Title of Invention

A METHOD OF MANUFACTURING A COLD DRAWN WIRE OF A PRECIPITATION HARDENABLE STAINLESS STEEL AND THE COLD DRAWN WIRE

Abstract A method of manufacturing a cold drawn wire of a precipitation hardenable stainless steel and the cold drawn" The present invention relates to a method of manufacturing a cold drawn wire of a precipitation hardenable stainless steel, comprising the following steps : preparing a bulk of molten metal, which besides iron contains in weight-%: 0.065-0.11 % C; from traces to max 1.2% Si; 0.2-1.3 Mn; 15.8-18.2% Cr; 6.0-7.9% Ni; 0.5-\.5% Al; totally max 2.0%) of other, possibly present alloying elements; casting the prepared molten metal to the shape of ingots, or, preferably to a strand which is cut up; electro slag refining, so called ESR remelting, of said ingot or and cut-up strand, preferably after hot working to the shape of electrodes, for the formation of ESR ingots; hot working said ESR ingots, said hot working being finishing by wire rolling, followed by pickling, for the provision of a pickled rolled wire; which in a surface layer thereof to a depth of 1 mm counted from the surface, in a longitudinal central section through the wire, does not contain slag inclusions larger than 30 µm, preferably not larger than 20 µm; and cold drawing said wire with at least 30 % area reduction. The present invention also relates to a cold drawn wire.
Full Text

COLD DRAWN WIRE AND METHOD FOR THE MANUFACTURING OF SUCH WIRE
TECHNICAL FIELD
The invention relates to a method for the manufacture of a cold drawn wire of a precipitation hardenable stainless steel. The invention also relates to the cold drawn wire and to precipitation hardened springs made of the cold drawn wire. Typically, the stainless steel in the springs consists of so called 17-7 PH steel.
BACKGROUND OF THE INVENTION
The precipitation stainless steel that contains appr 17 % Cr, appr 7 % Ni, and any precipitation hardening element, normally Al, was developed during the 1940'ies. It was disclosed in an article in the Iron Age, March 1950, pp 79-83. Already in this article, the suitability of the steel as a material for springs was suggested. Good spring features m combination with a good corrosion resistance have made the steel widely used as a spring material in corrosive environments. An environment of that type is injections pumps for Diesel engines, more particularly turbo Diesel engines. Springs ^^ch are used for this purpose must have a good corrosion resistance, which 17-7 PH sttcls have, in combination with a very high fatigue resistance of the springs. The latter condition, however, has been difficult to achieve. It has been known for long that the fatigue resistance to a high degree depends on the surface of the spring wire. In order that the spring shall have a high fatigue resistance, the wire must not have any visible defects, which can initiate fatigue failures. Nor shall the surface layer contain any large slag inclusions or large zones containing major accumulations of smaller slag inclusions, which also can initiate failures. These conditions, as far as the slag picture is concerned, have been difficult to satisfy and have caused significant rejection of wire that does not meet with the stipulated quality requirements. This m its turn has the effect that the wire material that has been approved in thorough quality control necessarily becomes very expensive. Nevertheless, one can not say that the material satisfies highest demands as far as fatigue resistance is concerned.
BRIEF DISCLOSURE OF THE INVENTION
It is a purpose of the invention to provide a solution of the above mentioned problems. The invention herein is based on the observation that large slag mclusions and zones of the above mentioned type in the surface layer of the rolled wire can be avoided or significantly reduced if the steel is electro slag refined, i.e. subjected to the treatment

which is known under the short name ESR (=Electro Slag Refining, also referred to as Electro Slag Remelting). At the ESR treatment there can be used a conventional slag mixture which is used according to known technique, and which at the ESR remelting process forms a melt, in which the electrode that shall be remelted is molten off drop-wise, such that the drops will sink through the slag melt to an underlying pond of molten metal, which solidifies successively to form a new ingot. For example, a slag mixture can be used, which is known per se, and which contains appr 30 % of each of CaF2, CaO, and AI2O3 and normally a certain amount of MgO in lime fraction as well as one or a few percent Si02. In the case when the melting electrode, as according to the invention, consists of a stainless 17-7 PH steel, which contains slag inclusions of varying sizes, the remelted mgot will get a different slag picture than before the remelting operation. It appears that the ESR slag functions as a screen for larger slag particles existing in the steel prior to the remelting operation. At least this appears to be true for those slags which have proved to have a detrimental effect on the fatigue strength of the spring wire, namely slags of type CaO, AI2O3, and MgO. While the smaller slag inclusions become more evenly distributed and possible zones of slag accumulations become smaller and therefore more harmless, the amount of smaller slag mclusions of this type in the remelted material is influenced only to a low degree. The fatigue tests which have been performed with conventional materials and with materials according to the invention show that the critical slag size limit lies between 20 and 30 µm. Therefore, slag inclusions larger than 30 µm shall be avoided. Preferably, the wires should not contain slag particles larger than 25 µm.
The steel that is used according to the invention may have a chemical composition which is well known in the art and which as a matter of fact is standardised since long (SIS 2388).
The method of the invention for the manufacture of a cold drawn wire of a precipitation
hardenable stainless steel comprises the following steps:
- preparation of a melt, which besides iron contains in weight-%
0.065-0.11 %C
from traces to max 12 % Si
0.2-1.3 Mn
15,8-18,2 %Cr
6.0-7.9 %Ni
0.5-1.5 %A1
totally max 2 % of other, possibly existing alloying elements;

- casting the prepared melt to form ingots or, preferably, a strand, which is cut up into sections;
- electro slag refining said ingot or cut-up strand, possibly after forging and/or rolling to the shape of electrodes suitable for electro slag refining, to form ESR ingots;
- hot working said ESR ingots, said hot working being finished by wire rolling, followed by pickling for the formation of a pickled, rolled wire, which in a surface layer thereof, to the depth of 1 mm counted from the surface, in a longitudmal, central section through the wire, does not contain slag inclusions larger than 30 µm, preferably max 25 µm; and
- cold drawing the wire with at least 30 % reduction.
Al is added as a subsequent operation, when the molten metal has got its intended basic composition through conventional steel manufacturing practice, suitably in a ladle treatment process which follows subsequent to decarburisation in a converter.
During the ESR remelting operation, a certain amount of that aluminium, which was added in connection with the initial preparation of the molten metal, can be lost. Therefore, in connection with the ESR remelting operation, more aluminium ought to be supplied to the melting pond for the replacement of any losses, so that the ESR ingot obtained after the ESR remelting operation will contain 0.5-1.5 Al.
More specifically the invention relates to the manufacture of a precipitation hardenable
stainless steel according to the method that is described in the foregoing, which steel
besides iron contains in weight-%:
0.3-0.1, preferably max. 0.09 C
0.1-0.8, preferably 0.2-07 Si
0.5-1.1, preferably 0.7-LO Mn
max. 0.05, preferably max 0,03 P
max 0.04, preferably max 0.02 S
16.0-17.4, preferably 16.5-17.0 Cr
6.8-7.8, preferably 7.0-7.75 Ni
0.6-1.3, preferably 0.75-1.0 Al
max 0.5 Mo
max 0.5 Co
max 0.5 Cu
max 0.1, preferably max 0.05 N
max 0.2, preferably max 0.01 Ti

Helicoidal springs are spun in a conventional mode of the cold drawn wire according to the invention. The springs are precipitation hardened through heat treatment at a temperature of 450-500°C for 0.5-2 h, suitably at appr 480°C for 1 h. followed by cooling in air. The structure of the material in the finished sprmgs consists of 50-70 volume-% tempered martensite containing precipitated phases of aluminium and nickel in the martensite, preferably AlNi3, remainder austcnite and max 5 % 5-ferrite.
EMBODIMENTS AND PERFORMED EXPERIMENTS
Through conventional melting metallurgical practice, comprising melting raw materials in an electrical arc furnace, decarburisation of the melt in a converter, desoxidation treatment, and final adjustment of the alloy composition in a ladle, said adjustment comprising addition of aluminium and titanium, there was obtained a bulk of molten metal (heat No. 370326) having the following composition in weight-%:

This melt was cast to the form of a strand having the cross section 300 x 400 mm. The strand was cut up to blooms. A number of these blooms were rolled to the size 265-300 mm and were used as electrodes for subsequent ESR remelting. The remaining blooms were hot rolled to form rods with 150 mm square section, which rods were surface ground, hot rolled to the shape of wire with the 0 5.5 mm, and pickled.
Hie ESR melting was carried out in a conventional way in a slag melt consisting of appr. 30 % of each of CaFi, CaO, and AI2O3. Also a certain amount of MgO was present in the lime fraction. The slag also contained a minor amount of SiOz. Through remelting of the electrodes in this slag, there was formed an ESR ingot (ESR-heat 14484) with the following composition in weight-%

During the ESR remelting, the composition of the steel was influenced to a certain degree. This particularly concerned the content of aluminium, which was reduced significantly, which indicates that aluminium ought to be added in connection with the ESR remelting m order to compensate for the losses. This can be carried out by means

of an aiuminium wire, which is caused to melt off in the melting pond beneath the slag layer.
Rods with 150 mm square section were manufactured through hot working from the ESR ingot. The rods were ground and hot rolled to wires with the size 0 5.5 mm. The rolled wires were pickled and samples were taken out for slag examination.
For the slag examination, 500 mm long sections were taken from the rolled wire which had been made from the material that was not ESR remelted and also from the ESR remelted material. The samples were cut to smaller, 20 mm long pieces, which were arranged in bodies of cast and cured plastic. In these bodies, the sample pieces were ground down to half their thickness, so that cut surfaces in the longitudinal direction of the samples pieces were obtained, the cut surfaces coinciding with a centre plane of the sample pieces. The longitudinal edge zones were examined to a depth of 1 mm from the original surface of the wire by means of a light-optical microscope. All the sample pieces were examined in this way. The total surface, which was examined for each sample length, the total length of which was 500 mm, thus was 1000 mm2. Oxidic slag inclusions (particles) which could be discovered in the light-optical microscope were notified as well as the existance of any bands or zones containing larger accumulations of slag inclusions. The slag inclusions were classified in three size groups. A, B, and C, for small slag inclusions (5-10 µ m), medium size slag inclusions (>10-15 µm), and large slag inclusions (>15 µ m). Further, the number of zones of slag inclusions were notified, the length of such zones, and the type of size of the slag inclusions in these zones. The results are given in Table 1, where materials law and 1bw are rolled wire material manufactured in the conventional maimer starting from the above mentioned heat No. 370326 without ESR remelting, and the rolled wire material, which accordmg to the invention has been ESR remelted, heat 14484-ESR. None of the materials law or Ibw contained any large slag inclusions in the surface layer. However, material law contained as much as 17 slag zones having lengths varying between 125 and 450 |im. These zones contained small and medium size slag inclusions. The material lbw, which was manufactured according to the invention, contained only one observable slag zone, which had a length of 63 µ m and which contained only small slag inclusions. This material may, from a slag inclusion point of view, be considered as acceptable.
More material then was produced with the same basic composition as before. The manufacture and the slag examinations were performed in the same way as described above. The results achieved with these test materials are also shown in Table 1, in

which materials 2aw and 3aw consist of rolled wires made of materials that have not been ESR remelted, while materials 2bw and 3bw were subjected to ESR remehing according to the invention. The 2aw and 3aw materials contained large slag particles and also slag bands or zones of considerable length containing accumulations of slag inclusions, material 3aw containing slag zones with small as well as medium size slag inclusions. Therefore, also the materials 2aw and 3aw were non approvable as materials for springs for injections pumps for Diesel engines as distinguished &om the materials 2bw and 3bw, which did not contain any large slag inclusions in the surface layers and no or only some minor zone containing small accumulations of small slag inclusions.
All the slag inclusions that have been discussed above consisted of CaO, AhO3, and MgO. Also Ti-nitrides were observed but were not entered in the slag protocols. These Ti-nitrides eminate from a pratice during the steel manufacturing process, in which titanium is added in order to prevent the formation of large, oxidic inclusions. The small Ti-nitrides, which are formed because of this practice, have been regarded as harmless. However, they have pronouncedly angular shape and it is therefore a potential risk that they can initiate fatigue failures. Therefore, titanium should be added to the melt, especially as the large slag inclusions have proved to be effectively eliminated by the ESR refining. Preferably, therefore, one should prepare a bulk of molten metal which does not contain titanium in amounts exceeding impurity level.


remainder mainly being austenite with some minor portion of 6-ferrite. Springs with conventional helicoidal shape were spun of the cold drawn material. The springs then were precipitation hardened through treatment at 480°C for 1 h followed by cooling in air. During the heating operation, intermetallic phases of aluminium and nickel were precipitated, typically AlNi3, in the martensite in a way which is typical for 17-7 PH steels, causing the tensile strength to increase by 380-400 MPa.
The hardened sprmgs then were subjected to fatigue testing. This was carried out by tightening the springs with an under-tension of 100 lAPa and then compressing them with a tension of 900 MPa. This compression and release were repeated at a high frequency 20 million times for each spring or until rupture occured. Twenty springs made of each of the materials were tested- The results are given in Table 2, in which the springs las, 2as, and 3as are made of wires manufactured conventionally, while the springs lbs, 2bs, and 3bs are made of cold drawn wires manufactured according to the invention. The table shows that the springs of the invention not in any single case were fatigued to fracture, while 20 %, 90 %, and 75 %, respectively of the reference springs were fatigued to fracture before 20 millions of oscillations had been performed.




1. Method of manufacturing a cold drawn wire of a precipitation hardenable stainless steel, comprising the following steps:
- preparation of a bulk of molten metal, which besides iron contains in weight-%:
0.065-0.11 %C
from traces to max 12 % Si
0.2-1.3Mn
15.8-18.2 %Cr
6.0-7.9 %Ni
0.5-1.5 %A1
totally max 2.0 % of other, possibly present alloying elements;
- casting the prepared molten metal to the shape of ingots, or, preferably to a strand
which is cut up;
electro slag refining, so called ESR remelting, of said ingot or cut-up strand, preferably after hot working to the shape of electrodes, for the formation of ESR ingots;
- hot working said ESR ingots, said hot working being finished by wire rolling, followed by pickling, for the provision of a pickled rolled wire, which in a surface layer thereof to a depth of 1 mm counted from the surface, in a longitudinal central section through the wire, does not contain slag inclusions larger than 30 µm, preferably not larger than 20 µm; and
- cold drawing said wire with at least 30 % area reduction.

2. Method according to claim 1, characterised in that aluminium is supplied to the pond of molten metal in order to replace loss of aluminium during the ESR remelting opeation, so that the ESR ingot obtained afler the ESR remelting will contain 0.5-1.5 %A1
3. Method according to claim l or 2, characterised in that the precipitation hardenable stainless steel besides iron contains in weight %:
0.03-0.1, preferably 0.075-0.09 C 0.1-0.8, preferably 0.2-0.7 Si 0.5-1.1, preferably 0.7-1.0 Mn max 0.05, preferably max 0,03 P max 0.04, preferably max 0.02 S 16.0-17.4, preferably 16,5-17.0 Cr 6.8-7.8, preferably 7.0-7.75 Ni

0.3-1.3, preferably 0.75-1.O Al
max 0.5 Mo
max 0.5 Co
max 0.5 Cu
max 0.1, preferably max 0.50 N
max 0.2, preferably max 0.01 Ti.
4. Method according to any of claims 1-3, characterisedin that the slag which is used for the electro slag refming consists of a melt mixture of slags which predominantly consist of two or more of CaF2, CaO, AI2O3, and MgO.
5. Method according to claim 4, characterised in that the slag which is used for the ESR remelting contains appr 30 % each of CaF2, CaO, and AI2O3 and at least a smaller amount of MgO.
6. Cold drawn wire of a precipitation hardenable stainless steel with a chemical composition, which besides iron contains in weight %
0.065-0.11 %C
from traces to max 1.2 % Si
0.2-1.3 Mn
15.8-18.2 %Cr
6.0-7.9 % Ni
0.5-1.5 %A1
totally max 2.0 % of other, possibly existing alloying elements, said cold drawn wire in
a surface layer of a depth of 1 mm being void of slag inclusions of CaO-, AI2O3, and
MgO type larger than 30 µm, preferably not larger than 25 µm, obtainable by ESR
remelting of the steel material prior to hot rolling and cold rolling to the shape of wire.
7. Cold drawn wire according to claim 6, characterised in that it in said surface layer is void of concentrations of small slag inclusions of the the said type in zones larger than 100 µm.
8. Spring which is made by spinning a cold drawn wire according to any of claims 6 and 7, and which then has been precipitation hardened through treatment at a temperature of 450-500°C for 0.5-2 h.

9. Method of manufacturing a cold drawn wire of a
precipitation hardenable stainless steel, substantially as
herein described, and exemplified,
10. Cold drawn wire of a precipitation hardenable stainless
steel with a chemical composition, substantially as herein
described, and exemplified.
NG
rs

Documents:

in-pct-2000-081-che-abstract.pdf

in-pct-2000-081-che-claims filed.pdf

in-pct-2000-081-che-claims granted.pdf

in-pct-2000-081-che-correspondnece-others.pdf

in-pct-2000-081-che-correspondnece-po.pdf

in-pct-2000-081-che-description(complete) filed.pdf

in-pct-2000-081-che-description(complete) granted.pdf

in-pct-2000-081-che-form 1.pdf

in-pct-2000-081-che-form 26.pdf

in-pct-2000-081-che-form 3.pdf

in-pct-2000-081-che-form 5.pdf

in-pct-2000-081-che-other documents.pdf

in-pct-2000-081-che-pct.pdf


Patent Number 208596
Indian Patent Application Number IN/PCT/2000/81/CHE
PG Journal Number 35/2007
Publication Date 31-Aug-2007
Grant Date 02-Aug-2007
Date of Filing 19-May-2000
Name of Patentee M/S. HALDEX GARPHYTTAN AKTIEBOLAG
Applicant Address S-719 80 Garphyttan.
Inventors:
# Inventor's Name Inventor's Address
1 ENGSTRÖM, Claes-Henrik Sturegatan 18 a S-714 02 Örebro
PCT International Classification Number C21C 5/00
PCT International Application Number PCT/SE1998/002238
PCT International Filing date 1998-12-08
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 9704753-4 1997-12-17 Sweden