF-MAS and HSA is obtained.
The concentration of FF-MAS after reconstitution was determined by HPLC, and the results are stated below. The formulations were tested on oocytes obtained from immature female mice. %GVB for the respective formulations are stated below.









1. A solid product containing 4,4-dim9thyl-5a-cholesta-8.14,24-triene-3p-Ql and human serum albumin, optionally in recombinant form.
2. A composition, according to Claim 1, characterised in that the content of water therein ia below 10 %, preferably below 5%, more preferred below 1% (weight/weight).
3. A composition, according to any one of the preceding claims, characterised in that the content of organic solvent therein is below 10 %, preferably below 5%, more preferred below 1% (weight/weight).
4. A composition, according to any one of the preceding claims, characterised in that the content of 4,4-dimethyl"5a-chiQlesta-8,14,24-triene-3[3HDl therein is below 50%, preferably below 20%, more preferred below 10%, most preferred below 5% (weight/weight).
5. A composition, according to any one of the preceding claims, characterised in that it can be used for preparing an aqueous solution worth the characteristics mentioned in any of the following claims,
6. An aqueous solution of 4,4-dimethyl-5a-chole5ta-8J4,24-thene-3p-cl, characterised in that the content of 4,4-dimethy!-5a-cholesta-8,14,24-triene-3p-ol is at least Q.QQ1 pg/ml, preferably at least 0.01 p-g/ml, more prefemed at least 0.1 fig/ml, even more preferred at least 0.5 jig/ml.

7. An aqueous solution of 4,4-dimetny!-5a"Cholesta-8,14,24-triene-3f3-ol, according to the preceding claim, characterised in that the content of 4,4-dimethyi-5a-cholesta-8,14,24-triene-3p-oi is not more than 0.1 g/ml, preferably not more than 0.01 g/ml.
8. An aqueous solution of 4,4-dimethyl-5a"Chole5ta-6,14,24-triene~3p-ol according to any one of the two preceding claim, characterised in that the content of organic solvent is less than 0.1%, preferably less than 0.05%, most preferred less than 0.01%.
9. A device having a hulls; containing a solid product or a solution according to any of the previous claims.
Novo NordiskAyS

5 10. An aqueous solution of MAS, according to the preceding claim, characterised in that the
content of MAS is not more than 0.1 g/ml, preference not mere than 0.01 11. An aqueous solution of MAS according to any one of the
used in that the content of organic solvent is less than 0.1%, preferably less khan C.C5-:.
10 most preferred less than 0.01%.

15, An aqueous solution of MAS substantially as hereinbefore described


Documents:

in-pct-2002-396-che-abstract.pdf

in-pct-2002-396-che-claims filed.pdf

in-pct-2002-396-che-claims granted.pdf

in-pct-2002-396-che-correspondnece-others.pdf

in-pct-2002-396-che-correspondnece-po.pdf

in-pct-2002-396-che-description(complete)filed.pdf

in-pct-2002-396-che-description(complete)granted.pdf

in-pct-2002-396-che-form 1.pdf

in-pct-2002-396-che-form 19.pdf

in-pct-2002-396-che-form 26.pdf

in-pct-2002-396-che-form 3.pdf

in-pct-2002-396-che-form 5.pdf

in-pct-2002-396-che-other document.pdf

in-pct-2002-396-che-pct.pdf


Patent Number 211744
Indian Patent Application Number IN/PCT/2002/396/CHE
PG Journal Number 52/2007
Publication Date 28-Dec-2007
Grant Date 09-Nov-2007
Date of Filing 14-Mar-2002
Name of Patentee M/S. NOVO NORDISK A/S
Applicant Address Novo Alle, DK-2880 Bagsvaerd,
Inventors:
# Inventor's Name Inventor's Address
1 ANDERSEN, Tina, Meinertz Slettevang 3, DK-2970 Horsholm,
PCT International Classification Number A61K 31/575
PCT International Application Number PCT/DK2000/000500
PCT International Filing date 2000-09-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 PA 1999 01308 1999-09-16 Denmark