Title of Invention

METHOD FOR THE PURIFICATION OF COPPER CHLORIDE SOLUTION

Abstract 1. A method for the removal of metal impurities in chloride-based copper characterised in that recovery process comprises removing the metal impurities from a strong chloride solution of monovalent copper using chelating ion-exchange resins in an acidic or neutral environment.
Full Text FORM-2 THE PATENTS ACT, 1970
(39 of 1970)
Complete Specification
(Section 10, rule 13)
METHOD FOR THE PURIFICATION OF COPPER CHLORIDE SOLUTION
OUTOKUMPU OYJ
of Riihitontuntie 7, FIN-02200 Espoo, Finland a Finnish public limited Company
GRANTED
24-11-2005
THE FOLLOWING SPECFICATION PARTICULARLY DESCRIBES THE NATURE OF THIS INVENTION AND THE MANNER IN WHICH IT IS TO BE PERFORMED:-

ORIGINAL

METHOD FOR THE PURIFICATION OF COPPER CHLORIDE SOLUTION
The invention relates to a method for the removal of metal impurities in a chloride-based copper recovery process. According to this method, the amount of metal impurities in a strong chloride solution of monovalent copper can be reduced to very low levels by using ion exchange as at least one purification stage, especially chelating ion-exchange resins.
US Patent publication 6,007,600 describes a method for the hydrometallurgical production of copper from copper-containing raw materials such as copper sulphide concentrate. According to the method the raw material is leached counter-currently with a strong sodium chloride-copper chloride solution in several stages to form a monovalent copper(l) chloride solution. Since both some bivalent copper chloride and impurities composed of other metals always remain in the solution, reduction of the bivalent copper and solution purification are performed. The pure cuprous chloride solution is precipitated with sodium hydroxide to copper oxidule (cuprous oxide) and the oxidule is reduced further to elemental copper. The sodium chloride solution generated during copper oxidule precipitation is treated further in chlorine-alkali electrolysis, and the chlorine gas and/or chloride solution obtained from this is used in raw material leaching, the sodium hydroxide formed in electrolysis for oxidule precipitation and the forming hydrogen for the reduction of copper to elemental copper. US patent publication 6,007,600 focuses on the copper recovery method as a whole, but solution purification for example is not described in detail.
US patent publication 5,487,819 also describes a method for the hydrometallurgical production of copper from a copper-containing raw

material such as copper sulphide concentrate. According to the method, the raw material is leached counter-currently with a sodium chloride-copper chloride solution in several stages in order to form a monovalent copper(l) chloride solution. The solution generated is subjected to ordinary solution purification as hydroxide precipitation, described in example 6. Zinc and lead contents in the cuprous chloride solution after solution purification are at a level of 2 - 3 g/1, and the solution is fed to copper electrolysis.
When one wishes to reduce the impurity level of a copper chloride solution as much as possible, for instance down to a few mg/1 or less, ordinary hydroxide precipitation is not sufficient to reach this level, without a great deal of copper being precipitated together with impurities. It is of course clear that it is worth precipitating the majority of metal impurities by normal methods, but the final purification has been problematic, since for instance the permitted impurity content of LME-A level cathode copper is rather small (BS6017:1981).
In the types of processes described above the original material i.e. copper concentrate is leached into a strong alkali chloride solution, containing for example at least 200 g/1 NaCl or other alkali chloride. Copper and metal impurities are then present in the solution as chloride complexes, usually with a negative charge. Copper is mainly present in the solution in monovalent form.
In their article: "Ultra high purification of copper chloride solutions by anion exchange", Hydrometallurgy 45 (1997), pp. 345-361, Kekesi, T. and Isshiki, M. suggested anion-exchange resins for the purification of a copper chloride solution. The disadvantage is however, that it requires a large

quantity of resin, multi-stage washing to remove metal impurities from the resin, and a separate stage for the separation of lead for example.
Chelating ion exchangers have been researched for the removal of base metals such as zinc, cadmium, copper and nickel from metal plating solutions. One study is described in the article by Koivula, R. et al: "Purification of metal plating rinse waters with chelating ion exchangers", Hydrometallurgy 56 (2000) pp. 93-108. The chloride contents of the solutions were however in the range of some milligrams per litre.
US patent publication 4,895,905 describes a method for the removal of alkali earth or heavy metals from a strong NaCl solution using chelating resins. The amount of alkali earth and heavy metals before resin treatment was at the most about one hundred mg/1 and after treatment the majority of metals were undetectable. The patent concentrates largely on resins where the functional group is alkylaminophosphonic.
The method of the invention relates to the removal of metal impurities from a strong chloride solution of monovalent copper to the level where the amount of metal impurities is only a few milligrams per litre. The removal of metal impurities is implemented at least partly using ion exchange, in particular with chelating ion-exchange resins. The term strong chloride solution refers to a solution where the amount of alkali chloride such as sodium chloride is at least 200 g/1. The amount of copper, especially monovalent copper, in the solution is in the order of 30 - 100 g/1. Particularly in processes where the final product, metallic copper, is formed by precipitation, the amount of metal impurities should be reduced in the solution from which the precipitation is to occur, since the impurities will be precipitated alongside the copper in the precipitation stage.
According to this invention, there is provided a method for the removal of metal impurities in chloride-based copper characterised in that recovery process comprises removing the metal impurities from a strong chloride solution of monovalent copper using chelating ion-exchange resins in an acidic or neutral environment.
Typically, the ion-exchange resin comprises styrene-divinyl-benzene of ring structure.
Typically, the functional group of the ion-exchange resin is the iminodiacetic acid group.
Typically, the functional group of the ion-exchange resin is the aminophosphonic group.
Typically, the metal impurity to be removed is one or more of the group of zinc, nickel, lead, iron and manganese.
Typically, the alkali chloride content of the strong chloride solution is at least 200 g/1.
Typically, the amount of monovalent copper in the solution to be purified is 30-100 g/1.
Typically, the copper-containing chloride solution that is the mother liquor in the resin is displaced before elution with an NaCl solution and that the alkaline solution to be used for regenerating the resin is displaced with an NaCl solution before the copper-containing chloride solution is fed into the resin.
5
Typically, the majority of the metal impurities in the strong chloride solution of monovalent copper are removed by hydroxide precipitation and the rest by using ion exchange.
Typically, the metal impurities are removed by hydroxide precipitation to a content of 0.1 - 1 g/1, after which the final purification is made using ion exchange.
Typically, impurities are removed from a strong chloride solution of copper by ion exchange at least to a level that corresponds to cathode copper LME-A grade impurity level.
If bivalent copper is present in the monovalent copper chloride solution, it is first removed by some appropriate method. The principal metal impurities in copper concentrate are zinc, lead, nickel, iron and manganese, and they appear in a chloride solution in bivalent or trivalent form. The majority of unwanted bivalent metals can most advantageously be removed using conventional precipitation methods such as hydroxide precipitation. Precipitation can however be carried out in connection with the method according to the present invention so that 0.1 - 1 g/1 of metal impurities are left in the solution. This avoids the precipitation of copper along with other metals, which would cause fruitless recirculation and copper losses.
The removal of metal impurities from a copper chloride solution down to a level of a few milligrams is performed using a chelating ion-exchange resin. The functional group of ion-exchange resin is preferably the iminodiacetic acid group or the aminophosphonic group (-CH2-NH-CH2-PO3Na2). The property they have in common is a styrene-divinyl-benzene
6
matrix of ring structure and a certain functional group that is selective for certain metals. A bivalent or trivalent metal, such as zinc, lead, nickel, iron and manganese, can be bound to the functional group in place of the sodium. Since the resin does not bind monovalent copper so strongly, it remains in the chloride solution and passes through the resin. The metals bound to the resin are eluted with hydrochloric acid and the solution obtained is returned to the process so that the metal impurities are finally removed from the process via the precipitation stage.
Since the resin used binds bivalent copper about as strongly as it binds the metal impurities, the oxidizing effect of the air must be eliminated so that the monovalent copper is not oxidized into bivalent.
The dissolution of monovalent copper into water is based on chloride complexes so that the solution is stable only in a strong chloride solution, an acidic or neutral environment. Therefore the process solution that is the mother liquor in the resin (monovalent copper chloride solution) has to be displaced with an NaCl solution before elution, and correspondingly before the process solution is fed into the resin after regeneration, the equipment that contains resin must be filled with an NaCl solution instead of the alkaline regeneration solution.
We have found that by using the above ion-exchange resin for the purification of monovalent copper chloride solution it is possible to achieve an impurity level in the solution that corresponds to cathode copper grade LME-A or even purer.
The method is described further by the following examples.

Example 1
Tests were carried out in 50 ml burettes. The feed rate of the solution through the column was 300 ml/h. Samples of the outflowing solution were taken every hour. After the test 150 ml of NaCl solution was fed through the column, after which the column was eluted with a 10% HCl solution for three hours at a rate of 100 ml/h. During elution 5 samples were taken. After elution 150 ml of water was fed through the column and finally the resin was regenerated by feeding 300 ml of NaOH solution (NaOH = 80 g/1) through the column.
The solution for purification contained about 200 mg/1 of lead and zinc, and about 50 mg/1 of iron, manganese and nickel, and its pH was 6. The same solution was fed to each of the three columns with separate hose pumps.
Three resins were used in the tests in parallel columns. A summary of their basic characteristics is shown in Table 1.
8
Table 1. Properties of ion-exchange resins used in tests


Table 2. Ion-exchange test results

TEST SAMPLE TIME
h/min Cu
g/L Zn
mg/L Pb mg/L Fe mg/L Mn mg/L Ni mg/L
Resin I Charging Feed solution 52.8 203 140 49.0 37.8 36.6
Charging lh 52.0 Charging 2h 53.9 Charging 3h 53.5 0.66 23.0 4.7 3.5 Brine rinse Composite sample 11.0 63.9 146 1.6 16.2 1.7
Elution 15 min 0.447 907 124 416 1012 943
Elution 30min 0.516 3 355 1466 209 132 227
Elution lh 0.124 1 195 1010 0.86 0.38 2.2
Elution 2h 0.035 352 69 0.34 Elution 3h 0.010 166 2.4 0.39 Water rinse Composite sample 0.003 144 Regeneration Composite sample 0.001 1.4 Resin II Charging Feed sample 52.8 203 140 49.0 37.8 36.6
Charging lh 52.6 Charging 2h 51.5 Charging 3h 53.3 Brine rinse Composite sample 11.4 36.7 70.6 1.1 5.1 3.8
Elution 15 min 1.06 4 130 570 11.4 2 120 3 610
Elution 30 min 0.242 2 850 1490 102 118 4.1
Elution lh 0.064 465 1 500 17.8 Elution 2h 0.009 68.5 950 6.9 Elution 3h 0.002 11.1 1.6 1.2 Water rinse Composite sample 0.024 7.4 Regeneration Composite sample 0.002 2.5 Resin III Charging Feed sample 52.8 203 140 49.0 37.8 36.6
Charging lh 35.3 Charging 2h 53.0 Charging 3h 54.7 Brine rinse Composite sample 13.1 31.0 45.8 1.6 7.7 0.7
Elution 15 min 0.813 410 73.3 383 778 764
Elution 30 min 0.931 2 395 1620 133 135 165
Elution lh 0.457 986 975 1.0 0.33 1.1
Elution 2h 0.190 379 111 0.51 Elution 3h 0.076 190 9.5 0.77 Water rinse Composite sample 0.019 360 3.4 0.25 Regeneration Composite sample 0.010 4.7 Table 2 shows that all the selected resins were able to remove the impurities required. Resin II performed best, being able to produce a solution of the required purity in over two hours. The selected resins acted far better in a copper(l) chloride-sodium solution than other resins that were tried, which were unable to perform selectively as desired.

Example 2
A pilot test was carried out in glass columns with an outer diameter of 70 mm (wall thickness 4.2 mm) and a height of 1000 mm (straight section). The total volume of the column was 3 litres and 2 litres of resins were then added. The resin used in the pilot was resin II. There were two columns in series in the run and the flow occurred from the top to the bottom without intermediate pumping. In front of the columns there was a column filled with copper chips, with the purpose of reducing the copper that had oxidized during intermediate storage to monovalent copper.
At first both columns were changed once every 24 hours and eluted. Later only the first of the columns was subjected to elution, the second column was used as the first and the ready eluted column was used as the final column. The elution frequency was changed so that it depended on the amount of impurities in the feed solution, generally every 2-3 days.
In the first test campaign the concentrate used contained very little nickel and manganese and thus their amount in the ion-exchange feed solution was below the analysis limit. The zinc content in the feed solution varied between 100 - 900 mg/1 with an average of 340 mg/1. The lead content varied between 3-70 mg/1 with an average of 21 mg/1. In the product solution 80% of the lead analyses (analysis limit 1 mg/1). In the analyses of the copper product reduced from copper oxidule zinc was typically below 1 ppm and lead below 0.5 ppm.
In the second test campaign a concentrate was used with a lead content of about twice that of the concentrate used in the first campaign. The contents

of the impurities relevant with regard to ion exchange did not differ greatly from those of the previous campaign.
The zinc content of the feed solution varied in this campaign between 120 -920 mg/1 with an average of 390 mg/1, rising to a level of 440 mg/1 at the end of the series. Nickel was again below the analysis limit of 0.5 mg/1, and the manganese content was between 0.1-1.2 mg/1.
95% of the product solution zinc analyses were below the analysis limit (0.5 mg/1) as were 42% of the lead analyses (analysis limit 1 mg/1). The nickel and manganese contents were again very low.
In the analyses of the copper product reduced from copper oxidule zinc was on average 1.3 ppm and lead 0.55 ppm i.e. the copper product was of LME-A quality.

We Claim:
1. A method for the removal of metal impurities in chloride-based copper characterised in that recovery process comprises removing the metal impurities from a strong chloride solution of monovalent copper using chelating ion-exchange resins in an acidic or neutral environment.
2. A method according to claim 1, wherein the ion-exchange resin comprises styrene-divinyl-benzene matrix of ring structure.
3. A method according to claims 1 or 2, wherein the functional group of the ion-exchange resin is the iminodiacetic acid group.
4. A method according to claims 1 or 2, wherein the functional group of the ion-exchange resin is the aminophosphonic group.
5. A method according to any one of the preceding claims, wherein the metal impurity to be removed is one or more of the group of zinc, nickel, lead, iron and manganese.
6. A method according to any one of the preceding claims, wherein the alkali chloride content of the strong chloride solution is at least 200
g/1
7. A method according to any one of the preceding claims, wherein the
amount of monovalent copper in the solution to be purified is 30 —
100g/1.

8. A method according to any one of the preceding claims, wherein the copper-containing chloride solution that is the mother liquor in the resin is displaced before elution with an NaCl solution and that the alkaline solution to be used for regenerating the resin is displaced with an NaCl solution before the copper-containing chloride solution is fed into the resin.
9. A method according to any one of the preceding claims, wherein the majority of the metal impurities in the strong chloride solution of monovalent copper are removed by hydroxide precipitation and the rest by using ion exchange.
10.A method according to claim 11, wherein the metal impurities are removed by hydroxide precipitation to a content of 0.1 - 1 g/1, after which the final purification is made using ion exchange.
11. A method according to any one of the preceding claims, wherein impurities are removed from a strong chloride solution of copper by ion exchange at least to a level that corresponds to cathode copper LME-A grade impurity level.
Dated this 10th day of September, 2004.

OF R.K.DEWAN & COMPANY
APPLICANTS' PATENT ATTORNEY

Documents:

501-mumnp-2004-cancelled pages(24-11-2005).pdf

501-mumnp-2004-claims(granted)-(24-11-2005).doc

501-mumnp-2004-claims(granted)-(24-11-2005).pdf

501-mumnp-2004-correspondence(24-11-2005).pdf

501-MUMNP-2004-CORRESPONDENCE(26-3-2010).pdf

501-mumnp-2004-correspondence(ipo)-(4-10-2005).pdf

501-mumnp-2004-form 18(21-4-2005).pdf

501-mumnp-2004-form 1a(10-9-2004).pdf

501-mumnp-2004-form 2(granted)-(24-11-2005).doc

501-mumnp-2004-form 2(granted)-(24-11-2005).pdf

501-mumnp-2004-form 26(10-9-2004).pdf

501-MUMNP-2004-FORM 26(26-3-2010).pdf

501-mumnp-2004-form 3(10-9-2004).pdf

501-mumnp-2004-form 5(10-9-2004).pdf

501-mumnp-2004-form-pct-isa-210(10-9-2004).pdf

501-mumnp-2004-petition under rule 137(1-6-2005).pdf


Patent Number 206084
Indian Patent Application Number 501/MUMNP/2004
PG Journal Number 28/2007
Publication Date 13-Jul-2007
Grant Date 17-Apr-2007
Date of Filing 10-Sep-2004
Name of Patentee OUTOKUMPU OYJ
Applicant Address RIIHITONTUNTIE 7, FIN-02200 ESPOO, FINLAND.
Inventors:
# Inventor's Name Inventor's Address
1 LEIMALA, RAIMO HARJUTIE 30, FIN-28430 PORI, FINLAND.
PCT International Classification Number C22B 3/42
PCT International Application Number PCT/FI03/00292
PCT International Filing date 2003-04-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 2002 0749 2002-04-19 Finland