Title of Invention

IMMERSION SENSOR FOR MONITORING OF ALUMINIUM ELECTROLYSIS CELLS

Abstract The invention relates to an immersion sensor for monitoring of aluminium electrolysis cells, as well as a corresponding measurement apparatus and a measuring method. In order to obtain reproducible measurements, the bath electrode of the immersion sensor is arranged on a carrier. FIGURE 1.
Full Text

Immersion Sensor, Measuring Arrangement and Measuring Method for
Monitoring Aluminum Electrolytic Cells
The invention relates to an immersion sensor for monitoring of aluminum electrolysis cells with a bath (electrolytic) electrode. Furthermore, the invention relates to a measuring arrangement for monitoring electrolysis cells with a tank, as well as a measuring method using the measuring arrangement.
In the manufacture of aluminum in aluminum electrolytic cells, the functional capacity of such systems, in particular the electrolysis tank, is monitored. These tanks are essentially made of carbon. It is important to ensure that these carbon tanks do not have any leaks, thus for example, in the course of their operation they do not get any holes in them, through which the molten aluminum could flow out For the purpose of this test, a suitable metal rod is pushed into the aluminum through the cryolite layer, which lies on the aluminum melt. The metal rod is connected via connection lines and a voltmeter to reference electrodes arranged in the tank bottom, such that the voltage incident between the metal rod (or the aluminum melt) and the reference electrode can be measured. A drop of this voltage indicates that the conductivity between the two electrodes is increasing. This in turn indicates that the tank layer arranged between the two electrodes is defective.
With this measuring method it has been determined that generally no reproducible measurements are possible. As a rule, with measurements carried out after each other, for example even at different locations of the electrolysis device, different voltages are measured. This can be attributed, among other things, to the fact that the thermal equilibrium in the immediate vicinity of the metal rod is sensitively disturbed by its immersion; due to the good heat conductivity of the metal rod and its relatively high heat capacity, cryolite solidifies on the rod. This leads to the creation of

an insulation layer on the rod and consequently to a poor contact with the molten aluminum.
An object of the present invention, starting from the known state of the art, is to create a possibility for obtaining reproducible measurement results.
This object is achieved according to the invention for an immersion sensor in that the bath electrode is arranged on a carrier (support) having an immersion end. This carrier functions for the stabilization of the bath electrode, which for its part can have a very small mass, since the mechanical stability is ensured by the carrier, in order, for example, to allow the penetration of the cryolite layer. The bath electrode itself can thus have a very small heat capacity, so that the measurement vicinity is not influenced in any significant way. In particular, it is advantageous that the carrier be constructed as a carrier tube and preferably comprises an organic material. In particular, it can be made of cardboard. The organic material combusts very quickly upon immersion, at least at its surface, and causes a cleaning effect by the combustion gases in the immediate vicinity. Possibly adhering salt or cryolite is thus practically blown off, i.e. removed, from the carrier or from the bath electrode, respectively. On a carrier of this type a bath electrode can be arranged, preferably constructed as a wire with a diameter of approximately 0.05 mm to 5 mm, especially approximately 0.1 mm to 2 mm, without any significant heat capacity. The corresponding carrier tube made of cardboard also does not substantially affect the heat capacity of the aluminum melt. It has been shown that possible small quantities of solidified cryolite are melted again in a few seconds, so that reproducible measurement values are obtained. In particular, equivalent measurement results can be obtained with such sensors at different locations of the electrolytic cells.
In one expedient embodiment of the invention, the bath electrode is constructed to run partially within the carrier tube and to project out of the immersion end of the carrier tube, wherein the projecting part of the bath electrode is advantageously arranged at least partially on the outer wall of the carrier tube. It has thereby proven to be advantageous that the part of the bath electrode arranged outside of the carrier is at least partially surrounded by a flammable protective sheath, in order

to prevent damage upon penetration of the cryolite layer. The carrier (1) can expediently have a refractory material on the immersion end, at least on its outer side.
Advantageously, the bath electrode is made of a metal, in particular of molybdenum or a tungsten-rhenium-alloy.
In an advantageous embodiment of the invention, an electro-chemical measuring cell and/or a thermo-element with two thermo-element legs is arranged at the immersion end of the carrier. In order to obtain a simple embodiment of the invention, it is expedient to connect the bath electrode with the thermo-element in an electrically-conducting maimer. In particular, the thermo-element can be mounted in the immersion end of the carrier tube and be connected with two contacts of a connection piece for the purpose of the connection to signal lines. The bath electrode can thereby be connected in an especially simple embodiment to a contact of the connection piece, which means, for example, that an end of the bath electrode is welded to the contact of the connection piece.
The object is solved by an immersion sensor according to the invention for a measurement arrangement for the monitoring of aluminum electrolysis cells with a tank, wherein the bath electrode is connected via a signal line and a voltmeter to a reference electrode arranged on the outside of the wall of the tank or in the wall. Using this measurement arrangement, the measuring method according to the invention is characterized in that the immersion sensor is first dipped into the cryolite layer, that the temperature measurement of the cryolite occurs there, and that the immersion sensor is then immersed with the bath electrode into the liquid aluminum, and the voltage between the bath electrode and the reference electrode is measured. In particular, it can be advantageous that the voltage between the bath electrode and the reference electrode is measured in a state of thermal equilibrium.
In the following an embodiment example of the invention is explained on the basis of a drawing. Shown in the drawings are:
Figure 1 is an embodiment of the immersion sensor according to the invention;
Figure 2 is a further embodiment of the immersion sensor; and

Figure 3 is the schematic diagram of a measurement arrangement according to the invention.
The immersion sensor represented in Figure 1 has a carrier tube 1 made of cardboard. A connection piece 2 is arranged on its immersion end and is affixed using a refractory material 3. On its end facing away from the immersion end the connection piece 2 has connections for contacting a signal line, and on its immersion end has a contact 5 for connection of the bath electrode 6. The immersion end of the carrier tube 1 is closed with a cement 7 surrounding the contact 5.
The bath electrode 6 projects out of the carrier tube 1 and lies with its
outer end on the outer side of the carrier tube 1. Prior to use, the outer part of the bath
electrode 6 is at least partially protected by a cover (not shown in the drawing). The
cover can, for example, be made of a paper winding. This cover combusts during the
penetration of the immersion sensor through the cryolite layer and prevents a
solidification of cryolite on the bath electrode 6. ยป
Figure 2 shows another embodiment of the immersion sensor according
to the invention. In this embodiment a thermo-element 8 is additionally arranged on its
immersion end. This thermo-element 8 is protected by a protective cap 9 from the
influence of cryolite. This protective cap 9 is made of a material which dissolves in the
cryolite layer, for example of aluminum. The thermo-element 8 is connected at the
contacts 5, 5' to the connection piece 2, and from there, signal lines (not shown in the
drawing) lead over the connections 4 to measuring devices. The bath electrode 6 is
connected to the contact 5 of the thermo-element 8 and is connected to a signal device
via the same signal line passing through the carrier tube 1.
Figure 3 shows a measurement arrangement using the immersion sensor
shown in Figures 1 or 2. The electrolysis tank has a wall 10 made of carbon. In this
wall 10 the reference electrode 11 is arranged, which is connected via signal lines 12
and a voltmeter 13 to the bath electrode 6. The reference electrode 11 forms at the
same time one of the cathodes for the electrolytic process. The electrolysis bath 14
consists in its lower part of liquid aluminum and in its upper part of cryolite. The
carbon anodes 15 project into the electrolysis bath 14 from above. These are partially

encased by an aluminum oxide crust 16. To punch through the crust a so-called crust breaker 17 is provided, which makes possible a passage from above to the aluminum melt.
The immersion sensor can now be immersed first into the electrolytic bath 14 in order to measure the temperature. Then, it is immersed as far as the bottom of the electrolysis bath 14 in order to measure the voltage incident between the bath electrode 6 and the reference electrode 11. When the wall 10 of the tank is damaged by destruction of the graphite block forming the wall 10, the electrical resistance of the wall 10 drops, and a voltage drop is registered at the voltmeter 13. An advance warning thereby occurs when the wall 10 is damaged. Due to the small heat capacity of the bath electrode 6 constructed of a wire, no appreciable influence of the electrolysis bath 14 occurs. A solidification of bath components on the immersion sensor does not take place, so that reproducible measurements are possible even at different locations in the electrolysis bath.



Claims
1. Immersion sensor for monitoring of aluminum electrolysis cells with a bath electrode, characterized in that the bath electrode (6) is arranged on a carrier (1) having an immersion end.
2. Immersion sensor according to claim 1, characterized in that the carrier (1) is constructed as a carrier tube.
3. Immersion sensor according to claim 1 or 2, characterized in that the carrier (1) comprises an organic material, in particular cardboard.
4. Immersion sensor according to claim 2 or 3, characterized in that the bath electrode (6) is constructed to run partially within the carrier tube (1) and projects from the immersion end.
5. Immersion sensor according to claim 4, characterized in that the part of the bath electrode projecting from the immersion end of the carrier tube (1) is arranged at least partially on the outside wall of the carrier tube (1).
6. Immersion sensor according to one of the claims 1 to 5, characterized in that the bath electrode (6) is constructed of wire with a diameter of approximately 0.05 mm to 5 mm, in particular approximately 0.1 mm to 2 mm.
7. Immersion sensor according to one of the claims 1 to 6, characterized in that the part of the bath electrode (6) arranged outside the carrier (1) is surrounded at least partially by a flammable protective sheath.
8. Immersion sensor according to one of the claims 1 to 7, characterized in that the carrier (1) has a refractory material on the immersion end, at least on its outer side.
9. Immersion sensor according to one of the claims 1 to 8, characterized in that the bath electrode (6) is made of a metal, in particular
of molybdenum or a tungsten-rhenium-alloy.
10. Immersion sensor according to one of the claims 1 to 9,
characterized in that an electro-chemical measurement cell and/or a thermo-element (8)
with two thermo-element legs is arranged at the immersion end of the carrier (1).

11. Immersion sensor according to claim 10, characterized in that the bath electrode (6) is connected with the thermo-element (8) in an electrically-conducting manner.
12. Immersion sensor according to the claims 2 and 10, characterized in that thermo-element (8) and/or the electrochemical measurement cell is mounted in the immersion end of the carrier tube (1) and is connected with the two contacts (5, 5') of a connection piece (2) to the connection to signal lines.
13. Immersion sensor according to the claims 11 and 12, characterized in that the bath electrode (6) is connected to a contact (5) of the connection piece (2).
14. Measurement arrangement for monitoring of aluminum electrolysis cells with a tank, having an immersion sensor according to at least one of the claims 1 to 11, wherein the bath electrode (6) is connected via a signal line (12) and a voltmeter (13) to a reference electrode (11) arranged on the outside of the wall (10) of the tank or in the wall (10).
15. Measurement method using a measurement arrangement according to claim 14, characterized in that the immersion sensor is first immersed in the cryolite melt, that the temperature measurement of the cryolite melt occurs there, and that then the immersion sensor is immersed with the reference electrode (6)
in the liquid aluminum, and the voltage is measured between the bath electrode (6) and the reference electrode (11).

16. Immersion sensor for monitoring of aluminium electrolysis cells with a
bath electrode composition substantially as hereinbefore described with
reference to the accompanying drawings.
17. Measurement arrangement for monitoring of aluminium electrolysis cells
with a tank substantially as hereinbefore described with reference to the
accompanying drawings.


Documents:

abs-in-pct-2000-596-che.jpg

in-pct-2000-596-che-abstract.pdf

in-pct-2000-596-che-claims filed.pdf

in-pct-2000-596-che-claims granted.pdf

in-pct-2000-596-che-correspondence others.pdf

in-pct-2000-596-che-correspondence po.pdf

in-pct-2000-596-che-description complete filed.pdf

in-pct-2000-596-che-description complete granted.pdf

in-pct-2000-596-che-drawings.pdf

in-pct-2000-596-che-form 1.pdf

in-pct-2000-596-che-form 19.pdf

in-pct-2000-596-che-form 26.pdf

in-pct-2000-596-che-form 3.pdf

in-pct-2000-596-che-form 5.pdf

in-pct-2000-596-che-pct.pdf


Patent Number 210669
Indian Patent Application Number IN/PCT/2000/596/CHE
PG Journal Number 50/2007
Publication Date 14-Dec-2007
Grant Date 08-Oct-2007
Date of Filing 02-Nov-2000
Name of Patentee M/S. HERAEUS ELECTRO-NITE INTERNATIONAL N.V
Applicant Address Centrum Zuidd 1105, 3530 Houthalen.
Inventors:
# Inventor's Name Inventor's Address
1 VERSTREKEN, Paul Gelrodeweg 14 B-3200 Aarschot.
PCT International Classification Number G01N 27/26
PCT International Application Number PCT/EP2000/001730
PCT International Filing date 2000-03-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 199 09 614.7 1999-03-05 EUROPEAN UNION