Title of Invention

PROCESS AND APPARATUS FOR THE COEXTRUSION OF RUBBER MIXTURES

Abstract The invention concerns an instrumentation for co-extruding rubber mixtures comprising a main extruder (1) including an extrusion head (10) comprising at least two channels (14, 15) each circulating a rubber mixture (A, B), said channels emerging onto an extrusion orifice (18) through which are delivered the two rubber mixtures (A, B), the extrusion orifice (18) being delimited by first (111) and second (161) walls, which also comprises at least a micro-extruder (2) of a third rubber mixture (C) whereof the extrusion head (22) is provided at its end with a nozzle (23), said nozzle passing through the two circulation channels (14, 15) such that the third rubber mixture (C) is introduced in each rubber mixture (A, B) upstream of the extrusion orifice (18).
Full Text FORM 2
THE PATENTS ACT 1970
[39 OF 1970]
COMPLETE SPECIFICATION
[See Section 10 ; rule 13]]
"Process and apparatus for the coextrusion of rubber mixtures""
SOCIETE DETECHNOLOGIE MICHELIN, a French company, of 23, rue Breschet, F-63000 Clermont-Ferrand, France and MICHELIN RECHERCHE ET TECHNIQUE S.A., a Swiss company of Route Louis Braille, 10 et 12, CH-1763 Granges-Paccot, Switzerland.
16-04-2007
The following specification particularly describes the nature of the invention and the manner in which it is to be performed:-

The present invention concerns a process for obtaining a tyre having several mixtures comprising, as the majority filler, a non-conductive filler such as silica or mixtures filled with small proportions of carbon black, at least two of these mixtures constituting the tyre tread. The invention also relates to equipment for implementing such a process.
As environmental problems become more and more crucial, fuel economy and ways to combat the nuisances engendered by motor vehicles having become a priority, one of the objectives of tyre manufacturers is to produce a tyre which combines very low rolling resistance, excellent grip on dry, wet, snowy or icy ground, very good wear resistance, and finally, low rolling noise.
To achieve that objective, European Patent Application EP A 501 227 proposes a tyre having a tread that comprises silica as its main reinforcing filler. Although this solution gives the best compromise between the various very contradictory properties mentioned above, it has nevertheless been found that depending on the vehicles, tyres with a tread comprising silica as the main reinforcing filler have the disadvantage of being able to accumulate more or less high levels of static electricity formed by friction of the tyre against the road while the vehicle is driving, since silica is not electrically conductive.
When certain particular conditions co-exist, the static electricity so accumulated in a tyre can give rise to a disagreeable electric shock for the occupant of the vehicle when he touches the body of the vehicle. Furthermore, this static electricity can hasten the ageing of the tyre because of the ozone produced by the electric discharge. Depending on the nature of the ground and the vehicle, it can also cause the on-board radio to malfunction because of the interference it generates.
This problem of static electricity accumulation in a tyre, and most of the disadvantages related to it, has been familiar for a very long time and already arose when the reinforcing filler used was carbon black.

Application EP 0 658 452 Al describes the adaptation of long-known principles to a tyre said to be modern, an adaptation that solves the main problems associated with the solutions proposed in various earlier documents and, in particular, the harmful heterogeneities introduced into the structures of tyres. The solution proposed consists in inserting a strip of conductive rubber mixture, or insert, preferentially extending all round the circumference of the tyre and connecting the surface of the tread either to one of the crown plies, or to the carcass reinforcement, or to any other part of the tyre that is a sufficiently good conductor of electricity, the necessary electrical conductivity being conferred by the presence of a suitable carbon black.
Although such a solution is perfectly viable for a tyre having a tread that consists of a single non-conductive mixture, for example a tread of a passenger car tyre, this is not true in the case of a tyre having several layers of rubber mixtures above the carcass reinforcement and layers of rubber mixtures between the crown reinforcement and the carcass reinforcement, as is the case in any tyre designed to roll with a high steady-state operating temperature, as in heavy vehicles or high-speed vehicles.
In effect, if for any reason such a tyre has been provided with a non-conductive layer or internal portion of the tread (the part not in contact with the ground) between the crown reinforcement and the external portion of the tread (the part in contact with the ground) that has been made conductive by the presence of a circumferential or strip-shaped insert, the said internal portion must be made conductive. Similarly, a layer between the carcass reinforcement and the crown reinforcement, which produces the well known excess thickness in the edge areas of the crown plies, must also be made conductive if it is not so to begin with.
As described in French application FR 97/02276 by the present Applicants, a first solution is to ensure electrical connection between two first layers that are conductive or have been made so and are separated by a third, non-conductive layer, by means of at least one strip of rubber mixture having small thickness, width and length, positioned between the two joint

faces of the third, non-conductive layer and in contact with the means that make the first two layers conductive, such that they are connected thereby. Although industrially satisfactory, this method entails the positioning of a supplementary product and leads to additional manufacturing cost.
As described in international application WO 99/43506 by the present Applicants, a second solution consists in providing each non-conductive layer with a circumferential insert of conductive mixture after the said layer has been extruded by the usual extrusion means, and then joining the two products together before they are positioned on the crown, the said layers having a common contact surface and the width of the insert in one layer at the level of the contact surface being equal to at least 10 times that of the insert in the other layer at the same level. This method effectively enables each layer to be made electrically conductive and ensures electrical connection between them and the carcass reinforcement.
However, the method becomes too complex when no longer are there only two layers consisting of two distinct rubber mixtures, but three layers, four layers or more, with different rubber mixtures.
Besides, certain rubber mixtures have rheological properties so different that bonding them together is very difficult. This in particular is the case when one of the mixtures is more decohesive than the other. When it is desired to join such mixtures, for example within a tread, and to avoid artifices such as using a bonding agent such as a specific glue or adhesive to join the two, the method used is co-extrusion which, moreover, has a certain economic advantage in industry. In effect, in a co-extrusion process the different products, which have been worked separately by extrusion screws, are propelled towards a common extrusion orifice that allows the said products to be brought together while hot and under pressure.
In this configuration it could be envisaged to transpose the second solution to co-extrusion. Thus, an insert would be produced in each product upstream from the extrusion orifice by means of two micro-extruders, the nozzle of each micro-extruder passing through each product so that, in conformity with the said second solution, one of the inserts has a base at

least ten times as wide as the base of the second product opposite it. However, on the one hand such a solution considerably increases the bulk of the co-extrusion machine, and on the other hand, it greatly adds to the difficulty of the operations of changing the extruded product and cleaning the extruders.
The object of the present invention is co-extrusion equipment and a process that uses the said equipment, intended in particular for the production of a tyre comprising at least two layers of rubber mixtures that do not conduct electricity and a circumferential insert of conductive mixture that enables the dissipation of the electric charges induced by the rolling of the tyre, the said equipment and process being as simple as possible and using just the quantity of product required to form the insert.
According to the invention, the process for obtaining an element based on rubber mixtures intended for the production of a tyre is characterised in that it comprises the following steps:
using a main extruder provided with at least two extrusion screws, at least two layers of rubber mixtures are co-extruded, the said extrusion screws each having a respective flow channel that opens into one and the same extrusion orifice delimited by a first and a second wall,
by co-extrusion through the two layers upstream from the extrusion orifice, at least one rubber mixture insert is inserted by means of a nozzle of a micro-extruder, the said nozzle passing through both of the flow channels.
Adaptation of the process used to extrude a single product, which consists in direct injection at the level of the extrusion blade into the profiled mixture, to the co-extrusion of two or more mixtures in this case through both flow channels, is hard to envisage for a person familiar with the field. In effect, on the one hand this assumes that downstream from these two "insertions" at the outlet of the two flow channels the two inserts will be superposed over one another in the extrusion orifice. On the other hand, as was said earlier, co-extrusion has the considerable advantage of causing adhesion between two mixtures whose rheological properties makes it difficult to produce and maintain a bond between them without recourse to the presence of other compounds. Now, in the context of co-extrusion this is made

possible thanks to a variety of factors: raw adhesion, at elevated temperature and under pressure, without contact with the open air and before profiling. A priori it seems clearly apparent that the presence of an insert that creates an interruption of their interface all along a length of the mixtures might interfere with the adhesion of the two mixtures, or result in serious bonding defects at the level of the interface between them by producing incipient detachments in the unvulcanised condition.
The Applicant discovered that, surprisingly, the inserts in the two mixtures are superposed very effectively after passage through the nozzle, and that the presence of a circumferential insert in the two mixtures and at their interface does not affect the bond between them.
The invention also relates to the equipment for co-extruding rubber mixtures, which comprises a main extruder with an extrusion head having at least two flow channels, each for a rubber mixture, the said channels opening into the same extrusion orifice through which the two rubber mixtures are propelled, the extrusion orifice being delimtied by a first and a second wall, the said equipment also comprising at least one micro-extruder for a third rubber mixture, whose extrusion head is provided at its end with a nozzle, the said nozzle extending across the two flow channels so as to insert the third rubber mixture into each rubber mixture upstream from the extrusion orifice:
Other advantages and characteristics of the invention will emerge on reading an example of the production of a tyre and of equipment according to the invention, with reference to the attached drawing showing:
Fig. 1: Partial longitudinal section of the equipment according to the invention
Fig. 2: Schematic perspective representation of the crown portion of a tyre according to the invention
Fig. 3: Partial longitudinal section of a variant of the equipment according to the invention

In what follows, the same index numbers will be used to denote identical elements of the equipment variants shown in Figs. 1 and 3.
Fig. 1 shows a partial view of the equipment that enables the production of a tyre tread in the unvulcanised condition, the said tread comprising two co-extruded layers of rubber mixtures A and B, each with an insert of a rubber mixture C produced by co-extrusion together with the mixtures A and B.
Thus, Fig. 1 shows an extrusion head 10 of a first main extruder 1 that enables the co-extrusion of two unvulcanised rubber mixtures A and B, intended in this example for producing the lower and upper portions of a tread.
The extrusion head 10 comprises an upper vault 11 and a lower vault 13 which, with an intermediate support 12, delimit two flow channels 14 and 15, each channel for one of the mixtures A andB.
The flow channel 15 opens into a first extrusion orifice 17 through which mixture B is propelled, delimited by a wall 121 of the support 12 and by the surface 161 of a roller 16. This extrusion orifice 17 itself opens into a second extrusion orifice 18 through which the mixture A arriving through flow channel 14 is propelled, such that the mixture B is positioned between the roller 16 and mixture A.
The extrusion orifice 18 is delimited by a first and a second wall consisting respectively, here, of a wall 111 carried by the vault 11, which belongs to an extrusion blade 19, and by the outer surface 161 of the roller 16. Thus, the extrusion orifice allows the desired profile to be conferred upon the two co-extruded mixtures.
In the example chosen, the extruder is of the type known as a "roller die extruder", in which the first wall 111 of the extrusion blade 19 is fixed and the second wall is mobile and consists of the outer surface 161 of a roller associated with the extruder. However, the invention is not limited to the use of that type of extruder, and one could also envisage the use of an

extruder 1" known as a "flat die extruder", in which the first and second walls consist of the two fixed walls 191" and 192" of an extrusion blade 19" as illustrated in Fig. 3. In this variant embodiment of the invention there is only one extrusion orifice 18.
With the main extruder 1 is associated a very small extruder 2 commonly known as a "micro-extruder", which is mounted in a fixed position in the vault 11. This extruder 2, provided with a screw 21 and an extrusion head 22, has at its end a nozzle 23 fixed to the die of the micro-extruder 2 and designed to extrude, with the profile and line desired, an insert based on a third mixture into each of the unvulcanised and hot mixtures A and B passing into the flow channels 14 and 15.
The extrusion head 22 forms a bend 221 such that the extrusion nozzle 23, fixed to the die of the extrusion head, extends across the two channels 14 and 15 and the support 12. A mixture C of conductive rubber intended to form the insert is thus extruded into each of the flows of mixtures A and B. It could also be envisaged to mount the micro-extruder perpendicularly to the axis of the roller 16, and there would then be no need for a bend in the extrusion head of the said micro-extruder.
The extrusion nozzle 23 used with the micro-extruder 2 has a mobile outlet passage in contact with the upper wall 131 of the vault 13 and extending across the support 12, so allowing the mixture C to pass all the way along the nozzle.
In Fig. 1 the nozzle 23 is inclined relative to the perpendicular direction at the ends of the two flow channels 14 and 15 opening towards the extrusion orifice 18. In the example described, this arrangement allows the rubber mixture C to be inserted and therefore the strip to be produced in each flow channel, close to the extrusion orifices 17 and 18 so as to avoid the risk that the strip might undergo excessive deformation between the area where it is produced and the extrusion orifice concerned. However, this arrangement must be determined as a function of a number of parameters, in particular the nature of the rubber mixtures used, the temperature and pressure conditions within the extruders, and the width and nature of the rubber mixture C. That is why, depending on these criteria, the nozzle may

or may not form an angle of inclination with the direction of the flow channels and can be closer to or further away from the extrusion orifices.
The vault 11 and the support 12 receive through a bore the nozzle 23 with its mobile outlet passage which has on its cylindrical surface two slits 231, 232 formed with an appropriate cross-section along part of its height such that each slit coincides with one of the flow channels 14, 15. The contact between the base of the nozzle with the mobile outlet passage 23 and the wall 131 of the vault 13 is maintained by the pressure of the conductive mixture acting on the section 230. According to a variant embodiment of the invention, the nozzle 23 can be fixed directly on the wall 131 of the vault 13.
This arrangement makes it possible to produce strips whose width can vary within a range of about 0.1 mm to 2 mm without the need to vary the width at the level of the bases of the two layers of rubber mixtures that are to be in contact. However, it is entirely possible to envisage forms of slits other than those described here as a non-limiting example. Moreover, with this device the mixture C can if desired be extruded discontinuously, depending on the applications intended, for example to produce a strip consisting of "dots".
The bulk of such equipment is therefore only very slightly increased by the presence of the micro-extruder. Moreover, the use of just one nozzle for both channels facilitates mixture changes since it suffices to ensure that the nozzle is effectively empty to make such a change. It is easy to understand that several inserts can be made by providing several possible fixing positions in the flow channels, which could be used in succession or simultaneously according to the realisation desired, with the aid of an appropriate number of micro-extruders. The shape of the slits formed in the nozzle can also be varied as desired.
Similarly, it has been chosen to describe the production of a tread having two layers of rubber mixtures, but the invention also applies to the production of treads with more than two layers of co-extruded mixtures.


The equipment described above therefore makes it possible, according to the invention, in particular to produce a tread consisting of two non-conductive mixtures A and B crossed by an insert of a conductive mixture C, for a tyre such as that represented in Fig. 2.
According to Fig. 2, the tyre 3 of size 315/80.R.22.5, designed to have low rolling resistance, comprises a carcass reinforcement 31 consisting of a metallic ply formed of inextensible metallic cables embedded in a rubber lining mixture, which is rendered conductive to electrostatic charges by virtue of a carbon black currently used as a reinforcing filler in mixtures.
The carcass reinforcement 31 is covered at its crown by a crown reinforcement 32 consisting, in the example described, of plies and/or half-plies formed of metallic cables. All the cables of this crown reinforcement 32 are embedded in one or more rubber lining mixture(s) conductive to electrostatic charges thanks to a carbon black currently used as a reinforcing filler in mixtures.
The internal 341 and external 342 layers of the tread 34 are rendered conductive by a rubber insert 35 or strip in the form of a circumferential ring extending throughout the height of the two layers 341 and 342, to connect the surface of the tread 34 that comes into contact with the ground to the radially outermost ply of the crown reinforcement 32, formed of metallic cables embedded in a rubber mixture filled with a usual carbon black and therefore conductive. This insert 35, which has a very small axial width e on the surface of the tread, for example equal to 0.5 mm, is in the case described a single one and is theoretically centred on the equatorial plane XX" of the tyre, and its trace on the contact surface 340 between the inner layer 341 and the radially outermost ply of the crown reinforcement 32 is a straight line and circular. The insert 35 could be off-centre, particularly in the case when a central groove is present in the tread; there could also be two inserts, for example positioned symmetrically with respect to the equatorial plane, or even more, but in any case positioned axially in such manner that contact with the ground can be established however worn the tread may be. It can also be envisaged that the insert is a circumferentially continuous or else discontinuous ring.

The rubber composition constituting the conductive connection 11 for electrostatic charges is based on a natural rubber and/or synthetic rubbers customarily used for making tyres and especially treads, and having as the reinforcing filler a conductive carbon black, preferably one customarily used in tyre production.
Without going beyond the scope of the invention, it is clear that the co-extrusion process and equipment according to the invention can be used to position inserts in rubber mixtures without regard to conductivity, as for example to put one or more coloured inserts in black rubber mixtures.

WE CLAIM:
1 Process for obtaining an element based on rubber mixtures,
intended for the production of a tyre,
characterised in that
it comprises the following stages:
- using a main extruder (1) provided with at least two extrusion screws, coextruding at least two layers of rubber mixtures (A, B), said extrusion screws each having a respective flow channel (14, 15) opening into an extrusion orifice (18) delimited by a first wall (111) and a second (161) wall where the two layers are joined together and
- before the two layers contact each other, co-extruding through the two layers into each of the flow channels and upstream from the extrusion orifice, at least one insert (35) of a rubber mixture (C) by means of a nozzle of a micro-extruder (2), said nozzle passing through the two flow channels (14, 15).

2 Process as claimed in claim 1, wherein the layers of rubber mixture constitute parts (341, 342) of a tread (34).
3 Process as claimed in claim 2, wherein the rubber mixtures (A, B) constituting the parts (341, 342) of the tread are non-conductors of electricity and the rubber mixture (C) extruded by the micro-extruder (2) conducts electricity.
4 Apparatus for co-extruding rubber mixtures, comprising a main extruder (1) with an extrusion head (10) having at least two flow channels (14, 15), each for a respective rubber mixture (A, B), said channels opening into an extrusion orifice (18) through which the two

rubber mixtures (A, B) are propelled, the extrusion orifice (18) being delimited by a first wall (111) and a second (161) wall, the equipment also comprising a micro-extruder (2) for a third rubber mixture (C), said micro extruder having an extrusion head (22) provided at its end with a nozzle (23), passing through the two flow channels of the main extruder (14, 15) such that the third rubber mixture (C) is inserted into each rubber mixture (A, B) upstream from the extrusion orifice (18) and before the rubber mixtures (A, B) contact one another and are propelled through the extrusion orifice.
5 Apparatus as claimed in claim 4, wherein the first and second walls of the extrusion orifice consist of the two fixed walls of an extrusion blade (19).
6 Apparatus as claimed in claim 4, wherein the first wail (111) delimiting the extrusion orifice (18) is fixed and the second wall consists of the outer surface (161) of a roller (16) mounted on the main extruder (1).
7 Apparatus as claimed in either of claims 4 or 5, wherein the extrusion nozzle (23) has a mobile outlet passage, has to slits coinciding with respective flow channels along part of its height, and is inserted in a bore in the main extruder.
8 Apparatus as claimed in claim 7, wherein the base of the nozzle (23) is kept in contact with a wall (131) of one of the flow channels (15) by the pressure of the mixture (C) extruded by the micro-extruder (2).

Documents:

47-mumnp-2003-abstract(16-04-2007).pdf

47-mumnp-2003-abstract-(16-04-2007).doc

47-mumnp-2003-cancelled pages(16-04-2007).pdf

47-mumnp-2003-claims(granted)-(16-04-2007).doc

47-mumnp-2003-claims(granted)-(16-04-2007).pdf

47-mumnp-2003-correspondence(16-04-2007).pdf

47-MUMNP-2003-CORRESPONDENCE(25-9-2012).pdf

47-mumnp-2003-correspondence(ipo)-(12-02-2007).pdf

47-mumnp-2003-drawing(16-04-2007).pdf

47-MUMNP-2003-FORM 16(9-8-2012).pdf

47-mumnp-2003-form 18(21-04-2006).pdf

47-mumnp-2003-form 1a(08-01-2003).pdf

47-mumnp-2003-form 2(granted)-(16-04-2007).doc

47-mumnp-2003-form 2002(granted)-(16-04-2007).pdf

47-mumnp-2003-form 3(07-01-2003).pdf

47-mumnp-2003-form 3(16-04-2007).pdf

47-mumnp-2003-form 5(07-01-2003).pdf

47-mumnp-2003-form-pct-isa-210(16-04-2007).pdf

47-mumnp-2003-petition under rule 137(16-04-2007).pdf

47-mumnp-2003-petition under rule 138(16-04-2007).pdf

47-mumnp-2003-power of authority (16-04-2007).pdf

47-mumnp-2003-power of authority(30-12-2002).pdf

abstract1.jpg


Patent Number 209095
Indian Patent Application Number 47/MUMNP/2003
PG Journal Number 35/2007
Publication Date 31-Aug-2007
Grant Date 20-Aug-2007
Date of Filing 08-Jan-2003
Name of Patentee SOCIETE DE TECHNOLOGIE MICHELIN AND MICHELIN RECHERCHE ET TECHNIQUE S.A.
Applicant Address 23, rue Breschet, F-63000 Clermont-Ferrand, FRANCE ROUTE LOUIS BRALILLE, 10 ET12, CH-1763, GRANGES- PACCOT, SWITZERLAND
Inventors:
# Inventor's Name Inventor's Address
1 DIDIER CALVAR 21, rue des Terrasses, F-63110 Beaumont FRANCE
2 BERNARD MARECHAL 3, chemin du Communal, F-63190 ORLEAT
PCT International Classification Number B29C47/56
PCT International Application Number PCT/EP02/05333
PCT International Filing date 2002-05-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 01/06489 2001-05-16 France