Title of Invention

A PROCESS OF MAKING AN ALUMINUM ALLOY ARTICLE

Abstract An aluminum-based alloy composition having improved corrosion resistance and extrudability consists essentially of, in weight percent, an amount of copper up to about 0.03%, between about 0.1 and 0.5% manganese, between about 0.03 and 0.30% titanium, between about 0.06 and 1.0% zinc, an amount of iron up !to about 0.50%, between about 0.05 and 0.12% Si, less than 0.01% manganese, less than 0.01% nickel, up to 0.5% chromium with the balance aluminum and incidental impurities. A process of making an -aluminum alloy article having high corrosion resistance also is provided.
Full Text

CORROSION RESISTANT ALUMINUM ALLOY
Field of the Invention
The present invention is directed to a corrosion resistant aluminum alloy and, in particular, to an AA3000 series type aluminum alloy including controlled amounts of copper, zinc and titanium.
Background Art
T In the prior art, aluminum is well recognized for its corrosion resistance. AA1000 series aluminum alloys are often selected where corrosion resistance is needed.
In applications were higher strengths may be needed, AA1000 series alloys have been replaced with more highly alloyed materials such as the AA3000 series type aluminum alloys. AA3102 l is one example of a higher strength aluminum alloy having good corrosion resistance.
r
Aluminum alloys of the AA3000 series type have found extensive use in the automotive industry due to their combination of high strength, light weight, corrosion resistance and extrudability. These alloys are often made into tubing for use in heat exchanger or air conditioning condenser applications.
One of the problems that AA3000 series alloys have when subjected to corrosive environments is pitting or blistering

corrosion. These types of corrosion often occur in the types of environments found in heat exchanger or air conditioning condenser applications and can result in failure of an automotive component where the corrosion compromises the integrity of the aluminum alloy tubing.
In a search for aluminum alloys having improved corrosion resistance, more highly alloyed materials have been developed such as those disclosed in U.S. Patent Nos. 4,64 9,087 and 4,828,794. These more highly alloyed materials while providing improved corrosion performance are not conducive to extrusion due to the need for extremely high extrusion forces.
U.S. Patent No. 5,286,316 discloses an aluminum alloy with both high extrudability and high corrosion resistance. This alloy consists essentially of at least 0.1-0.5% by weight of manganese, about 0.05 - 0.12% by weight of silicon, about 0.10 - 0.20% by weight of titanium, about 0.15 - 0.25% by weight of iron with the balance aluminum. This alloy is essentially copper free with the level of copper not exceeding 0.03% by weight.
Although the alloy disclosed in U.S. Patent No. 5,286,316 offers improved corrosion resistance over AA3102, even more improved corrosion resistance is desirable. In corrosion testing using salt water - acetic acid sprays as set forth in ASTM Standard G85 (hereinafter SWAAT testing), condenser tubes made of AA3102 material lasted only eight days in a SWAAT test environment before failing. In similar experiments using the

alloy taught in U.S. Patent No. 5,286,316, longer durations than AA3102 were achieved. However, the improved alloy of U.S. Patent No. 5,286,316 still failed in SWAAT testing in less than 20 days. During this testing, it was discovered that lowering the copper content to impurity levels provided better corrosion resistance than alloy compositions having copper amounts greater than this .value. However, maintaining such a low copper content in the aluminum alloy tube to be cast is difficult under industrial casting conditions. Thus, it is impractical to produce an aluminum alloy with such a low copper content in spite of its improved corrosion resistance.
Accordingly, a need has developed to provide an aluminum alloy offering better corrosion resistance, particularly pitting or blistering corrosion resistance, than that provided by AA3102 and the alloy composition disclosed in U.S. Patent No. 5,286,316. In response to this need, the present invention provides an aluminum alloy material which is more user friendly during manufacture by having practical limitations on the amount of copper while providing improved corrosion resistance over prior art alloys.
Summary of the Invention
Accordingly, it is a first object of the present invention to provide an aluminum alloy having improved corrosion

resistance, in particularly pitting and blistering corrosion resistance.
Another object of the present invention is to provide an aluminum alloy which includes manageable levels of copper to facilitate manufacturing.
A still further object of the present invention is to provide an aluminum alloy which has both hot formability and corrosion resistance.
Another object of the present invention is to provide an extrusion, particularly, extruded condenser tubing, having improved corrosion resistance and good hot formability.
Other objects and advantages of the present invention will become apparent as a description thereof proceeds.
In satisfaction of the foregoing objects and advantages, the present invention provides a corrosion resistant aluminum alloy consisting essentially of, in weight percent, an amount of copper up to 0.03%, between about 0.1 and about 0.5% manganese, between about 0.03 and about 0.30% titanium, less than 0.01% magnesium, less than 0.01% nickel, between about 0.06 and about 1.0% zinc, an amount of iron up to about 0.50%, up to 0.20% chromium with the balance aluminum and inevitable impurities.
More preferably, the copper is about 0.008% or less, the titanium is between about 0.12 and 0.20%, the zinc is between about 0.10 and 0.20% and iron is between about 0.05 and 0.30%.

The inventive corrosion resistant aluminum alloy provides improved corrosion resistance over known AA3000 series type alloys. Further, no deterioration is seen with respect to hot deformation as a result of the zinc content. Consequently, the inventive aluminum alloy exhibits both good corrosion resistance and hot formability.
Brief Description of the Drawings
Reference is now made to the drawings of the invention wherein:
Figures la-lc are statistical analysis graphs relating levels of copper to failures in SWAAT testing over time;
Figures 2a-2c are statistical analysis graphs relating levels of titanium to failures in SWAAT testing over time;
Figures 3a-3c are statistical analysis graphs relating levels of zinc to failures in SWAAT testing over time;
Figures 4a-4c are statistical analysis graphs relating levels of chromium to failures in SWAAT testing over time; and
Figure 5 is a graph comparing extrusion pressures over time for various aluminum alloys.
Description of the Preferred Embodiments
The present invention provides an aluminum alloy having significantly improved corrosion resistance over the prior art alloys. As set forth above, the AA3000 series type alloys are prone to pitting corrosion and blistering, particularly in

environments wherein the alloys are manufactured into condenser tubing for heat exchanger or air conditioning applications. The inventive alloy composition, through control of the alloying elements thereof, provides vastly improved corrosion resistance properties.
In its broadest sense, the inventive corrosion resistant aluminum alloy consists essentially of, in weight percent, an amount of copper up to 0.03%, between about 0.1 and about 0.5% manganese, between about 0.03 and about 0.30% titanium, between about 0.06 and about 1.0% zinc, less than about 0.01% magnesium, less than 0.01% nickel, an amount of iron up to about 0.50%, an amount of Si between about 0.05 and 0.12%, up to 0.5% chromium with the balance aluminum and inevitable impurities.
Preferably, the copper content is held to less than about 0.01%. The titanium percent is preferably maintained between about 0.07 and 0.20%, more preferably between about 0.12 and about 0.15%. The zinc amount is maintained between about 0.05 and 1.0%. The iron content is maintained between about 0.05 a$d
0.30%.
More preferably, the zinc content is maintained between
about 0.06 and 0.5%. The chromium content is controlled to about
0.20% or less.
To demonstrate the improved corrosion resistance of the
inventive aluminum alloy composition, a series of alloy
compositions, see Table 1, were selected with varying amounts of

copper, titanium, chromium, and zinc alloying elements. For instance, titanium levels varied between 0.06%, 0.09%, 0.12%, 0.15% and 0.19%. Chromium levels varied between zero, 0.005%, 0.05% and 0.10%. The zinc targets included 0.03%, 0.10%, and 0.20%.
The manganese target for alloys A-K, M and N was 0.26% and the silicon target for these same alloys was 0.06%. The iron target was 0.2% for alloys A and B, 0.12% for alloys C-E, 0.1% for alloys F-K, M and N. The nickel and magnesium contents were targeted to be less than 0.01%.
In alloys C-E, the chromium content measured less than 0.5%.
In an effort to demonstrate the improvements associated with the inventive aluminum-based alloy over known prior art alloys, corrosion resistance testing was performed according to ASTM G85 standards. In this testing, condenser tubing is manufactured and subjected to a corrosion resistance testing procedure using a cyclical salt-water acetic acid spray test, hereinafter referred to as SWAAT testing. In this testing, specimens of each condenser tubing are cut to six or twelve inch lengths and exposed to the hostile environment mentioned above for times up to 40 days. After a specified exposure interval, the specimens are cleaned in an acid solution to remove the corrosion products and pressurized using 10 psi gas followed by immersing the specimens in water. A visual observation is made as to whether the tubing has been corroded to a degree such that gas bubbles leak through the

tubing. A visual observation of this nature is designated as a failure, (F). If the tubing is not corroded such that gas bubbles pass therethrough, the tubing passes and is given a (P) designation.
The condenser tubes for the SWAAT testing are 6mm diameter with a wall thickness of .41 mm. The alloyed compositions to be tested were cast into extrusion billets of 8 inch diameter, the billets were homogenized and extruded using conventional processing conditions. These conditions are further detailed in U.S. Patent No. 5,286,316 to Wade, herein incorporated by reference. It should be noted that the condenser tubing used for the corrosion test is the enhanced type which has corrugations on the tubing interior surface.
The extruded tubing was then subjected to a series of SWAAT tests for determination of pass-fail results and corrosion resistance. Tables 2 and 3 are charts comparing the SWAAT test results for both long tubes and short tubes of the alloying compositions in Table 1. The pass-fail results are shown for intervals of 10, 20, 30 and 40 days. Table 2 also compares an AA3102 type alloy to the alloy compositions listed in Table 1.
Tables 2 and 3 indicate which aluminum alloy compositions are preferred for corrosion resistance. For example, alloy 13 having high levels of copper and chromium failed to provide 20 days of corrosion resistance. In contrast, alloys M, N, C3 and H2

provided outstanding corrosion resistance even up to 40 days under SWAAT testing.
To further demonstrate the effects of the various alloying additions on corrosion resistance, additional SWAAT testing was done in sufficient quantity to permit an analysis of variance calculation to be performed to generate graphs showing the effects of alloying elements on corrosion resistance - These graphs compare the varying levels of specific alloying elements with a response indicative of corrosion resistance. The lower the response value, the better the corrosion resistance.
Referring to Figures la-lc, the graphs clearly show that low decreasing levels of copper provide improved corrosion resistance.
Figures 2a-2c indicate that increasing levels of titanium contribute to corrosion resistance.
Figures 3a-3c show that improved corrosion resistance is obtained when using increasing levels of zinc.
Finally, Figures 4a-4c demonstrate that increasing levels of chromium do not contribute to corrosion resistance. Thus, chromium levels can be maintained at impurity levels for purposes of the inventive alloy, thus reducing cost without a sacrifice in corrosion resistance.
Although not depicted, similar trends as those depicted in Figures la-4c are obtained when comparing the effects of two elements such as copper and zinc or zinc and chromium. In other

words, corrosion resistance improves with increasing zinc content and decreasing copper content.
Quite surprisingly, the increased levels of zinc while improving corrosion resistance do not adversely affect hot formability. Referring now to Figure 5, a comparison of multivoid extrusions of varying alloying content is shown .with respect to extrusion pressure as a function of time. Figure 5 has a key which identifies the multivoid tubing following the alloying compositions listed in Table 1 with the exception of the 3102 alloys which are listed below the graph. Comparing the curves for alloys C3, M and N, it can be readily seen that the hot formability of the alloys containing the increased levels of zinc, i.e., alloys M and N, is not adversely affected. Consequently, these types of alloys can be successfully extruded while exhibiting improved corrosion resistance over prior art alloys such as AA3102 and that taught in U.S. Patent No. 5,286,316.
The inventive alloy is believed to be useful in any application which requires good corrosion resistance. The inventive alloy is particularly adapted for use as a condenser tube having either a corrugated or smooth inner surface or as multivoid tubing. In other examples, the composition may be used to produce fin stock for heat exchangers, corrosion resistant foil for packaging applications subjected to corrosion from salt

water and other extruded articles or any other article needing corrosion resistance.
As such, an invention has been disclosed in terms of preferred embodiments thereof which fulfill each and every one of the objects of the present invention as set forth hereinabove and provides a new and improved aluminum based alloy composition having improved corrosion resistance and extrudability.
Of course, various changes, modifications and alterations from the teachings of the present invention may be contemplated by those skilled in the art without departing from the intended spirit and scope thereof. It is intended that the present invention only be limited by the terms of the appended claims.


















1. A corrosion resistant aluminum alloy consisting
essentially of in weight percent:
a) an amount of copper up to 0.03%,
b) between about 0.05 and 0.12% silicon;
c) between about 0.1 and 0.5% manganese;
d) between about 0.03 and 0.30% titanium;
e) between about 0.06 and 1.0% zinc;
f) less than 0.01% magnesium;
g) an amount of iron up to 0.50%;
h) less than 0.01% nickel; and
i) up to 0.5% chromium with the balance aluminum and incidental impurities.
2. The alloy of claim 1 wherein the copper is less than about 0.01%.
3. The alloy of claim 1 wherein titanium is between about 0.07 and 0.20% and zinc is between about 0.10 and 1.0%.
4. The alloy of claim 1 wherein iron is between about 0.05 and 0.30.
5. The alloy of claim 1 wherein copper is less than about . 01%, titanium is between about 0.07 and 0.20%, zinc is between about 0.10 and 1.0% and iron is between about 0.05 and 0.30%.

6. The alloy of claim 1 wherein chromium is present in amount up to 0.2%.
7. The alloy of claim 2 wherein the zinc ranges between about 0.10 and 1.0%.
8. An extrudate having the composition of the aluminum alloy of claim 1.
9. The extrudate of claim 8 in the form of a tubing.
10. The extrudate of claim 9 in the form of a multivoid tubing.
11. A foil having the composition of claim 1.
12. A process of making an aluminum alloy article having high corrosion resistance, said process comprising:

a) casting a billet having a composition consisting essentially of, in weight percent, about 0.1 to 0.5% of manganese, about 0.05 to 0.12% of silicon, about 0.03 to 0.30 of titanium, not more than 0.03% by weight of copper, an amount of iron up to 0.30%, between about 0.06 and 1.0% zinc, less than 0.01% magnesium, less than 0.01% nickel, up to 0.5% chromium, the balance being aluminum and incidental impurities;
b) homogenzing the billet at an elevated temperature;
c) cooling the billet;

d) heating the billet to an elevated temperature; and
e) extruding the billet to form an aluminum alloy article having high corrosion resistance.

13. The process of claim 12 wherein the article is a tubing.
14. The process of claim 12 wherein the tubing is a multivoid tubing.
15. The process of claim 12 wherein copper is less than about 0.01%, titanium is between about 0.12 and 0.20%, zinc is between about 0.10 and 1.0% and iron is between about 0.05 and 0.30%,
16. The process of claim 15 wherein zinc ranges between about 0.1 and 0.2%.
17. A corr6sion resistant aluminium alloy, substantially as herein described with reference to the accompanying drawin&s.
18. A process of making an aluminium alloy article, substantially as herein described, with reference to the accompanying drawings.




Documents:

1198-mas-1997- abstract.pdf

1198-mas-1997- claims duplicate.pdf

1198-mas-1997- claims original.pdf

1198-mas-1997- correspondence others.pdf

1198-mas-1997- correspondence po.pdf

1198-mas-1997- description complete duplicate.pdf

1198-mas-1997- description complete original.pdf

1198-mas-1997- drawings.pdf

1198-mas-1997- form 1.pdf

1198-mas-1997- form 26.pdf

1198-mas-1997- form 3.pdf

1198-mas-1997- form 4.pdf


Patent Number 207645
Indian Patent Application Number 1198/MAS/1997
PG Journal Number 27/2007
Publication Date 06-Jul-2007
Grant Date 19-Jun-2007
Date of Filing 04-Jun-1997
Name of Patentee M/S. REYNOLDS METALS COMPANY
Applicant Address 6601 WEST BROAD STREET, RICHMOND, VIRGINIA 23230.
Inventors:
# Inventor's Name Inventor's Address
1 SUBHASISH SIRCAR 47F PLEASANT RUN DRIVE, RICHMOND, VIRGINIA-23233.
PCT International Classification Number C22C21/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 08/659,787 1996-06-06 U.S.A.