Title of Invention

DIFFUSER/EMULSIFIER

Abstract A diffuser comprising: a first member having a surface incorporating surface disturbances; a second member having a first side positioned relative to said surface of said first member to form a channel therebetween through which a first material provided from a first inlet into said channel flows and into which a second member is introduced, said diffuser configured such that a substantially continuous flow path is provided from said first inlet to said channel throughout operation thereof; and means for moving said first material through said channel relative to said surface disturbances to create cavitation in said first material within said channel to diffuse said second material into said first material.
Full Text FORM 2
THE PATENTS ACT, 197 0 (39 of 1970)
COMPLETE SPECIFICATION (See Section 10, rule 13)
DIFFUSER/EMULSIFIER
MICRODIFFUSION, INC. of 580 COMMERCE , ST . , SUITE 150, SOUTHLAKE, TX 76092, U.S.A. AMERICAN Company
The following specification particularly describes the nature of the invention and the manner in which it is to be performed : -




Original
576/MUMNP/2004
14/10/2004
28-2-2005

DIFFUSER/EMULSIFIER
BACKGROUND OF THE INVENTION
1. TECHNICAL FIELD
[0001] This invention relates in general to diffusers and, more particularly, to al method and
apparatus for diffusing or emulsifying a gas or liquid into a material. !
I
2. DESCRIPTION OF THE RELATED ART
[0002] In many applications, it is necessary to diffuse or emulsify one materiad - gas or liquid - within a second material. Emulsification is a subset of the process of diffusion wherein small globules of one liquid are suspeviqed in a second liquid with which the first will not mix, such as oil into vinegar. One important application of the diffusion process is in wastewater treatment. Many municipalities aerate their wastewater as part of the treatment process in order to stimulate biological degradation of organic matter. The rate of biological digestion of organic matter is very dependent upon the amount of oxygen in the wastewater, since the oxygen is necessary to sustain the life of the microorganisms which consume the organic matter. Additionally, oxygen is able to remove some compounds, such as iron, magnesium and carbon dioxide.
[0003] There are several methods of oxygenating water. First, turbine aeration systems release air near the rotating blades of an impeller which mixes the air or oxygen with the water. Second, water can be sprayed into the air to mcrease its oxygen content. Third, a system produced by AQUATEX injects air or oxygen into the water and subjects the water/gas to a large scale vortex. Tests on the AQUATEX device have shown an improvement to 200% dissolved oxygen (approximately 20 ppm (parts per million)) under ideal conditions Naturally occurring levels of oxygen in water are approximately 10 ppm maximum, which is considered to be a level of 100% dissolved oxygen. Thus, the AQUATEX device doubles the oxygen content of the water. The increased oxygenation

levels last only minutes' prior to reverting back to 100% dissolved oxygen levels.
Greater oxygenation levels, and longer persistence of the increased oxygen levels, could
provide significant benefits in treatmg wastewater. Importantly, the efficiency of the
organic digestion would be incrensed and the amonnt of time need for biological
remediation would decrease, improving on the capacity of wastewater treatment facilities.
[0004] Accordmgly, a need has aiisen for a diffusing mechanism capable of diffusing high levels of one or more materials into another material.

BRIEF SUMMARY OF THE INVENTION
[0005] In the present invention, a diffuser comprises a first member having a surface incorporating surface disturbances and a second member posilioned rclalivo to the first diffusing member to form a channel thuough which a first material and a second material may flow. The first material is driven relative to the surface disturbances to create
cavitation in the first material ia order to diffuse the second material into the furst material.
[0006] The present invention provides significant advantages over the prior art. First, the
micro-cavitations generated by the device allow diffusion to' occur at a molecular level,
increasing the amount of infusion material winch will be held by the host material and the
persistence of the diffusion. Second, the micro-cavitalions and shock waves can be

produced by a relatively simple mechanical device. Third, the frequency or frequencies of
I the shock wave produced by the device can be usbd in many applications, either to break
down complex structures or to aid in combining structures. Fourth, the cavitations and
shock waves can be produced unifonnly throughout a material for consistent diffusion.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


[0007] For a more complete understanding of the present invention, and. the advantages tliereof, referende is now made to the following descriptions talcen in conjimction with the

accompanying drawings, in which:



[0008] Figures 1 and la illustrate a partially cross sectional, partially block diagram of a
first embodiment of a diffuser;
[0009] Figures 2a, 2b and 2c illustrate the diffusion process internal to the difluser;
[0010] Figure 3 illustrates an exploded view of the rotor and stator of the diffuser;
I
[0011] Figure 4 illustrates an embodiment of the stator; '
■ I . ■
[0012] Figure 5 a illustrates a cross-section .View of the rotor-stator assembly in a seconc
embodiment of the invention:
1. '
[0013] Figure 5b illustrates a top view of the rotor in the second embodiment of the invention;
[0014] Figure 6 illustrates a cut-away view of a third embodiment of the invention;
[0015] Figures 7a through 7h illustrate altenlative embodiments for generating the diffusion; and
[0016] Figures 8a and 8b illustrate another alternative embodment of the mvention.

DETAILED DESCRIPTION OF THE INVENTION
[0017] The present invention is best understood in relation to Figures 1-8 of the drawings, like numerals being used for like elements of the various drawings.
[0018] Figures 1 and la illustrate a partially block diagram, partially cross-sectional view fust embodiment of a device 10 capable of diffusing or emulsifying one or two gaseous or liquid materials (hereinafter the "infusion materials") into another gaseous or liquid material (heremafler the "host material"). The host material may be a normally solid material which is heated or otherwise processed to be in a liquid or gaseous state during the diffusion/emulsification process.
[0019] A rotor 12 comprises a hollow cylinder, generally closed at both ends. Shaft 14 and inlet 16 are coupled to the ends of the rotor 12. A first infusion material can pass through inlet 16 into the interior of rotor 12. Shaft 14 is coupled to a motor 18, which rotates the rotor at a desired speed. The rotor 12 has a plurality of openings 22 formed therethrough, shown in greater detail in Figure la. hi the preferred embodiment, the openings 22 each have a narrow orifice 24 and a larger borehole 26. The sidewalls 28 of the boreholes 26 can
assume various shapes mcludihg straight (as shown in Figure 4), angled (as shown in Figure
I
1) or curved. I
[0020] A stator 30 encompasses the rotor 12, leavig a channel 32 between the rotor and the
stator through which the host material may flow. The stator 30 also has openings 22 formed
about its circumference. A housing 34 surrounds the stator 30 and inlet 36 passes a second
infusion material to an area 35 between the stator 30 and the housmg 34. The host material
passes through inlet 37 into the channel 32. Seals 38 are fonmed between the shafts 14 and
16 and tire housing 34. An outlet 40 passes the host material from the channel 32 to a pump
42, where it exits via pump outlet 44. The pump may also be driven by motor 18 or by an
auxihary source.
[0021] In operation, the diffusion device receives the host material through inlet 37. In the preferred embodiment,[pump 42 draws the host material on the pump's suction side in order to allow the host material to pass tln-ough the channel at low pressures. The first and second infusion materials are introduced to the host material through openings 22. The infusion

materials may be pressurized at their source to prevent the host material from passmg through openings 22.
[0022] The embodiment shown in'Figure.1 has separate inlets for 16 and 36 for the diffusion materials. This arrangement allows two different infusion materials to be introduced to the host material. Aiternatively a single infusion material could be introduced
, into both inlets.

[0023] In tests, the embodiment shown in Fignre 1 has demonstrated high levels of
diffusion of the infusion material(s) into the host material. Tests using oxygen as the
infusion material and water as the host material have resulted in levels of 400% dissolved

oxygen in the water, with the increased oxygen levels lasting for days.
[0024] The reason for the high efficiency and persistence of the diffusion is believed to be the result of micro-cavitation, which is described in connection with Figures 2a-c. Whenever a material flows over a smooth surface, a rather laminar flow is established with a. thin boundary layer that is stationary or moving very slowly because of the surface tension between the moving fluid and the stationary surfece. The openings 22, howeyer, disrupt the laminar flow and dan cause compression and decompression of the material. If the pressure during the decomp'ression cycle is low enough, voids (cavitation bubbles) will form in the material. The cavitation bubbles generate a rolary flow pattern 46, like a tornado, because the localized iirea of low pressure draws the host material and the infusion material, as shown in Figure 2a. When the cavitation bubbles implode, extremely high pressures result. As two ahgned openings pass one another, a succusion (shock wave) occurs, generating significant energy. The energy associated with cavitation and succussion mixes the infusion material and the host material to an extremely high degree, perhaps at the molecular level.
[0025] The tangential velocity of the rotor 12 and the number of openings that pass each other per rotation dictate the frequency at which the device operates. It has been found that operation m the ultrasonic frequency can be beneficial in many applications. It is believed that operating the device in the ultrasonic region of frequencies provides the maximum succussion shock energy to shift the bonding angle of the fluid molecule, which enables it to transport additional infusion materials which it would not normally be able to retain. The

frequency at which the diffaser operates appears to affect the degree of diffusion, leading to
much longer persistence of the infusion material in the host material.
[0026] In some applications, a particular frequency or frequencies may be desucd to break down certain complex molecules, such as in the case of water purification. In this ' application, nuiltipic frequcncics of succussion can l)e used to break complex structures, such as VOCs (volatilc organic compounds), into smaller sub-structures. Ozone can be
used as one of the infusion materials to oxidize the sub-structures at a high efficiency.
[0027] Other sonochemistry applications can be performed with the device 10. In general,
sonochcmistry uses ultrasound to assist chemical reactions. Typically, the ultrasound is
generated usmg a piezoelectric or other electro-acoustical device. A problem associated
with electro-acoustical transducers is that the sound waves do not provide uniform sound
waves throughout the material; rather, die desired cavitation is localized around the device
itself The present invention allows the ultrasonic waves to be produced throughout a
material using a simple mechanical device.
[0028] Figure 3 illustrates an exploded view of an embodiment of the rotor 12 and stator 30
where multiple frequencies may be obtained at a single rotational velocity. In Figure 3,
three circular arrays of opemngs 50 (shown individually as arrays 50a, 50b, and 50c) of
openings 22 are disposed circumferentially about the rotor 12. Each ring has a different
number of openings evenly spaced about its circumference. In similar- fasliion, the stator 30
would have three circular anrays of openings 52 (shown mdividually as arrays 52a, 52b, and
52c). To ensure that only one pair of openings between corresponding arrays will be
coincident at any one time, the number of openings 22 in a given array 52 on tlie stator 30
can be one more (or less) than the number of openings 22 in the corresponding array 50 of
the rotor 12. Thus, for example, if array 50a had twenty openings evenly spaced around the
circumference of rotor 12, array 52 could have 21 openings (spaced evenly around the
circumference of stator 30.
[0029] As the rotor 12 of Figure 3 rotates relative to stator 30, each array will create succussions at a different frequency. By pr9pcrly choosing different frequencies, a sum and difference mterference pattern will result, creating a wide spectrum of frequencies. This

spectrum of frequencies can be beneficial m many applications where unknown impurities in a host liquid need to be broken down and oxidized.
[0030] Figiure 4 illustrates a cross-sectional side view of an embodunent of a stator 30. For smaller diameter slators, it may be difficult to form the borehole 26 on the inside of stator 30. The embodiment of Figure 4 uses an inner sleeve 54 and an outer sleeve 56. The boreholes 26 can be drilled, from the outside, of the inner sleeve 54. For each borehole 26 on the inner sleeve 54, a corresponding aligned orifice 24 is drilled on the outer sleeve 56. The inner sleeve 54 is then placed in, and secured to, the outer sleeve 56 to form the stator 30. Other methods, such as casting, could also be used to form the stator 30.
[0031] Figures 5a-b and 6 illustrate alternative embodiments of the diffuser 10. Where appropriate, reference nnmerals from Figure 1 are repeated in these figures.
[G032]Figure 5 a illustrates an cross-sectional side view of an embodiment where the rotor
t
12 and stator 30 are disk shaped. Figure 5b illustrates a top view of the disk shaped rotor
I 12. The stator 30 is formed above and below the rotor 12. Both the stator 12 and rotor 30
have a plurality of openings of the type described in connection with Figure 1, which pass
' by each other as the rotor 12 is driven by the motor. As before, for each array 52, the stator
30 may have one opening more or less than the corresponding array 50 in rotor 12 in order
to prevent simultaneous succussion at two openings within an array. The openings 22 can
be of the same shape as shown in Figine 1. A hollow shaft serves as the inlet 16 to the
interior of the disk shaped rotor for the first infnsion material. Similarly an area 35
between the stati3r 30 and the housing 34 receives (lie second infusion material. As (:hc host
material flovJs in the channel 32 between the rotor 12 and the stator 30, it is subjected to the
vortex generation at the openings 22, thereby causing a diffusion of the first anc). second
materials with tlie host material. The infused host material passes to outlets 40.
[0033] Figure 5b illustrates a top view of the rotor 12. As can be seen, a plurality of
openings forms concentric arrays of openings on the rotor 12. Each aixay can, if desired,
generate secussions at different frequencies. In the preferred embodiment, openings 22
would be formed,on the top and bottom of the rotor 12. Corresponding openings would be
formed above and below these openings on the stator 30.

[0034] Figure 6 illustrates a cut away view of an embodiment of the invention where the
rotor 12 has a conical shape. Both the stator 12 and rotor 30 have a plurality of openings of
the type described in connection with Figure 1, which pass by each other as the rotor 12 is
driven by the motor. In addition to the openings around the circumference of the rotor 12,
tliere could also be oponing at the bottom of the conical shape, with corresponding
openings in the portion of the stator 30 at the bottom. As before, for each an'ay, tire stator
30 may have one opening irrore or less than the rotor 12 in order to prevent simultaneous
succussion at two openings 22 on the same array.' A hollow shaft serves as the inlet 16 to
the interior of the| disk shaped rotor for the first infusion material. Similarly, an area 35
between the stator 30 and the housing 34 receives the second infusion material. As the host
material flows between the rotor 12 and stator 30, it is subjected to the vortex generation
at the openings 22, thereby causing a diffusion of the fnst and second materials with the
I
host material. The infused host material passes to outlets 40. .
[0035] In the embodiments of Figures 5a-b and.6, because the arrays of openings 22 can be formed at increasing diameters, generation of multiple frequencies may be facilitated. It
should be noted that anyjnumber of shapes could be used, including hemi-spherical and

spherical shapes to realize the rotor 12 and stator 30.
t
I
[0036] The diffuser described herein can be used in a number of applications. Optimal opening size (for both the orifice 24 and borehple 26), width of channel 32, rotational speed and rotor/stator diameters may be dependent upon the application of the device.
[0037] As described above, the diffuser 10 may be used for water aeration. In this embodiment air or oxygen is used as both the first and second infusion materials. The air/oxygen is diffused into the wastewater (or other water needing aeration) as described in bomrection with Figure 1. It has been found that the diffuser can increase the oxygenation to approximately 400% dissolved oxygen, with greater concentrations expected as paiameters are optimized for this application, In tests which circulated approximately twenty five gallons of municipal water at ambient temperatures (initially having a reading of 84.4% dissolved oxygen) through the device for five minutes to aclrieve 390% dissolved oxygen content, the enlranced concentration of oxygen levels remained above 300% dissolved oxygen for a period of four hours and above 200% dissolved oxygen for over 19 hours.

After three days, the dissolved oxygen content remained above 134%. In these tests,
frequencies of 169 kHz were used. The sizes of the openings were 0.030 inches for the
orifice 24 and 0.25 mches for the borehole (with the boreholes 26 on the rotor ha,vmg sloped
sides). Cooler temperatures could significantly increase the oxygenation levels and the
persistence. .'
[0038] Also for the treatment of wastewater, or for bio-remediation of other toxic materials,
oxygen could be used as one of the infusion materials and ozone could be used as the other
I infusion material, In this case, the ozone w6uld be used to oxidize hazardous structures in
the host material, such as VOCs and dangerous microorganism. Further, as described
above a set of frequencies (as determined by the arrays of openings in the rotor 12 and
stator 30) could be used to provide an destructive interference pattern which would break
down many of the complex structures into smaller substructures. Alternatively, if the
treatment was directed towards oxidation of a single known hazardous substance, it would
be possible to use a smgle frequency wliich was known to successfully break down the
structure. Conversely, a set of frequencies which result in a constructive interference
pattern could be used to combine two or more compounds into a more complex and highly
structured substance. .
[0039] For producmg potable water, ozone could be used as the first and second infusion , material to break down and oxidize contaminants.
[0040] While the operation of the diffuser 10 has been discussed in connection with large apphcations, such as municipal wastewater remediation, it could also be used in household applications, such as drinking water purifiers, swuruning pools and aquariums.
[004l] The diffuser could also be used for other applications where diffusion of a gas or liquid into another liquid.changes the characteristics of the host material. Examples of such applications would include the homogenization of milk or the hydrogenation of oils. Other apphcations could include higher efficiencies in mixmg fuel and gases/liquids resulting m higher fuel economy.
[0042] Figures 7a-b illustrate alternative embodments for the rotor 12 and stator 30. In Figure 7a, the "stator' 30 also rotates; in this case, the frequency of the successions will be

dependent upon the relative rotational speed between the rotor 12 and stator 30. In Figure 7b, one of either the rotor 12 or stator 30 does not pass an infusion material through the component (in Figure 7b only the rotor passes an infusion material); the component winch does not pass an mfusion material has its openings 22 replaced by cavities 58 to produce the turbulence. The cavities 58 could be shaped similarly to the boreholes 26 without the accompanying orifices 24.
[0043] In Figue 7c, the orifice 24 through which the infusion material is passed through the
rotor 12 or stator 30 is positioned next to the borehole 26, rather than in the borehole 26 as
in previous embodiments. It should be noted that the primary purpose of the borehole 26 is
to disrupt the laminar flow of the host material along the surface of the rotor. 12 and stator
30. The compression and rarefaction (decompression) of the host material causes the micro-
cavitation, which provides the high degree of diffusion produced by the device. Dming
decompression, voids (cavitation bubbles) are produced in the host material. The cavitation
bubbles grow and contract (or implode) subject to the stresses induced by the frequencies of
the succussions. Implosions of cavitation bubbles produce the energy wliich contribute to
I the high degree of diffusion of the infusion materials into the host material 'as it passes
through the channel 3i. Thus, so long as the infusion materials and the host material are
I
mixed at the point where the cavitation and resultant shock waves are occuning, the
I
diffusion described above will result. , '
[0044] Figure 70 illustrates an embodiment where the initial mixing of the host material and one or more infusion m'aterials is performed outside of channel 32. In this embodiment a Mazzie diffuscr 60'(or other device) is used to perform the initial mixing of the infusion niaterial(s) and the host material. The mixture is input into the channel 32 between the rotor 12 and stator 30, wherein undergoes the compression/rarefaction cycles discussed above, whiph cause cavitation in the mixtnxe, and is subjected to the frequency of the shock waves.

( 1
[0045] Further, the generation of the cavitation and shock waves could be perfomed using stmctures which differ from the boreholes 26 shown in the embodiments above. As stated above, the boreholes 26,are surface disturbances wliich impede the laminar flow of the host material along the sidewalls of the channel 32. In Figure 7e, a protrusion, such as bump 62 could be used as a surface disturbance in place of or in conjunction with the boreholes 26.

Shapes other than rounded shapes could also be used. As shown in Figure.7f, grooves (or
ridges) 64 could be formed in the rotor 12 and/or stafor 30 to generate the cavitation and
Shockwaves. '
[0046] As stated above, not all applications require, or benefit from, the generation of shock waves at a particular frequency. Therefore, the rotor 12 or stator 30 could have the boreholes 26 (or other surface disturbances) arranged such that a white noise was produced, rather than a particular frequency. The structures used to create the cavitation need not be uniform; a sufficiently rough surface be forrned on the rotor 12 or stator 30 will cause the cavitation. Additionally, as shown in Figure 7g, it may not be necessary for both the surface of the rotor )[2 and the surface of the stator 30 to create the cavitation; however, in most cases, operation of the device 1.0 will be more efficient if both surfaces are used.
[0047] Figure 7h illustrates a embodiment where the movement which causes the cavitation
is provided by the host material (optionally with entrained infused material) rather than by
relative motion of the rotor 12 and stator 30. In the embodiment of Figure 7h,' the channel
' 32 is formed between two walls 66 which are static relative to one another, one or both of
which have surface disturbunces facing the channel 32. The host material is driven through
the channel at high speed using a pump or other device for creating a high speed flow. One
or more infusion materials are input into the channel, either through orifices 24 or by mixmg
the host material with the infusion materials external to the charmel. The high speed of the
host material relative to the walls 66 causes the micro-cavitation and succussions described
above.
[0048] As an example, one or more of the walls 66 could be a fine mesh, tlirough which the infusion material(s) flows to mix with the host material in the channel 32. The surface disturbances in the mesh would cause micro-cavitations and succussions as the host material flows over the mesh at high speed. The frequency of the succussions would depend upon the resolution of the mesh and the speed of the host material. Once again, the infusion materials would diffuse into the host material at the molecular level at the micro-cavitation sites.
[0049] Figures Sa and Sb illustrate another embodiment, where a rotating member 70 is

disposed within a conduit 72 and rotated by motor 73. The host material and infusion material(s) are mixed in the conduit 72 upstream from the rotating member 70 using a Mazzie diffuser 7.4 or other device. The rotating member could be, for example, propeller or auger shaped. On the surface of the rotating member 70 has one or more surface; disturbances 76, such that the rotation of the rotating member 70 creates the microcavitation discussed above, thereby causing a high degree of diffusion between the materials. The shape of the propeller blades and pattern of the surface disturbances 76 thereon could create the cavitation and succussion at a desired frequency for purposes described above. Further,' the shape of the rotating device could draw the materials through the conduit.
[0050] The present invention provides significant advantages over the prior art. First, the micro-cavitations generated by the device allow diffusion to occur at a molecular level, increasing the amount of infusion material which will be held by the host material and the persistence of the diffusion. Second, the micro-cavitations and shock waves can be • produced by a relatively simple mechanical device. Third, the frequency or frequencies of the shock wave produced by the device can be used in many applications, either to brealc down complex structures or to ivid in combining structures. Fourth, the cavitations and shock waves can be produced uniformly throughout a material for consistent diffusion
[0051] Although the Detailed Description of the invention has been directed to certain exemplary embodiments, various modifications of these embodiments, as well as alternative embodinents, will be suggested to those skilled m the art. The invention encompasses any modifications or alternative embodiments that fall within the scope of the Claims.


We Claim:
1. A diffuser comprising: a first member having a surface incorporating surface disturbances; a second member having a first side positioned relative to said surface of said first member to form a channel therebetween through which a first material provided from a first inlet into said channel flows and into which a second member is introduced, said diffuser configured such that a substantially continuous flow path is provided from said first inlet to said channel throughout operation thereof; and means for moving said first material through said channel relative to said surface disturbances to create cavitation in said first material within said channel to diffuse said second material into said first material.
2. A diffuser comprising: a first member having a surface incorporating surface disturbances; a second member having a first side positioned relative to said surface of said first member to form a channel therebetween through which a first material provided from a first inlet into said channel flows and into which a second material provided from a second inlet into a second side of said second member is introduced; said diffuser configured such that a substantially continuous flow path is provided from said first inlet to said channel throughout operation thereof; means for moving said first material through said channel relative to said surface disturbances to create cavitation in said first material within said channel to diffuse said second material into said first material.
3. The diffuser of any preceding claim wherein one or more of said surface disturbances comprise impressions.
4. The diffuser of claim 1 wherein said protiusions comprise bumps, or ridges.
5. The diffuser of any preceding claim wherein either or both of said first member and said second member has one or more orifices formed therein to pass said second material into said channel, prior to mixing with said first material.


6. The diffuser of Claim 1 wherein orifices are formed in both first member and said second member for passing two different materials to said channel, prior to mixing with each other.
7. The diffuser of any preceding claim and including (a) a pump for drawing said first and second materials through said channel, or (b) a pump for driving said first and second materials through said channel.
8. The diffuser of any preceding claim wherein said first member has a cylindrical shape, a disk shape, a conical shape, a spherical shape, or a hemispherical shape.
9. The diffuser of any preceding claim wherein movement of said first material against said surface disturbances generates shock waves at one or more discrete frequencies.
10. A method of diffusing a first material with a second material, comprising the steps of: inputting said first and second material into a channel formed between first and second members, at least one of said first and second members having a surface disturbances facing said channel; and moving said first material relative to said surface disturbances to cause said first and second materials to be compressed and decompressed resulting in cavitation of said first material.
11. The method of Claim 10 wherein said inputting step comprises the step of inputting said first and second materials within a channel formed between said first and second members, where (i) both of said first and second members have surface disturbances facing said channel, or (ii) at least one of said first and second members having a surface with impressions formed therein, or (ui) at least one of said first and second members having a surface with boreholes formed therein, or (iv) at least one of said first and second members having a surface with said surface disturbances positioned in any array to compress and decompress said first material at a known frequency, or (v) at least one of said first and second members having a surface with surface disturbances positioned


in a plurality of arrays to compress and decompress said first material at respective discrete frequencies.
12. A diffuser comprising: a conduit through which a first material and a second material may flow; a rotatable member having a surface incorporating surface disturbances for rotating in contact with said first and second materials; means for rotating said rotatable member such that said surface disturbances create cavitation in said first material to diffuse said second material into said first material.
13. The diffuser of Claim 12 and further comprising a device for mixing said first and second materials prior to contact with said rotating member.
14. A method of diffusing a first material with a second material, comprising the steps of: inputting said first and second materials into a conduit; rotating a rotating member having at least one surface with surface disturbances formed thereon against said first and second materials to cause said first and second materials to be compressed and decompressed resulting in cavitation of said first material.
15. A method of diffusing a first material with a second material, comprising the steps of: inputting said first material from a first inlet into a channel formed between a first member and a first said of a second member, wherein a substantially continuous flow path is provided from said first inlet channel throughout said method of diffusing; inputting said second material through a second side of said second member into said chamiel, wherein at least one of said first and second members include surface disturbances facing said channel; and moving said first material relative to said first surface disturbances to cause said first second materials to be compressed and decompressed resulting in cavitation of said first material within said channel to diffuse said second material into said first material.


16. The method of either claim 15 wherein (i) both of said first and second members include surface disturbances facing said channel, or (ii) at least one of said first and second members includes a surface with impressions formed therein, or (ui) at least one of said first and second members includes a surface with boreholes formed therein, or (iv) at least one of said first and second members includes a surface with said surface disturbances positioned in an array to compress and decompress said first material at a known frequency, or (v) at least one of said first and second members includes a surface with surface disturbance positioned in a plurality of arrays to compress and decompress said first material at respective discrete frequencies.
17. The method of claim 15 wherein said first material is a liquid and said second material is a gas.
18. A diffuser comprising: a first member having a surface incorporating surface disturbances; a second member having a first surface incorporating surface disturbances positioned relative a to said first member to form a channel through which a first material flows substantially without interruption between said respective member surfaces, said second member further having orifices; a first inlet means to introduce said first material into said channel; a second inlet means to introduce a second material into a second surface of said second member such that said second material is input through said orifices into said charuiel to mix with said first material; and a motor to move one of said first and second members relative to the other to create cavitation in said first material while said first material is within the channel to diffuse said second material into said first material.
Dated this 13th day of October, 2004.
HIRAL CHANDRAKANT JOSHI AGENT FOR MICRODIFFUSION, INC.

Documents:

576-mum-2004-claims(granted)-(19-05-2005).doc

576-mum-2004-form 2(granted)-(19-05-2005).doc

576-mumnp-2004-cancelled pages(28-02-2005).pdf

576-mumnp-2004-claims(granted)-(28-02-2005).pdf

576-mumnp-2004-correspondence(28-02-2005).pdf

576-mumnp-2004-correspondence(ipo)-(08-02-2006).pdf

576-mumnp-2004-drawing(28-02-2005).pdf

576-mumnp-2004-form 19(14-10-2004).pdf

576-mumnp-2004-form 1a(14-10-2004).pdf

576-mumnp-2004-form 2(granted)-(28-02-2005).pdf

576-mumnp-2004-form 3(13-10-2004).pdf

576-mumnp-2004-form 5(13-10-2004).pdf

576-mumnp-2004-form-pct-isa-210(14-10-2004).pdf

576-mumnp-2004-power of attorney(10-11-2004).pdf

576-mumnp-2004-power of attorney(28-02-2005).pdf

abstract1.jpg


Patent Number 205943
Indian Patent Application Number 576/MUMNP/2004
PG Journal Number 43/2008
Publication Date 24-Oct-2008
Grant Date 13-Apr-2007
Date of Filing 14-Oct-2004
Name of Patentee MICRODIFFUSION INC.
Applicant Address 580 COMMERCE ST., SUITE 150, SOUTHLAKE, TX 76092, U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 WOOTAN NARMAN L. 6008 REDGECREST, #448, DALLAS, TX 75231, U.S.A.
2 WOOD ANTHONY B. 6043 BRYAN PARKWAY, DALLAS, TX 75206, U.S.A.
PCT International Classification Number B01F 7/16
PCT International Application Number PCT/US02/12168
PCT International Filing date 2002-04-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 N/A 1900-01-01 IB