Title of Invention

A METHOD FOR PRODUCING A PRINTING INK-DECORATED PACKAGING MATERIAL OF LAMINATE TYPE

Abstract The present invention relates to a method for producing a printing ink-decorated packaging material, comprising: forming a laminate having a paper core layer with heat sealable outer plastic layers on opposite sides of the paper core, applying a corona discharge surface treatment to at least one of the outer plastic layers; applying a water-based printing ink to the at least one outer plastic layers to which the corona discharge surface treatment has been applied; reducing the surface energy of the at Ileast one outer plastic layers to which the corona discharge surface treatment has been applied; and subsequently applying a surface treatment of hydrogen peroxide to the at ~ least one outer plastic layer, wherein the reducing the surface energy includes heating the surface of the at least one outer plastic layers, and wherein reducing the surface energy after printing causes the decorated packaging material to absorb less hydrogen peroxide during sterilizati~n of the plastic coated web.
Full Text

A METHOD OF PRODUCING A PRINTING INK-DECORATED PACKAGING MATERIAL, IN PARTICULAR FOR ASEPTIC PACKAGES
TECHNICAL FIELD
The present invention relates to a method of producing a printing ink-decorated packaging material of laminate type, comprising one outer coating of plastic which serves as d6cor carrier and which has, on its outside, applied d6cor of water-based printing ink, in which method a web of rigid, but foldable paper which, at least on its one side, has an outer coating of plastic serving as d6cor carrier, is subjected, for the purpose of promoting adhesion, to a surface treatmentTnodifying its polarity, by means of electric corona discharges, and in which method the thus surface treated outer plastic coating of the web is thereafter provided with d£cor of water-based printing ink which, using conventional printing technique, is applied in any optional pa (tern on the outside of the surface-treated plastic coating.
In particular, the present invention relates to a method of producing such a printing ink-decorated packaging material of laminate type for aseptic packages which are produced from a web of the packaging material which, for the purpose of sterilization, is led through a bath of aqueous hydrogen peroxide prior to the reforming of the web into finished, aseptic packages.
BACKGROUND ART
In the packaging industry, use is often made of liquid-tight, dimensionally stable packages of the single use disposable type for packing and transporting liquid foods.
Single use disposable packages of the type under consideration here are typically produced from a packaging material of laminate type comprising a rigid, but foldable core layer of paper which, at least on its one side, has an outer coating of plastic which serves as the decor carrier and which is preferably low density polyethylene (LDPE) having, applied on its outside, d£cor of water-based printing ink. Preferably, the core layer also has an outer coating of plastic, normally low density polyethylene (LDPE) on its other side as well, whereby the packaging material makes for the production of dimensionally stable, liquid-tight packages by means of simple, effective thermosealing.
In certain cases, in particular when the packaging material is to be

employed for so-called aseptic packages, the packaging material is also provided with a material layer which serves as gas barrier and is disposed between the core layer and that one of the two outer plastic coatings which is intended to be turned to face inwards when the packaging material is reformed into packages. The material in this gas barrier layer may be a so-called barrier polymer, for example polyamide, or ethylene vinyl alcohol copolymer, but most generally consists of an aluminium foil (so-called Alifoil).
Nowadays, d.imensionally stable, liquid-tight packages are most generally produ*?ed with the aid of modern, high-speed packing and filling machines of the type which, either from a web or from prefabricated sheet blanks of the packaging material, form, fill and seal the packages. From, for example a web, the packages are produced in that the web is first reformed into a tube by both longitudinal edges of the web being united with one another in an overlap joint seal The tube is filled with the relevant contents, for example liquid food, and is divided into closed, filled packages by repeated transverse seals transversely of the longitudinal axis of the tube below the level of the contents in the tube. The packages are separated from one another by incisions or cuts in the transverse sealing zones and are given the desired geometric, normally parallelepipedic configuration, by a further forming and sealing operation for the formation of the finished packages.
So-called aseptic packages are produced fundamentally in the same manner, but with the crucial difference that both the packaging material and the relevant contents are sterilized prior to the filling phase, and that the filling phase take!* place in a sterile (aseptic) filling atmosphere so as to avoid reinfection of the sterilized contents.
A sterilization of the packaging material often takes place with the aid of a chemical sterilizing agent, for example an aqueous solution of hydrogen peroxide, with which the packaging material is brought into contact for destroying unwanted, in particular pathogenic micro-organisms on at least those parts of the packaging material which come into contact, or risk comim.' into contact with the sterilized contents. However, the entire packaging material is often sterilized in that a web of the packaging material is led down into and through a bath of aqueous hydrogen peroxide which, for the above-mentioned purpose of sterilization, is allowed to act on the packaging material web prior to reforming of the web into aseptic packages

as described above.
Printing inks for the described application in connection with packaging materials are often water-based and therefore require that the surface on which they are to be applied is sufficiently hydrophilic to achieve good adhesion between the water-based printing ink and the relevant printing surface.
A surface of polyethylene, e.g. LDPE, which is used as printing surface in the above described prior art packaging material is, however, hydrophobic (water repellent) and must therefore be modified in order to make for the desired good adhesion between printing ink and printing surface. For the purpose of promoting adhesion, the packaging material according to the prior art technique is therefore subjected to a surface treatment which changes its polarity by means of electric corona discharges, as a result of which the polyethylene surface obtains the desired hydrophilic character.
While it has thus previously been possible to produce a printing ink-decorated packaging material of the type described by way of introduction with good adhesion between the water-based printing ink and the outer polyethylene coating of the packaging material, it has surprisingly proved that the prior art packaging material, in particular for aseptic packages, may be improved considerably using only simple means.
OlsjECT OF THE INVENTION
One object of the present invention is therefore to indicate how such an improved packaging material, in particular for aseptic packages may be
produced in a simple manner.
SOLUTION
This object is attained according to the present invention by a method according to independent Claim 1 which, according to a particularly advantageous embodiment of the present invention, has been given the characterizing features as set forth in independent Claim 5.
OUTUNE OF THE INVENTION
By subjecting the printing ink-applied web of packaging material to a surface energy-reducing after treatment, as in the method according to the

present invention, it is possible to produce a printing ink-decorated packaging material which not only withstands storage in a damp environment even for lengthy storage times, without the decor losing its clarity and freshness, but which also can be sterilized using aqueous hydrogen peroxide, as described above, with considerably lower consumption of hydrogen peroxide than has hitherto been possible using the prior art methods.
One explanation for the above described drawbacks inherent in the prior art printing ink-decorated packaging material, i.e. moisture sensitivity on storage and excessively high hydrogen peroxide consumption in connection with sterilization, may be that a corona treatment, at the same time as it realises modification (change of polarity) of the decor-carrying polyethylene coating of the packaging material, is sufficiently powerful that the polyethylene coating is "broken up" when it is hit by the electric corona discharges. Within such "broken up" regions the polyethylene coating wholly or partly lacks hydrophilic seats which are required for the water-basea printing ink to adhere with good adhesion, as a result of which the printing ink thus only partly adheres within these regions. The risk of interaction between printing ink and moisture or liquid and consequential deterioration in the quality of the applied d£cor has thus increased within the above mentioned regions.
The problem with "broken up" material regions of the outer polyeinyiene coating of the packaging material becomes particularly serious when (he packaging material is, for the purpose of sterilization, led through a tvwh of aqueous hydrogen peroxide, as in the production of aseptic packages. Apart from the fact that the printing ink comes into contact and interacts with the water in the hydrogen peroxide solution, hydrogen peroxide will be excessively attracted and absorbed by exposed hydrophilic M\ws in hhe polyethylene coating also in regions outside the applied printing ink ckvur, with excessive hydrogen peroxide consumption as a result.
hv subjecting the corona-treated outer polyethylene coating of the p^civs^cng materia! to a surface energy-reducing after treatment by means of ni\it, the above described drawbacks in connection with the prior art !Wrut-;;n;' material hreSerably, the surface energy-reducing after treatment is carried out hy moans of hot press rollers or press cylinders between which the

packaging material is led, whereby a physical levelling effect on the "broken up" polyethylene coating is also achieved, which, together with the reduced surface energy, further contributes in counteracting the tendency of the corona-treated polyethylene coating to absorb liquid (water).
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWING
The present invention will now be described in greater detail hereinhelow, with particular reference to the accompanying Drawing, in which:
Fig. 1 is a schematic a cross section of a per se known packaging material for aseptic packages, which is produced employing the method according to one particular embodiment of the present invention; and
Fig. 2 schematically illustrates the production of the packaging material illustrated in Fig. 1.
DESCRIPTION OF PREFERRED EMBODIMENT
In Fig. 1, the schematically illustrated packaging material has been given the generic reference numeral 10. The packaging material 10 comprises a core layer 11 of rigid, but foldable paper of conventional packaging quality, and outer, liquid-tight coatings 12 and 13 of polyethylene, preferably low density polyethylene (LDPE). Between the paper layer 11 and one of the two outer polyethylene coatings 12, there is provided an aluminium foil 14 (so-calied Aiifoil) serving as gas barrier which, by means of an interjacent layer 15 of adhesive, is bonded to that side of the core layer 11 which is intended to face inwards when the packaging material is reformed into packages.
As will be apparent from Fig. 1, the second outer polyethylene coating 13 of the packaging material 10 has an applied decor 16 of water-based printing ink which, using conventional printing technique, is applied in the desired decorative pattern on the outside of the polyethylene coating 13.
The packaging material 10 in Fig. 1 is produced according to the invention in the manner which is schematically illustrated in Fig. 2. In order to facilitate a comparison, the same parts in Fig. 2 have been given the same reference numerals as in Fig. 1.
A web 10* of plastic-coated paper is unwound from a magazine reel (not shown) in the direction of the arrow and is provided with a foil 14 of aluminium which serves as gas barrier and which, by means of an extruded

interjacent layer 15 of adhesive, is laminated to the one side of the web in connection with the web's being led through a nip between two rollers or cylinders 17 and 18.
The foil-clad web is thereafter led to an extrusion station in which the aluminium foil is covered with a film 12 of polyethylene, preferably low density polyethylene (LDPE), which is extruded on the outside of the aluminium foil 14 for the formation of the one outer plastic coating 12 of the packaging material 10.
The plastic-coated web is then subjected, for the purpose of promoting adhesion, to a surface treatment at 19 modifying its polarity, where the web's second outer coating 13 of polyethylene, preferably low density polyethylene, is surface modified by means of electric corona discharges in a per se known manner.
The corona-treated web is led further to a printing station 20 in which the web is, using conventional printing technique, provided with outer d£cor 16 of water-based printing ink which is applied in the desired pattern on the outside of the surface-modified outer polyethylene coating 13 of the web.
The web is finally led to an after treatment station at 21 in which the web, in accordance with the present invention, is led through the nip between two hot press rollers or press cylinders 22, 23, whereby the surface energy of the corona-treated, printing ink coated outer plastic coating 13 of the web is reduced at the same time as the plastic coating 13 is levelled out somewhat.
In a practical comparative experiment, a packaging material according to the invention for aseptic packages has proved susceptible to sterilization with a hydrogen peroxide consumption which is approximately 70 per cent lower than corresponding hydrogen peroxide consumption in a known packaging material which has not been subjected to an after treatment for the purpose of reducing surface energy, in sterilization employing a bath of aqueous hydrogen peroxide in the previously described manner.
It will thus be apparent from the foregoing description that the present invention, in a simple manner and using simple means, makes for the production of a printing ink-decorated packaging material, in particular for aseptic packages, with surprisingly advantageous properties.
Naturally, many modifications and alterations are possible without

departing from the inventive concept as herein disclosed. Such modifications and alterations, obvious to a person skilled in the art, thus lie within the spirit and scope of the inventive concept as this is defined by the appended
Claims.



1. A method of producing a printing ink-decorated packaging material (10) of laminate type, comprising an outer coating (13) of plastic which serves as decor carrier and which has, on its outside,-applied decor (16) of water-based printing ink, in which method a web of rigid, but foldable p^per (10*) which, at least on its one side, has an outer coating (13) of plastic, is subjected, for the purpose of promoting adhesion, to a surface treatment modifying its polarity, by means of electric corona discharges, and in which method the thus surface-treated outer plastic coating (13) of the web is thereafter provided with decor of water-based printing ink which, using conventional printing technique, is applied in any optional pattern on the outside of the surface-treated plastic coating, characterized in that the web, after said printing ink application, is subjected to a surface energy-reducing after treatment (21).
2. The method as claimed in Claim 1, characterized in that the outer plastic coating (13) of the paper web consists of low density polyethylene (LDPE).
3. The method as claimed in Claim 1 or 2, characterized in that the decor-provided outer plastic coating (13) is heated in connection with the energy-reducing after treatment
4. The method as claimed in Claim 3, characterized in that the d£cor-provided outer plastic coating (13) is heated by means of hot press rollers or press cylinders (22, 23) between which the web is led.
5. A method of producing a printing ink-decorated packaging material (10) of laminate type for aseptic packages, which are produced from a web of the packaging material which, for the purpose of sterilization, is led through a balh of aqueous hydrogen peroxide prior to the reforming of the web into finished aseptic packages, in which method a web (10') of rigid, but foldable paper which, at least on its one side, has an outer coating (13) of plastic serving as decor carrier and which, on its other side, has a material layer (14) applied as gas barrier, is subjected, for the purpose of promoting adhesion,

to a surface treatment modifying its polarity, by means of electric corona discharges, and in which method the thus surface-treated outer coating (13) of plastic of the web is provided with optional d£cor (16) of water-based printing ink which, using conventional printing technique, is applied in the desired pattern on the outside of the surface-treated outer plastic coating, characterized in that the web, after said printing ink application, is subjected to a surface energy-reducing after treatment (21).
6. The method as claimed in Claim 5, characterized in that said outer
plastic coating (13) of the paper web consists of low density polyethylene
(LOPu).
7. The method as claimed in Claim 5 or 6, characterized in that the decor-provided outer plastic coating (13) of the web is heated in connection with the surface energy-reducing after treatment.
8. The method as claimed in Claim 7, characterized in that the decor-provided outer plastic coating (13) of the web is heated by means of hot press rollers or press cylinders (22, 23) between which the web is led.
9. A packaging container, characterized in that it is produced from a packaging material (10) of laminate type produced by the method as claimed in any of Claims 1 to 4.
10. An aseptic packaging container, characterized in that it is produced from a packaging material (10) of laminate type produced by the method as claimed in any of Claims 5 to 8.




Documents:

1038-mas-1998- abstract.pdf

1038-mas-1998- claims duplicate.pdf

1038-mas-1998- claims original.pdf

1038-mas-1998- correspondence others.pdf

1038-mas-1998- correspondence po.pdf

1038-mas-1998- description complete duplicate.pdf

1038-mas-1998- description complete original.pdf

1038-mas-1998- drawings.pdf

1038-mas-1998- form 1.pdf

1038-mas-1998- form 26.pdf

1038-mas-1998- form 3.pdf

1038-mas-1998- form 4.pdf


Patent Number 207783
Indian Patent Application Number 1038/MAS/1998
PG Journal Number 26/2007
Publication Date 29-Jun-2007
Grant Date 27-Jun-2007
Date of Filing 14-May-1998
Name of Patentee TETRA LAVAL HOLDINGS & FINANCE SA
Applicant Address AV.GENERAL-GUISAN 70, CH-1009 PULLY.
Inventors:
# Inventor's Name Inventor's Address
1 ROLF LASSON RUDEBOKSVAGEN 307, 226 55 LUND.
2 CHRISTER KARLSSON ADMIRALVAGEN 7, 237 32 BJARRED.
3 KAJ JOHANSSON SONARP 757, 260 24 ROSTANGA,
4 ZOLTAN PUSZTAI TAMBURIVAGEN 17,245 42 STAFFANSTORP.
PCT International Classification Number B23B27/10
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 9701788-3 1997-05-14 Sweden