Title of Invention

A BUILDING HEATING INSTALLATIO NS

Abstract A building heating installation comprising a first partial heating system, with at least one first heat source with an integrated heat source heat exchanger, with heat transfer devices - at a distance from the heat source and installed in at least one building room -as radiators with heat transfer outside surfaces, and with pipings as flow lines and return lines between the heat source heat exchanger and the heat transfer media, with the pipings of the heat source heat exchangers and the heat transfer media containing a flowable heat transport medium, consisting of a second partial heating system, with a second heat source, and consisting of a heating control system with at least one temperature regulation and a switching unit for switching off or changing over the partial heating systems for individual operation or for adding one partial heating system to the other partial heating system for joint operation, characterized in that, the second partial heating system (16) is a radiation heating, with a coating which can be electrically activated - flatly applied directly or indirectly on at least one part of the heat transfer outside surface (13) - as a radiation surface (17) so that the heat transfer device (12) is a component of the first partial heating system (4) as well as an integral carrier of the coating as radiation surface (17) of the second partial heating system (16), that the building heating installation is a low-energy heating (3), with the first partial heating system (4) being designed as a basic system for heating outputs at cool outside temperatures, and that the second partial heating system (16) can be automatically added through the switching unit, as a function of an outside temperature and/or an inside room temperature at relatively cold outside temperatures in which the heating output of the first partial heating system (4) is no longer sufficient.
Full Text FORM 2
THE PATENT ACT 1970 (39 of 1970)
&
The Patents Rules, 2003 COMPLETE SPECIFICATION See Section 10, and rule 13)
1. TITLE OF INVENTION
A BUILDING HEATING INSTALLATIO NS

ORIGINAL
771/MUMNP/2003

GRANTED
2-2-2005

2. APPLICANT(S)
a) Name : MOLETHERM HOLDING AG
b) Nationality : SWISS Company b) Address : DAMMSTRASSE 21,
CH-4502 SOLOTHURN, SWITZERLAND
3. PREAMBLE TO THE DESCRIPTION
The following specification particularly describes the invention and the manner in which it is to be performed : -


This invention relates to a building heating installation.
Conventional building heating installations essentially comprise a heating boiler as an oil heating boiler or a gas heating boiler to which radiators installed in the building's rooms are connected by means of piping as flow lines and return lines. The heat generated in the heating boiler is transported - in one or several heating cycles - via the transport medium of hot water to the radiators which have the function of heat transfer media for heating the corresponding rooms.
Such building heating installations require relatively much heating energy. For reasons of an economic heating operation, the reduction of pollutant emissions and the known limited fossil fuel resources, it is a constant endeavor to design building heating installations more efficiently, with solutions already being known:
A generally known, generic building heating installation is made up of two partial heating systems and is especially used in so-called low-energy houses. A partial heating system is designed as a basic system for heating conditions at cool outside temperatures and comprises heat sources whose caloric energy is available either entirely or nearly for free and, in particular, does not require any combustion of fossil fuels. Such heat sources can be solar modules and/or geothermal modules and/or coolers for power generators from biogas plants. Such heat sources feature integrated heat source heat exchangers through which the heat transport medium of hot water can be pumped to the radiators or, as required, to intermediate heat storage systems.



One disadvantage of these abovementioned or similar heat sources is the fact that heat therefrom will either be available only at specific periods of time or with great variations. For example, heat from solar energy - in a considerable amount in terms of heat engineering -will be available only with sufficient solar radiation which is often non-existent especially in the times of the heating periods. Thus, the heating effect achievable with this heating system alone will regularly be insufficient, especially in case of heating conditions during relatively cold outside temperatures. Accordingly, another partial heating system will therefore be additionally required as an add-on system which is designed in accordance with the initially mentioned conventional building heating installation with a heating boiler for fossil fuels and which is also connected to the flow lines and return lines to the radiators. It can be switched between the partial heating systems, or they can be operated in parallel, with the heat energy to be transferred by means of hot water to the radiators being optionally selected to come from the individual heat sources or jointly from the heat sources. A switching unit required for this can be integrated into a conventional heating control system with temperature regulation, it being known to automatically perform such change-over and/or connections as a function of definable marginal conditions.
It is evident that the expenditure for setting up the above described building heating installations from such combination-controlled partial heating systems is considerable since for relatively cold periods, a complete heating plant for fossil fuels must be provided combined with connections and tank containers for such fossil fuels as a backup system although the building heating installation is supposed to be basically operated with alternative energies, for example with solar energy, in connection with layer heat accumulators, as required. In addition, aside from the high set-up costs for the partial heating system for fossil fuels, the required maintenance and service costs are also applicable. Due to these conditions, the set-up costs of such combined heating systems are considerable higher compared with the simple, conventional building heating installations described in the beginning and the savings potentials are thus overall relatively low so that such combined heating systems are not yet generally being used despite their obvious advantages for the environment.
Furthermore, surface heating elements for the construction of a heating system are known (DE 21 51 626 A) which have an electrically conductive coating and are provided with electrical connections. Such a surface heating element is operated in the type of a resistance heating in which according to the electrical resistance of the coating and the transmitted electrical current, heat will be generated directly in the surface heating element, such heat being radiated into a building room. The operation of such electrical resistance


heating installations as sole building installations is very expensive and thus uneconomical.
Furthermore, a heating arrangement is known (DE 19849432A1) comprising coated surface heating elements whose coating has a specific chemical composition and which is excitable by means of a harmonic generator for the radiation of electromagnetic waves. Radiation takes place in an oscillation spectrum in the range of molecular own frequencies of the media to be heated. The heating effect is via oscillating resonance such that the surface heating elements remain essentially cool and the heating effect appears directly on the media located within the radiation area. Such a heating system can overall be manufactured cheaply and has a high efficiency.
Object of the invention is to further develop a generic building heating installation from a first partial heating system and a second partial heating system such that cheap manufacture and installation will be possible v\ ith little space requirement and high functionality and variability.
A building heating installation comprising a first partial heating system, with at least one first heat source with an integrated heat source heat exchanger, with heat transfer devices - at a distance from the heat source and installed in at least one building room - as radiators with heat transfer outside surface, and with piping as flow lines and return lines between the heat source heat exchanger and the heat transfer media, with the piping ot the heat source heat exchanger and the heat transfer media containing a flowable heat transport medium, consisting of a second partial heating system, with a second heat source, and consisting of a heating control system with at least one temperature regulation and a switching unit for switching off or changing over the partial heating systems for individual operation or for adding one partial heating system to the other partial heating system for joint operation, characterized in that, the second partial heating system 16 is a radiation heating, with a coating which can be electrically activated - flatly applied directly or indirectly on at least one part of the heat transfer outside surface 13 - as a radiation surface 17 so that the heat transfer device 12 is a component of the first partial heating system 4 as well as an integral carrier of the coating as radiation surface 17 of the second partial heating system 16, that the building heating installation is a low-energy heating 3, with the first partial heating system 4 being designed as a basic system for heating outputs at cool outside temperatures, and that the second partial heating system 16 can be automatically added through the switching unit, as a function of an outside temperature and/or an inside room temperature at relatively cold outside temperatures in which the heating output of the first heating system 4 is no longer sufficient.
The second partial heating system is a radiation heating with a coating capable of electrical activation - as a radiation surface which is flatly applied directly or indirectly on a least one part of an exterior surface of a heat exchanger so that heat transfer device is not only a component part of the first partial heating system but also an integral carrier of the coating as the radiation surface of the second partial heating system.
Accordingly, the second partial heating system requires neither an expensive heating boiler with burner and, as required, an oil tank, nor the rooms, the piping connections and controls required for it. Due to the integral arrangement of radiation surfaces on the heat transfer devices of the first partial heating system, no additional space and/or wall areas need to be made available either for the second partial heating system in the rooms to be heated. The heat transfer devices thus have a double function as conventional heat transfer media for the first partial heating system and simultaneously as carrier elements for the radiation surfaces of the second partial heating system. Due to this integral double function, the heat transfer devices/radiation surface combination can be advantageously prefabricated one structural component as a module at a manufacturer. Then, the installation for setting up the building heating installation of the two integrated room heating source elements of heat transfer medium/radiant surface is advantageously performed in only one operation. This will result in only low costs for manufacture and installation.


The above building heating installation is perfectly suitable as a low-energy heating system a building heating installation, wherein the first partial heating system (4) having a heat source in the type of at least one solar' module (5) and/or at least one geothermal module and/or a cooler of a power generator of a biogas installation, with the heat transport medium being controlled pump able hot water. The first partial heating system being designed as a basic system for heating conditions at cool outside temperatures and the second partial heating system being added on, with radiant surfaces capable of electrical activation through the control unit at relatively cold outside temperatures at which the heat output of the first partial heating system alone is no longer sufficient. This addition should preferably be triggered automatically and can take place as a function of an outside temperature and/or inside room temperature, possibly even in combination with a determined temperature progression.
The building heating installation according to the invention is especially suitable according to a building heating installation, wherein building heating installation (3) is allocated a wind power generator and/or a biogas power generator and/or a hydroelectric generator for generating electrical energy for the second partial heating system (16). Arrangement in which the first partial heating system comprises a heat source of the type of at least one solar module and/or at least one geothermal module and/or one cooler of a power generator of a biogas installation. Efficiently controlled pumpabie hot water is used as the heat transport medium. Basically, the arrangement according to the invention can also be designed for hot air heating.

For a further reduction of the energy costs of the building heating installation, according to A building heating installation, wherein the heat transfer devices are flat radiators (12) with essentially planar front surfaces (13), and the flat radiators (12) capable of installation with approximately parallel surfaces on room walls with front surfaces (13) facing into the room, and that the coating (17) is applied on these front surfaces (13) respectively. Electrical_energy for the second partial heating system can also be provided or at least supplemented, as the case may be, via alternative energy generating equipment, such as wind power generators and/or biogas power generators and/or hydroelectric generators.
In a preferred form of embodiment of the invention according to a building heating installation, wherein the heat transfer devices (12) are made of metal and that at least one electrically insulating intermediate layer is provided between a heat transfer outside surface (13) as the carrier surface and a coating applied as the radiation surface (17). Transfer devices are flat radiators with essentially planar front surfaces, the surfaces being installed in parallel on room walls with front surfaces facing into the room. The coating is then applied on these front surfaces facing into the room. On such heat transfer media, the coating can be applied simply, over a large area and with a good function.
Usually, heat exchangers are cast from metal or formed from sheet metal.
According to a building heating installation, wherein the coating (17) is limited by
two electrical conductors (24, 25) connected with it and consisting of a coating material
which is composed of a. 5p% to 65% amount of substance of a basic substance
comprising
. 39% to 49% amount of substance binding agent,
. 18% to 23% amount of substance insulator,


18% to 24% amount of substance dispersing agent, 12% to 16% amount of substance distilled water,
and
b. 35% to 45 amount of substance graphite,
the composition of the binding agent being
.64% to 79% amount of substance distilled water,
. 4% to 6% amount of substance sulfonated oil,
. 0.16% to 0.24% amount of substance phenols or 0.05 to 0.5% amount of
substance benzisothiazolinone,
. 15% to 19% amount of substance casein,
. 0.8% to 1.2% amount of substance urea,
. 2% to 3% amount of substance alkaline thinning agent, and
. 2.5% to 3.5% amount of substance caprolactam,
that the heating control (18) comprises a harmonic generator (23) which comprises an electrical component having, with a control oscillation, a steep current increase speed in accordance with a steep increase edge and thus being suitable for generating a high harmonic percentage, and
that the harmonic generator (23) is coupled to the two electrical conductors (24, 25) limiting the coating (17), for excitation of the coating (17) for radiating electromagnetic waves with an oscillation spectrum in the frequency range of molecular self- oscillations. Then be essential that an electrically insulating intermediate layer will be applied between the heat exchanger outside surface as the carrier surface and the coating. This intermediate layer can also be a coating, for example a color coating, or it can be designed as an adhesive film which, in turn, presents a carrier surface for the coating as a radiation surface.


In a specially preferred form of embodiment, the coating has a composition as specified by a building heating installation
wherein the sulfonated oil is preferably sulfated ricinus oil, that the phenols are carbonized phenols produced by cracking or that preferably benzisothiazolinone is used, that the thinning agent is a solvent based on aromatics and/or alcohol and/or ester and/or ketone, that the insulator is insulating soot, that the dispersing agent is an inorganic and/or organic, monomer and/or polymer substance, and that the coating material contains a thixotropic agent such a coating is excitable with the additionally claimed harmonic generator for the, radiation of electromagnetic waves with an oscillation spectrum in the frequency range of molecular self-oscillations.
A heating arrangement , wherein the
electrical component is a Triac and/or a double MOSFET, with the allocated electionic triggering components and that the electrical conductors on the heating element are designed essentially as parallel aligned copper foil strips (24, 25) and the electrical contact for coating (17) is designed as a capacitive and/or inductive coupling, with the coating (17) being under or above the copper foil strips (24, 25) or these being embedded in the coating (17).
A heating arrangement wherein the
heating effect of the coating (17) is controllable and/or adjustable by changing the amplitudes and/or the frequency of the triggering oscillations of the harmonic generator (23).



further developments in connection with this type of coating which remains essentially cool during the heating operation and will generate heating effects through resonances in the medium to be heated, by excitation of molecular self-oscillations. These heating effects and heating arrangements known per se from DE 198 49 432 A1 are excellently suitable as a backup system in the further development according to the invention and its combination to a low-energy heating installation.
The invention is described in more detail by way of a drawing.
The only figure shows a schematic cross-section through a building 1 designed as a low-energy house which is here provided with an alfso extremely schematically shown heat insulation 2 and a low-energy heating installation 3 as the building heating installation.
This low-energy heating installation consists of a first partial heating system 4 which has, as a heat source, a solar module 5 here selected by way of example. This solar module is coupled via pipings 6, 7 with a regulation and control system 8 which has a pump arrangement 9 with several pumps, with one of the pumps of the pump arrangement 9 pumping cold water via piping 6 to the solar module 5 where it is heated and subsequently directed as hot water via piping 7 into a hot water layered heat storage system 10.
The first partial heating system 4 furthermore comprises at least one heat transfer device installed in a building room 11, as e.g. flat radiator 12 which is presented in Figure 1 by way of example and only extremely schematically and which has an essentially planar front surface 13 and is installed approximately in parallel on a room wall, with a front surface 13 facing into the building room 11.
With intermediate switching of the control and regulating system 8, this flat radiator 12 is connected with the hot water layered heat storage tank 10 via a flow line 14 and a return line 15. If necessary, via flow line 14, hot water can be pumped into the flat radiators 12 by means of at least one additional pump of the pump arrangement 9 to heat the building room 11 by giving off heat to the ambient air. The correspondingly cooled down water is then passed back via the return line 15. This first partial heating system 4 thus forms the basic system for heating outputs at cool outside temperatures.
Moreover, the low-energy heating 3 also comprises a second partial heating system which is designed as radiation heating 16 and has a radiation surface 17, capable of electrical activation and evenly applied onto the front surface 13 of each flat radiator 12. Furthermore, radiation heating 16 comprises an extremely schematically presented heating control 18 with


a temperature regulation system and a switching unit for switching off or changing over the partial heating systems 4,16 for individual operation or for the addition of a partial heating system to the other partial heating system for joint operation. Heating control 18 is also integrated into the control and regulation system 8 and is coupled with an outside temperature sensor 19, as well as an inside temperature sensor 20 via the corresponding lines 21, 22.
The flat radiator 12 is made of metal; between its front surface 13 as the carrier surface and the applied coating as the radiation surface 17, an insulating intermediate layer can be applied which is not shown here.
Heating control 18 moreover comprises a harmonic generator 23, which comprises e.g. a Triac and/or a double MOSFET as the electrical module which has - at an approach oscillation - a steep current increase speed corresponding to a steep rising edge and thus being suitable for generating a high harmonic percentage.
As it is only extremely schematically presented in Figure 1, the harmonic generator 23 is coupled to two electrical conductors limiting the radiation surface 17 which are formed by copper foil itrips 24, 25 which are essentially aligned in parallel. Thus, excitation of the radiation surface 17 is achievable for radiating electromagnetic waves with an oscillation spectrum in the frequency range of molecular self-oscillations, with the heating effect of the radiation surface 17 being controllable and/or adjustable through a change of the amplitudes and/or the frequency of triggering oscillations of the harmonic generator 23.
The second partial heating system designed as a radiation heating 16 can be added -automatically through the switching unit - as a function of an outside temperature and/or an inside temperature at relatively cold outside temperatures where the heating output of the first partial heating system 4 is no longer sufficient.
The electrical contact to the radiation surface 17 is designed as a capacitive and/or inductive coupling with the radiation surface 17 being under or over the copper foil strips 24, 25 or these are embedded alternatively into the radiation surface 17 which is, however, not presented here. With regard to the composition of the radiation surface 17 forming the coating, reference is made to the claims.
Furthermore, the low-energy heating 3 can be attributed with a wind power generator and/or a biogas power generator and/or a hydropower generator not presented here, for generating the electrical energy for the radiation heating 16.

WE CLAIM:
1. A building heating installation
comprising a first partial heating system,
with at least one first heat source with an integrated heat source heat exchanger,
with heat transfer devices - at a distance from the heat source and installed in at least one building room -as radiators with heat transfer outside surfaces, and
with pipings as flow lines and return lines between the heat source heat exchanger and the heat transfer media, with the pipings of the heat source heat exchangers and the heat transfer media containing a flowable heat transport medium,
consisting of a second partial heating system, with a second heat source, and
consisting of a heating control system with at least one temperature regulation and a switching unit for switching off or changing over the partial heating systems for individual operation or for adding one partial heating system to the other partial heating system for joint operation,
characterized in that,
the second partial heating system (16) is a radiation heating, with a coating which can be electrically activated - flatly applied directly or indirectly on at least one part of the heat transfer outside surface (13) - as a radiation surface (17) so that the heat transfer device (12) is a component of the first partial heating system (4) as well as an integral carrier of the coating as radiation surface (17) of the second partial heating system (16),


that the building heating installation is a low-energy heating (3), with the first partial heating system (4) being designed as a basic system for heating outputs at cool outside temperatures, and
that the second partial heating system (16) can be automatically added through the switching unit, as a function of an outside temperature and/or an inside room temperature at relatively cold outside temperatures in which the heating output of the first partial heating system (4) is no longer sufficient.
2. A building heating installation according to claim 1, wherein the first partial heating system (4) having a heat source in the type of at least one solar module (5) and/or at least one geothermal module and/or a cooler of a power generator of a biogas installation, with the heat transport medium being controlled pumpable hot water.
3. A building heating installation according to claim 1 or 2, wherein the building heating installation (3) is allocated a wind power generator and/or a biogas power generator and/or a hydroelectric generator for generating electrical energy for the second partial heating system (16).
4. A building heating installation according to any one of the claims 1 to 3, Wherein the heat transfer devices are flat radiators (12) with essentially planar front surfaces (13), and the flat radiators (12) capable of installation with approximately parallel surfaces on room walls with front surfaces (13) facing into the room, and that the coating (17) is applied on these front surfaces (13) respectively.
5. A building heating installation according to any one of the claims 1 to 4,


wherein the heat transfer devices (12) are made of metal and that at least one electrically insulating intermediate layer is provided between a heat transfer outside surface (13) as the carrier surface and a coating applied as the radiation surface (17).
6. A building heating installation according to any one of the claims 1 to 5, wherein the coating (17) is limited by two electrical conductors (24, 25) connected with it and consisting of a coating material which is composed of
a. 55% to 65% amount of substance of a basic substance comprising
♦ 39% to 49% amount of substance binding agent,
♦ 18% to 23% amount of substance insulator,
♦ 18% to24% amount of substance dispersing agent,
♦ 12% to 16% amount of substance distilled water,
♦ and
b. 35% to 45 amount of substance graphite,
the composition of the binding agent being
♦ 64% to 79% amount of substance distilled water,
♦ 4% to 6% amount of substance sulfonated oil,
♦ 0.16% to 0.24% amount of substance phenols or 0.05 to 0.5% amount of substance benzisothiazolinone,
♦ 15% to 19% amount of substance casein,
♦ 0.8% to 1.2% amount of substance urea,
♦ 2% to 3% amount of substance alkaline thinning agent, and
♦ 2.5% to 3.5% amount of substance caprolactam,


that the heating control (18) comprises a harmonic generator (23) which comprises an electrical component having, with a control oscillation, a steep current increase speed in accordance with a steep increase edge and thus being suitable for generating a high harmonic percentage, and that the harmonic generator (23) is coupled to the two electrical conductors (24, 25) limiting the coating (17), for excitation of the coating (17) for radiating electromagnetic waves with an oscillation spectrum in the frequency range of molecular self oscillations.
A building heating installation according to claim6, wherein the sulfonated oil is preferably sulfated ricinus oil, that the phenols are carbonized phenols produced by cracking or that preferably benzisothiazolinone is used, that the thinning agent is a solvent based on aromatics and /or alcohal and/or ester and/or ketone, that the insulator is insulating soot, that the dispersing agent is an inorganic and/or organic, monomer and/or polymer substance, and that the coating material contains a thixotropic agent.
A heating arrangement according to any one of the claims 6 or 7 wherein the electrical component is a Triac and/or a double MOSFET, with the allocated electronic triggering components and that the electrical conductors on the heating element are designed essentially as parallel aligned copper foil strips (24, 25) and the electrical contact for coating (17) is designed as a capacitive and/or inductive coupling, with the coating (17) being under or above the copper foil strips (24, 25) or these being embedded in the coating (17).
A heating arrangement according to any one of the claims 6 to 8 wherein the heating effect of the coating (17) is controllable and/or adjustable by


changing the amplitudes and/or the frequency of the triggering oscillations of the harmonic generator (23).
Dated this 19th day of August, 2003.
HIRAL CHANDRAKANT JOSHI AGENT FOR MOLETHERM HOLDING AG

Documents:

771-mumnp-2003-cancelled pages(2-2-2005).pdf

771-mumnp-2003-claims(granted)-(2-2-2005).pdf

771-mumnp-2003-correspondence(18-2-2005).pdf

771-mumnp-2003-correspondence(ipo)-(12-5-2005).pdf

771-mumnp-2003-form 1(28-6-2004).pdf

771-mumnp-2003-form 19(17-2-2004).pdf

771-mumnp-2003-form 2(granted)-(2-2-2005).pdf

771-mumnp-2003-form 3(18-8-2003).pdf

771-mumnp-2003-form 3(19-8-2003).pdf

771-mumnp-2003-form 3(2-2-2005).pdf

771-mumnp-2003-form 5(18-8-2003).pdf

771-mumnp-2003-form-pct-ipea-409(2-2-2005).pdf

771-mumnp-2003-form-pct-isa-210(2-2-2005).pdf

771-mumnp-2003-petition under rule 137(23-2-2005).pdf

771-mumnp-2003-poweer of attorney(2-2-2005).pdf

abstract1.jpg


Patent Number 205456
Indian Patent Application Number 771/MUMNP/2003
PG Journal Number 26/2007
Publication Date 29-Jun-2007
Grant Date 03-Apr-2007
Date of Filing 19-Aug-2003
Name of Patentee MOLETHERM HOLDING AG
Applicant Address DAMMSTRASSE 21, CH-4502 SOLOTHURN, SWITZERLAND
Inventors:
# Inventor's Name Inventor's Address
1 REICHELT, HELMUT NEUE SIEDLUNG 22A, 01744 REICHSTADT, GERMANY
PCT International Classification Number F 24 D 13/04
PCT International Application Number PCT/EP02/02495
PCT International Filing date 2002-03-07
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 011 08 005.8 2001-03-29 EPO