Title of Invention

WEATHER-AND CORROSION-RESISTANT REFLECTOR FOR ELECTROMAGNETIC RADIATION

Abstract The invention relates to a weather and corrosion-resistant reflector with high overall reflection in the visible and infrared wavelength ranges. Said reflector contains a reflector body with a reflective surface consisting of aluminium or an aluminium alloy or a reflector body with a reflection coating consisting of aluminium or an aluminium alloy. The reflector also contains an outer, final, transparent protective layer consisting of a sol-gel coating which is thicker than 1 um. The transparent sol-gel coating is a polymer consisting of cross-linked inorganic siloxanes with alcohol groups that are bonded to the silicon with a carbon bond. The sol-gel coating is produced in a sol-gel process and after having been applied to the reflector body, is dried and hardened using heat. The protective layer is characterized by its excellent resistance to weather, corrosion and abrasion.
Full Text

1.
Reflector
The present invention concerns a weatherproof, corrosion-resistant reflector for electromagnetic radiation, in particular for infrared radiation, visible light and ultraviolet radiation, with a high total reflection, containing a reflector body of aluminium or an aluminium alloy with a reflective surface or containing a reflective body with a reflection layer of aluminium or an aluminium alloy forming a reflective surface, and a process for production of a reflector according to the invention,
It is generally known to produce strips in bright materials e.g. pure aluminium, purest aluminium or AlMg alloys based on aluminium with a purity degree of 99.5% and higher, e.g. 99.8%, which, depending on application, generate diffused or directed light reflection. It is also known to increase the targeted reflection to brighten the surfaces of such strips chemically or electrolytically and then by anodic oxidisation create a protective layer of e.g. 2 - 10 µm layer thickness.
In the open air, however, such reflectors have a restricted life. Moisture in co-operation with UV radiation or CO2/ SO2
or pollutants in general lead to a reduction in reflection values i.e. reduction of the brightness or total reflection.
The anodisation process and the relatively high layer thickness of the anodisation layer of for example 2 - 10 µm also lead, in particular, with less pure aluminium materials, to a reduction in the reflection degree on the surface i.e. a reduction both of the total reflection and the targeted reflection by absorption and diffuse light scatter in the oxide layer. To keep the said disadvantages within limits, therefore, high purity and expensive bright alloys based on purest aluminitim must be used. High purity aluminium materials however often have unsatisfactory deformation behaviour and low limits of elasticity, i.e. their strength

is relatively low.
Reflectors are also known of glass surfaces with aluminium or silver mirroring on the rear. Such reflectors are however expensive to produce. They also have a high weight, are fragile and non-deformable.
The purpose of the present invention is to propose a reflector, the reflective side of which is resistant to weather and corrosion and mechanical influences and is also easy to clean. In addition, production in a continuous production process must be possible.
According to the invention the task is solved in that the reflective surface of aluminium or an aluminium alloy has a roughness Ra of less than 0.1 µm to DIN 4761 to DIN 4768 and the reflector has an external final transparent protective layer of a polymer of a thickness greater than 1 µm and the reflector according to the 2000h QUV test to ASTM G 53-96 has losses of total reflection and brilliance of less than 5%.
The transparent protective layer is in particular a clear colourless transparent protective layer. The protective layer is preferably a sol-gel lacquer, in particular a sol-gel lacquer of a polysiloxane and advantageously a sol-gel lacquer of a polysiloxane produced from an alcoholic silane solution and a watery colloidal silicic acid solution. Polysiloxane is the term for polymers of cross-linked siloxanes.
The reflective surface can itself be formed by a metallic reflection layer applied to the reflector body or preferably by the reflector body surface itself.
The reflector body consists of or has at least one free surface, in particular a coating of a metal, in particular aluminium or an aluminium alloy e.g. aluminium with a purity

of 98.3% and higher. The reflector body consists of or has at least one free surface, in particular a coating, advantageously of aluminium with a purity of 99.0% and higher, where applicable also with a purity of 99.5% and higher, preferably however with a purity of 99.7% and higher, and in particular 99.8% and higher. As well as aluminium of the said purities, preferably aluminium alloys can also be used. Preferred alloys are those of classes AA 1000, AA 3000 and AA 5000. Other suitable alloys contain for example 0.2 5 to 5 w.%, in particular 0.5 to 4 w.% magnesium or contain 0.2 to 2 w.% manganese or contain 0.5 to 5 w.% magnesium and 0.2 to 2 w.% manganese, in particular 1 w.% magnesium and 0.5 w.% manganese, or contain 0.1 to 12 w.%, preferably 0.1 to 5 w.%, copper or contain 0.5 to 6 w.% zinc and 0-5 to 5 w.% magnesium or contain 0.5 to 6 w.% zinc, 0.5 to 5 w.% magnesium and 0.5 to 5 w,% copper or contain 0.5 to 2 w.% iron and 0.2 to 2 w.% manganese, in particular 1.5 w.% iron and 0.4 w.% manganese or AlMgSi alloys or AlFeSi alloys. Further examples are AlMgCu alloys such as A199.85MgO, 8Cu or AlMg alloys such as AlMgl, or AlFelto alloys such as AlFeMnl.5.
The reflector body is preferably a rolled product and in particular a rolled sheet or strip, a rolled film or plate of reliable aluminium or a reliable aluminium alloy. The reflector body as a rolled product can where applicable be deformed e.g. by bending, deep drawing, cold flow pressing or similar.
Also, as a reflector body all physical structures can be used which have at least one free surface of one of the said aluminiums or one of the said aluminium alloys or consist completely thereof. Also, only part areas or limited surface areas of the reflector body may consist of the said aluminium materials or aluminium alloys. Furthermore, the said physical structures may be profiles or bars.
The reflector body may also consist of castings or forgings

of aluminium or an aluminium alloy.
Depending on use, the entire reflector body may consist of aluminium or an aluminium alloy but also only part areas or surface areas may consist thereof. The material of aluminium or aluminium alloy, e.g. in the form of a sheet, film, plate or coating, can also form part or a part surface of a laminate e.g. a film laminate or laminate of any materials e.g. plastic and aluminium, Al-coated plastic or Al-coated iron or steel plate.
The reflector body surface, i.e. the aluminium surface of the reflector body, can for example be produced by chemical and/or mechanical changes e.g. rolling, forging, cold flow pressing, pressing or casting. The reflective surface of the reflector body can in addition be subjected to subsequent treatment by grinding, polishing, blasting with hard substances etc. Preferred reflector bodies are those with rolled surfaces produced with smooth or structured rollers.
Preferred reflector bodies are sheets and strips, in particular rolled sheets and strips, of aluminium or an aluminium alloy of the said composition and aluminium-coated iron or steel sheet with a thickness for example of 0.1 to 10 mm, preferably 1 to 4 mm, in particular 0.2 to 1.5 mm, and particularly preferably 0.3 to 1 mm, where the aluminium coating is also an aluminium or an aluminium alloy of the said composition. One example is an aluminium sheet Al 99.5 (purity 99.5%) of thickness 0.5 mm.
The surface of the reflector body or the reflective surface can be pretreated and for example have a pretreatment layer. The pretreatment layer can for example be a layer produced by chromatising, phosphatising or anodic oxidation. Preferably, the pretreatment layer consists of anodic oxidised aluminium and is in particular produced from the aluminium lying on the surface of the reflector body.


The pretreatment layer can have a thickness of for example at least 10 nm, preferably at least 20 nm, in particular at least 50 nm and advantageously at least 100 nm. The maximum thickness of the pretreatment layer is for example 5000 nm, preferably 1500 nm and in particular 300 nm.
The pretreatment layer is preferably an anodically generated oxide layer which was constructed in a non-redissolving and preferably a redissolving electrolyte. The pretreatment layer is preferably a porous, anodically produced oxide layer.
Anodisation preferably takes place in an acid electrolyte from the range of phosphoric acid, citric acid, tartaric acid, chromic acid electrolytes and in particular from the range of sulphuric acid electrolytes. Anodisation takes place in the alternating and preferably direct current process. Unit anodising and strip anodising is possible.
The anodically generated oxide layer can also be subjected to a sealing or densif ication treatment. The said oxide layer is preferably not densified.
The pretreatment layer can also contain a yellow chromatised layer, a green chromatised layer, a phosphate layer or a chrome-free pretreatment layer grown in an electrolyte containing at least one of the elements Ti, Zr, F, Mo or Mn.
Furthermore, the aluminium surface for pretreatment can be brightened in a chemical or electrochemical process or subjected to an alkali pickling process. Such brightening or pickling processes are performed before anodising.
Before application of a pretreatment layer or performance of a first pretreatment step, the reflector surface is suitably degreased and cleaned. The pretreatment may also comprise only degreasing and cleaning the reflector surface. The reflector surface can be cleaned in a known manner e.g.

chemically and/or electrochemically by acid or alkali. Its purpose is to remove foreign substances and where applicable the naturally occurring oxide layer on the aluminium surface. Suitable cleaning agents are e.g. acidic watery degreasants, alkali degreasants based on polyphosphate and borate. Cleaning with moderate to severe material reduction is performed by pickling or etching using strong alkali or acidic pickling solutions e.g. sodium lye or a mixture of nitric acid and hydrofluoric acid. The oxide layer present with its contaminants is removed. When highly aggressive alkali pickling is used, where applicable acidic secondary treatment may be required.
Depending on the surface condition a mechanical surface removal by abrasive means may be required. Such surface treatment can for example take place by grinding, blasting, brushing or polishing and where applicable be supplemented by chemical secondary treatment.
In the preferred embodiment in a strip process a pretreatment layer is applied to an aluminium strip. For this an aluminium strip (Al 99.85, Ra 0.04 µm) with 500 mm width and 0.3 mm thickness is anodised continuously at around 40 m/min. The following stages are passed (through baths):
a) Degreasing at pH 9 - 9.5 at approx 50°C and bonder V6150/01,
b) Rinsing with tap water (room temperature),
c) Anodising in 20% H2SO4 at approx 25°c and 20V voltage,
d) Rinsing in tap water at around 50°C and
e) Rinsing in deionised water at approx 85°C.
The protective layer or further layers can be applied to the pretreatment layer. The strip is advantageously only cut into strips of the desired size and shape after completion of the coating i.e. after coating with the protective layer.

The reflective surface has a roughness Ra of suitably less
than 0.1 |µim, preferably less than 0.05 µm and in particular
less than 0.02 µm. The surface roughness Ra is defined in at
least one of DIN specifications 4761 to 4768.
The surface of the reflector body can be smooth ox-structured and for example have a light-conductive structure in the form e.g. of a rib pattern with toothed cross-section. The structuring can for example be produced by way of a roller with corresponding embossed pattern. The surface of the reflector body with relation to structuring or roughness can be composed such that the reflection of the radiation is targeted, scattered or a combination thereof.
The said roughness Ra of structured surfaces relates to the individual part areas of the surface structure i.e. the structuring itself logically is not included in the determination of roughness.
In a further embodiment a reflection layer forming the reflective surface and made of a metal, e.g. a layer of aluminium, silver, copper, gold, chromium, nickel or an alloy for example containing mostly at least one of the said metals, can be applied to the reflective body or its pretreatment layer. The thickness of the reflection layer can for example be 10 to 200 nm (nanometer). Furthermore, on the reflector body or its pretreatment layer, to smooth out the surface roughness, can be applied a functional layer in the form of an organic or inorganic sol-gel layer. Usually, the reflection layer here lies directly or by way of an adhesion layer on the functional layer. The composition of the functional layer is described in detail in EP 918 236 Al.
The reflection layer can also be part of a reflection layer system where the reflection layer system contains one or more transparent layers applied to the reflection layer. For example 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 transparent layers -

counted without the protective layer - advantageously fulfil with regard to optical thickness for each layer, formula λI2, where in particular each of these transparent layers is a double layer of at least 2 layers of thickness λ/4. The optical thickness of each transparent layer with formula X/2 can vary by ± 40 nm. A transparent layer is preferred, or further preferably two, three or more transparent layers which can consist of the same or different materials, where each of the transparent layers has an optical thickness of λ/2 ± 40 nm and in particular is a double layer of thickness 2.λ/4. On the said transparent layer or layers as a top layer or as the layer lying on the surface is arranged the protective layer which in turn is also transparent. λ corresponds to the intensity maximum of the wavelength of the reflective electromagnetic radiation.
The materials of the transparent layers of the reflection layer system consist of or contain e.g. oxides, nitrides, fluorides, sulphides etc. of alkali metals e.g. Li, Na, K, earth alkali metals e.g. Mg, Ca, Sr, Ba, semi-metals e.g. Si, transitional metals e.g. Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Te, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, lanthanoids e.g. La, Ce, Pr, Nd, Pm, Dy, Yb, Lu etc. We cite here namely SiOx where x has a significance from 1.1 to 2.0 and preferably 1.8, AI2O3, MgF2, Ti02, B2O3, Be-oxide, ZnO, Sn02, indium tin oxide (ITO) , CdS, CdTe and hafnium and
zirconium oxide. Advantageously, at least one of the
transparent layers with the exception of the protective layer contains materials other than that of the protective layer itself.
All or individual layers of the reflection layer system and the reflection layer can for example be applied to the reflector body or the pretreatment layer thereon by means of gas or vapour deposition in vacuum (physical vapour deposition, PVD), thermal vaporisation, electron beam vaporisation with or without ion support, sputtering in particular magnetron sputtering, plasma polymerisation or

chemical vapour deposition (CVD) with or without plasma support. Other application methods are paint or dip-drawing processes of solutions produced in the sol-gel process with subsequent drying, flame pyrolytic processes or flame coating by means of Si02. Two or more processes can also be
combined. E.g. PVD layers can be supplemented with a flame coating with Si02. The said reflection layer systems are for
example described in detail in EP 918 236 Al.
The protective layer is suitably a sol-gel lacquer produced according to the sol-gel process and applied to the reflector body surface, the pretreatment layer or where applicable the reflection layer or the reflection layer system.
The sol-gel lacquer is preferably a polysiloxane produced from an alcoholic silane solution in particular alkoxysilane solution, and a colloidal silicic acid solution. The polysiloxane is produced in particular by a condensation reaction between hydrolysed and cross-linked silanes in particular alkoxysilane and colloidal silicic acid.
The condensation reaction between hydrolysed silanes, in particular alkoxysilane, and hydrolysed silanes, in particular alkoxysilane, and colloidal silicic acid leads to the formation of an inorganic network of polysiloxanes. At the same time organic groups in particular alkyl groups or simple alkyl groups by way of carbon bonding are integrated in the inorganic network. The organic groups or alkyl groups, however, do not participate directly in the polymerisation or cross-linking of the siloxanes i.e. they do not serve to form an organic polymer system but are merely for functionalisation. The function is that the organic groups, in particular the alkyl groups, are attached to the outsides of the polysiloxane during the sol-gel process and as a result form an externally water-repellent layer which gives the sol-gel lacquer a pronounced hydrophobic property.

The sol-gel process described leads as stated by targeted hydrolysis and condensation of alkoxides of the silicon and silicic acid to a sol-gel lacquer of an inorganic network with integral alkyl groups. The resulting polysiloxanes can therefore be classified rather as inorganic polymers.
In the production of a preferred embodiment of a sol-gel lacquer as a protective coating suitably two basic solutions A and B are used.
Solution A is an alcoholic solution of one or more different alkoxysilanes where the alkoxysilanes are present in a water-free medium in non-hydrolysed form. A suitable solvent is an alcohol e.g. methyl, ethyl, propyl or butyl alcohol and preferably isopropyl alcohol.
The alkoxysilanes are described by the general formula XnSi(0R)4_n in which "R" is a simple alkyl, preferably of the
group comprising methyl, ethyl, propyl and butyl. "X" is suitably also an alkyl preferably of the group comprising methyl, ethyl, propyl and butyl. Suitable alkoxysilanes are for example tetramethoxysilane (TMOS) and preferably tetramethoxysilane (TEOS) and methyltrimethoxysilane (MTMOS) and further alkoxysilanes.
In a particularly preferred embodiment solution A is prepared from tetramethoxysilane (TEOS) and/or methyltrimethoxysilane (MTMOS) with a methyl, ethyl or propyl alcohol and in particular with an isopropyl alcohol as solvent. Solution A can for example contain 25 to 35 w.% (weight %) , in particular 30 w,%, TEOS and 15 - 25 w,%, in particular 20 w.%, MTMOS, both dissolved in 40 - 60, w.% in particular 50 w.%, isopropyl alcohol.
Solution B contains colloidal silicic acid dissolved in water. In a suitable embodiment solution B is adjusted by means of acid, preferably by means of nitric acid (HNO3) , to

a pH value between 2.0 and 4, preferably between 2.5 - 3.0, and in particular 2.7,
The silicic acid used is suitably a silicic acid stabilised in the acid environment where the pH of the silicic acid is advantageously 2 - 4. The silicic acid is advantageously as low in alkali as possible. The alkali content (e.g. Na20) of
the silicic acid is preferably less than 0.04 w.%.
Solution B contains for example 70 - 80 w.%, in particular
75 w.%, water as solvent and 20 - 30 w.%, in particular 25
w.%, colloidal silicic acid. Solution B is preferably set by means of nitric acid (HNO3) to a pH value between 2.0 - 3.5,
preferably between 2,5 - 3.0, and in particular 2.7. A preferred silicic acid solution is for example sold by the company Nissan Chemical Industries Ltd. with the product name "SNOWTEX R 0".
The merging and mixing of the two basic solutions A and B in the presence of the nitric acid leads to a hydrolysis reaction between the water contained in solution B and the alkoxysilanes contained in solution A.
Hydrolysis reaction: Si{OR)n + nH20 > Si(OH)n + nR(OH)
At the same time a condensation reaction occurs in which, under water splitting from two Si-OH groups, a siloxane bonding (Si-O-Si) is created. Under continuous polymerisation a network of polysiloxanes results, to which are linked alkyl groups. The new mixed solution is present in a gel state.
The two solutions A and B are mixed, preferably in a weight ratio of 7 : 3 parts.
The sol-gel lacquer is suitably applied or deposited in gel form on the reflector body or on the corresponding surface and then dried or hardened. The drying process consists of

the remaining water and alcohols in the sol-gel lacquer which causes the sol-gel lacquer to harden and a weatherproof and corrosion-resistant protective layer results on the reflector surface or reflection coating,
'coating is performed suitably in a continuous process by for example brushing, rolling, centrifuging, spraying, dipping Clip-drawing processes. Particularly preferred continuous coating processes are the band-pass process or band painting process also known as the coil coating process.
The layer thickness of the hardened sol-gel lacquer is for example at least 1 µm, preferably at least 2 µm and for example maximum 40 µm, further preferably maximum 20 µm, in prticular maximum 10 µm and advantageously maximum 6 µm.
The reflector coated with the sol-gel lacquer is suitably or hardened by radiation e.g. UV radiation, electron laser radiation or by means of heat radiation IR radiation, or by means of convection heating or a of the said drying or hardening processes-
The increased temperature measured on the reflector body to
dry or harden the sol-gel lacquer is suitably greater than
preferably greater than 150°C and in particular
than 200°C. The increased temperature is further
suitably less than 400°C, preferably less than 350°C and in
less than 300°C. The increased temperature is referably between 250°C and 300°C. The temperature given is metal temperature" (PMT).
increased temperature can act for example on the body 5 seconds to 2 minutes. The sol-gel lacquer is dried or derdened during a time of preferably less than 90 seconds, particular less than 60 seconds and preferably more than seconds, in particular more than 30 seconds. When IR is used the drying times are in the lower range of the duration times given.

heating can suitably be applied by the of heated gases e.g. air, nitrogen, noble gases
or mixtures thereof. The sol-gel lacquer is preferably dried
in a passage oven.
The reflectors, for example in the form of films, strips or sheetS, can be deformed even after application and drying of the protective layer. The reflectors can for example be processed into parabolic troughs, Deformation leads to any crack formation in the protective layer.
the reflectors according to the invention have a good protective effect against weather influences, corrosion,
degradation or abrasion or have a high scratch resistance. Chalking practically does not occur. As in production of the siloxanes colloidal silicic acid is used, layer thicknesses in the micrometer range can be produced at which during the drying and hardening process no formation occurs e.g. due to volume contraction.
the reflectors according to the invention allow the of aluminium alloys without these needing to be plated coated with pure or purest aluminium in order to achieve high brilliance and total reflection values. In contrast to
of pure or purest aluminium, those according to invention have considerably higher strength which is for a wide range of applications.
The reflector has a total reflection to DIN 5036 part 3, in
a total reflection in the visible and infrared range, of more than 7 5%, preferably more than and in particular more than 83%.
the reflector contains an additional reflection- layer system, the said total reflection is more than 75%, preferably more than 85%, and in particular more
than 90%.

The reflector furthermore has brilliance values in the wavelength range to DIN 6753 0 of over 75%, in particular over 80%.
The said total reflection and brilliance of the reflector according to the invention, for example after 3000h QUV test
and in particular after 200Oh QUV test, diminishes by less
than 5%, and in particular by less than 2%.
The QUV test is an artificial weathering test to assess the weather resistance of components and their surfaces in the open air. The QUV test was introduced in 1969 by the company "Q Panel" and today is an internationally standardised test method. The QUV test used in the present experiments was performed in accordance with the specifications of "Standard practice for operating light and water exposure apparatus ifluorescent UV condensation type) for exposure of non-metallic metals" by the American Society for Testing and materials or ASTM G 53-96.
Furthermore, in the lOOOh "filiform corrosion test" to DIN EN ISO 3665, the reflector according to the invention showed NO corrosion phenomena. In addition, the reduction in total reflection and brilliance in the lOOOh "acetic acid saline apray test" to DIN 50021 ESS was less than 5%, in particular Less than 2%.
furthermore, the reflectors according to the invention, thanks to the sol-gel protective layer of polysiloxanes, the a high surface hardness. The sol-gel protective layer suitably has a hardness measured in the method "pencil process to Wolf Wilburn" according to DIN 55350 part 18, of treaterr than "f", preferably greater then "h" , in particular meater than "2h" , and advantageously greater than "3h", there greater means harder.
The sol-gel layer is also characterised by excellent

to the reflector body or the layers lying thereon.
The reflector according to the invention can be produced in
hat the reflective surface of aluminium or an aluminium
has a roughness Ra of less than 0.1 µm to DIN 4761 to
1768 S and the reflector contains an external final
protective layer of a polymer of a thickness
greater than 1 µm and the protective layer is applied to the
reflelective surface, the pretreatment layer or reflection
hayer system in a continuous coil coating process and the
protective layer of the reflector is dried and hardened in a
continuous passage oven.
The strip coating speed in a strip passage process is around 30 m/min.
The reflector body is preferably dried in a continuous passage oven under the effect of heat radiation and/or ■ rr/ection heat, preferably by application of heated gases.
takes place suitably at room temperature e.g. 10 - in particular 15 to 25oC.
The present invention also includes the use of the
according to the invention as reflectors for or artificial light and infrared radiation and as high conduction elements for solar or artificial light.
reflectors according to the invention are for example as reflectors or light conduction elements in light .:. i luminal re technology, as reflectors in video station
primary lighting, secondary lighting, matrix illuminated ceilings or light deflection panels. forthermore, the reflectors according to the invention can used in solar technology as solar reflectors e.g. in solar technology, as solar boosters in the field of in solar power plants, as light-concentrating collectors, in solar cookers or solar ovens.

the reflectors according to the invention can used as lightweight, unbreakable and where applicable heatable mirrors for vehicles or as headlamp reflectors. The said reflectors can also be used as facade elements with reflective properties or with brilliant properties. The bright or matt aluminium surfaces for example are sealed corrosion-resistant thanks to the protective layer according to the invention.
The IR radiation, visible light and UV radiation cover the
wavelemgth range from m to 10-3 m.
On the basis of an example the preparation and production of a particularly preferred embodiment of a sol-gel lacquer is described below. For this a solution A and a solution B are
prepared:
A contains: 5 0 w.% isopropyl alcohol 3 0 w.% tetramethoxysilane (TEOS) 2 0 w.% methyltrimethoxysilane (MTMOS)
B contains: 7 5 w.% water
25 V7.% colloidal silicic acid. The pH value of solution B is set by addition of an acid, in
nitric acid (HNO3), to around 2.7,
sol-gel lacquer is produced and the reflector body in the preferred embodiment as follows:
basic solution A as described above, in a proportion of oof the mixed solution, is added under agitation a .: .solution a proportion of 30 w.% of the mixed solution. , iutions A and B are transferred to a mixed solution under
agitation whereby reaction-induced heat is

released.
The mixed solution is agitated for a particular time for example for 1 hour to 10 hours, preferably 4 to 8 hours, in particular for around 6 hours.
The mixture is then filtered. The filter' serves to retain larger particles e.g. particles of colloidal silicic acid. The pore diameter or mesh width of the filter depends on the desired layer thickness as particles of greater diameter than the target layer thickness have a harmful effect on the surface quality of the protective layer. Filtration can for example take place by means of polypropylene filters with a porosity of 1 |im.
The mixed solution is suitably held at a pH value of 2 -.4, preferably 2 to 3.5, in particular 2.5 to 3 and particularly preferably 2,7. The pH value is adjusted by means of acid,
preferably by means of nitric acid.
After conclusion of the agitation process the sol-gel lacquer can be applied by means of one of the said processes t the reflector body or the layers lying thereon and then tried or hardened as described above.
In an advantageous embodiment of the production process the . to-gel lacquer after its production and before application
to the reflector body is allowed to rest for a few minutes
to several hours, preferably between 1 and 24 hours, in particular between 12 and 22 hours and particularly
perferably for around 17 hours.
element analysis of the hardened sol-gel lacquer by means of kps (X-ray photoelectron spectroscopy) shows for example the elements oxygen, silicon and around 5 - 20% (atomic percent)
•carbon .
The structure of the reflector according to the invention is

for example shown in figure 1 which shows a cross-sectional
view through a reflector according to the invention.
. the reflector (1) consists of a reflector body (2) which is
rolled product of aluminium with a purity degree of
freaterr than 99.8%. The surface of the reflector body (2) is
degreased and given a pretreatment layer (3). The
pretreatment layer (3) is an anodically produced oxide layer
with a thickness of 300 - 500 nm. On the pretreatment layer . is applied a sol-gel lacquer layer (4) of 3 µm thickness of
polusiloxanes.




weatherproof and corrosion-resistant reflector (1) for electromagnetic radiation, in particular for infrared radiation, visible light and ultraviolet radiation, with a high total reflection, containing a reflector body (2) of aluminium or an aluminium alloy with a reflective surface or containing a reflector body with a reflection layer of aluminium or an aluminium alloy forming a reflective surface, characterised in that the reflective surface of aluminium or an aluminium alloy has a roughness Ra of less than 0.1 µm to DIN 4761 to 47 68 and the reflector (1) has an external final transparent protective layer (4) of a polymer of a thickness greater than 1 µm and the reflector according to the 2000 h QUV test to ASTM G 53-96 has losses of total reflection and brilliance of less than 5%.
Reflector according to claim 1, characterised in that che protective layer (4) is a sol-gel lacquer, preferably a sol-gel lacquer of a polysiloxane, in particular a sol-gel lacquer of a polysiloxane produced from an alcoholic silane solution, preferably an alkoxysilane solution, and a watery colloidal silicic acid solution.
Reflector according to any of claims 1 to 2, characterised in that the transparent protective layer is a sol-gel lacquer of cross-linked inorganic polysiloxanes with organic groups, in particular alkyl groups, bonded with the silicon by way of carbon bonds,
Peflector according to any of claims 1 to 3, characterised in that the reflector has a total reflection, in particular a total reflection in the visible and infrared wavelength range, to DIN 5036 of greater than 75%, preferably greater than 80%, and in particular greater then 83%.

Reflector according to any of claims 1 to 4, characterised in that in the 1000 h "filiform corrosion test" to DIN EN ISO 3665 the reflector shows no corrosion phenomena and in the 1000 h "acetic acid saline spray test" to DIN 50021 ESS has a reduction in total reflection and brilliance of less than 5%, in particular less than 2%.
Reflector according to any of claims 1 to 5, characterised in that the protective layer (4) has a hardness measured using the "Pencil process to Wolf Wilburn" according to DIN 55350 part 18, of greater "f", preferably greater than "h", in particular greater than "2h", and advantageously greater than "3h".
Reflector according to any of claims 1 to 6, characterised in that the protective layer in the hardened state has a thickness of least of 1 \xm, preferably at least 2 |Lim, and maximum 40 fim, preferably :naximum 2 0 jim and in particular maximiim 10 \xm.
Reflector according to any of claims 1 to 7, characterised in that the reflector has a reflector body of aluminium and/or a coating of aluminium and the aluminium material of the reflector body and/or the coating has a purity degree of greater than 99.5%, preferably greater than 99.7% and in particular greater than 99.8%.
Reflector according to any of claims 1 to 8, characterised in that the reflective surface, preferably the reflector body surface, has a pretreatment layer (3), and the pretreatment layer (3) iS an oxide layer produced anodically in a redissolution or non-redissolution electrolyte, preferably a porous oxide layer produced anodically in a redissolution electrolyte, in particular a non-dens if led porous oxide layer, and the protective layer

(4) is applied directly to the oxide layer.
Reflector according to any of claims 1 to 9, characterised in that on the reflective surface of the reflector is applied a pretreatment layer produced by chromatising or phosphatising and the protective layer (4) is applied directly to the pretreatment layer.
,! . Reflector according to any of claims 1 to 10, characterised in that on the reflective surface of the reflector is applied a pretreatment layer and the pretreatment layer is a yellow chromatised layer, a green chromatised layer, a phosphate layer or a chromium-free pretreatment layer which is grown in an electrolyte containing at least one of the elements Ti, Zr, F, Mo or Mn.
Reflector according to any of claims 9 to 11, characterised in that the pretreatment layer has a thickness of at least 10 nm, preferably at least 20 nm and in particular at least 50 nm, and particularly preferably at least 100 nm, and a thickness of maximum 5000 nm, preferably maximum 500 nm.
Reflector according to any of claims 1 to 12, characterised in that the reflector body is a rolled product, in particular a sheet, strip or plate of a reliable aliiminium or aluminium alloy and the roughness Ra of the reflected surface is less than 0.05 |im.
Reflector according to any of claims 1 to 13, characterised in that the reflector body is a rolled sheet or strip of aluminium or an aluminium alloy with a thickness of 0.1 to 4 mm, preferably 0.2 to 1.5 mm, and in particular 0.3 to 1 mm.
Reflector according to any of claims 1 to 14, characterised in that the protective layer (4) is

applied to the reflector body surface or its pretreatment layer,
Reflector according to any of claims 1 to 15, characterised in that the reflector is a reflector body of aluminium, an aluminium alloy, a ferrous .metal or e plastic, with a reflection layer of aluminium or an aluminium alloy, and the protective layer is applied to the reflection layer.
Reflector according to any of claims 1 to 16, characterised in that the reflector body contains a reflection layer system of a reflective layer and a reflection- increasing layer system with one or more transparent layers applied to the reflective layer, and the final protective layer is applied to the reflection layer system.
Reflector according to claim 17, characterised in that the reflector has a total reflection, in particular a total reflection in the visible and infrared wavelength range, to DIN 5036 of greater than 75%, preferably greater than 85% and in particular greater than 90%.
. . Process for production of a weatherproof and corrosion-resistant reflector (1) for electromagnetic radiation, in particular infrared radiation, visible light and ultraviolet radiation, with a high total reflection, containing a reflector body (2) of aluminium or an aluminium alloy with a reflective surface or containing & reflector body with a reflection layer of aluminium or an aluminium alloy according to claim 1, characterised in that the reflective surface of aluminium or an aluminium alloy has a roughness Ra of less than 0.1 µm to DIN 4761 to 4768 and the reflector (1) contains an external final transparent protective layer (4) of a polymer of a thickness greater than 1 |im and the protective layer (4) is applied to the

reflective surface, the pretreatment layer or reeflection layer system in a continuous coil coating process and the protective layer (4) of the reflector (1) is dried and hardened in a continuous passage oven.
.. . Process according to claim 16, characterised in that the reflector body is coated with the protective layer at room temperature and the protective layer of the reflector is dried in a continuous passage oven under the effect of heat radiation and/or convection heat, preferably under application with heated gases,
: 1.. Process according to any of claims 19 to 20, characterised in that the protective layer of the reflector is dried at a reflector temperature between 110 and 400°C, preferably between 200 and 350°C and in particular between 250 and 300°C for a time of less than 90 seconds, preferably less than 60 seconds,
Use of the reflectors according to claim 1 as
reflectors for solar or artificial light and infrared radiation and as light conduction elements for solar or
artificial light.
Use of the reflectors according to claim 22 in light and luminaire technology as reflectors in video station lighting, primary lighting, secondary lighting, matrix lighting, illuminated ceilings or as light deflector panels and in solar technology as solar reflectors in rolar power plants, solar cookers or solar ovens.

24 Weatherproof and corrosion-resistant reflector substantially as herein described with reference to the accompanying drawing.
25. Process for production of a weatherproof and corrosion-resistant reflector substantially as herein described with reference to the accompanying drawing.


Documents:

in-pct-2002-1816-che-abstract.pdf

in-pct-2002-1816-che-claims filed.pdf

in-pct-2002-1816-che-claims grand.pdf

in-pct-2002-1816-che-correspondnece-others.pdf

in-pct-2002-1816-che-correspondnece-po.pdf

in-pct-2002-1816-che-description(complete) filed.pdf

in-pct-2002-1816-che-description(complete) grand.pdf

in-pct-2002-1816-che-drawings.pdf

in-pct-2002-1816-che-form 1.pdf

in-pct-2002-1816-che-form 19.pdf

in-pct-2002-1816-che-form 26.pdf

in-pct-2002-1816-che-form 3.pdf

in-pct-2002-1816-che-form 5.pdf

in-pct-2002-1816-che-other documents.pdf

in-pct-2002-1816-che-pct.pdf


Patent Number 208626
Indian Patent Application Number IN/PCT/2002/1816/CHE
PG Journal Number 35/2007
Publication Date 31-Aug-2007
Grant Date 06-Aug-2007
Date of Filing 06-Nov-2002
Name of Patentee M/S. ALCAN TECHNOLOGY & MANAGEMENT LTD.
Applicant Address Badische Bahnhofstrasse 16 CH-8212 Neuhausen am Rheinfall (CH)
Inventors:
# Inventor's Name Inventor's Address
1 GILLICH, Volkmar Brunnenwiesenstrasse 60 CH-8212 Neuhausen am Rheinfall (CH).
2 FUCHS, Roman Rietstrasse 81 CH-8200 Schaffhausen (CH).
3 KRÄMER, Tomas Raabestrasse 34 31073 Grünenplan (DE)
PCT International Classification Number F21V 7/22
PCT International Application Number PCT/EP2001/004752
PCT International Filing date 2001-04-27
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 00810397.0 2000-05-09 EUROPEAN UNION