Title of Invention

A METHOD OF PRODUCING A REFRACTORY LINING

Abstract The present invention relates to a method of producing a reftactory lining of a metallurgical melting vessel in multiple superimposed layers, wherein refractory masses, which have MgO sinter and up to 5 weight-percent of at least one reducing agent from the group: metals, carbonaceous substances, being applied sequentially, with a reduced content of reducing agent in each case.
Full Text

METHOD OF PRODUCING A FIREPROOF LINING
(amended) DESCRIPTION
The present invention relates to a method of producing a refractory lining.
Hearths of electric furnaces are frequently lined using dry hearth masses. In addition to masses based on sintered dolomite, masses based on MgO sinter are predominantly used.
In the related art, the grain size distribution is considered of essential significance in the processing of the mass and its compressibility.
Upon the (oxidative) start up of an furnace which was produced using a new mass, ceramic binding of the mass rapidly occurs. The lining is therefore as resistant as possible as soon as, for example, scrap is loaded.
European Patent 0 214 882 Bl describes a fireproof furnace lining, which is constructed from multiple layers, the layer facing the molten metal to completely sinter during operation, while the layers lying behind it, in particular the layer facing the furnace wall, to sinter partially at most, in order to make them easier to break out after the lining wears out.
The fireproof mass comprises fireproof inorganic particles which are embedded in a binding agent. The different sintering properties of the individual layers are adjusted via the grain size of the fireproof inorganic material.
The present invention is to provide the possibility of being able to, for example, produce a furnace lining

which has different sintering behavior ever its thickness.
The method according to the present invention includes the features of Claim 1. Embodiments are described in Claims 2 to 7.
Surprisingly, it has been shown that in principle the mass must only include two components for this purpose, namely MgO sinter and a reducing agent.
The use of a binding agent is superfluous. The selection of specific grain sizes or a specific grain size distribution is of only secondary significance.
It is sufficient, as described, to produce the mass exclusively from MgO sinter and reducing agent, for example elemental carbon. In addition to MgO sinter, the fireproof matrix material may contain, if necessary, other refractory oxides, such as AI2O3, TiO2/ Fe2O3, CaO or the like; fired dolomite may also be used.
The sintering behavior of the (hearth) mass may be adjusted in a targeted way via the mass proportion of the reducing agent within the (hearth) mass. Through the addition of carbon (for example as graphite, carbon black, or petroleum coke) a reduction of the dicalcium ferrite in the MgO sinter occurs and CaO and FeO arise. FeO diffuses into the periclase (MgO sinter) and forms magnesiowustite.
By increasing the added carbon, the sintering behavior may be reduced continuously.
Adding pure metals such as Si or Al also encourages the reduction processes described, in that oxygen is

consumed and the sintering of the mass is delayed. Other reducing agent, particularly other C carriers, such as resins (for example, phenol resin), pitch, or sugar, are at least partially possible.
In principle, those additives are usable which act as reducing agents, if they and/or the reaction products resulting therefrom do not lead to effects which oppose the object of the invention. Such disadvantageous effects would be the encouragement of the sintering of the mass or the reduction of its fire resistance (refractoring) (for example, because of melt phase formation). For example, sodium sulfite as a reducing agent would lead to undesirable sodium oxide as a decomposition product.
The following table shows the cold compressive strengths after a reducing firing at 1,600 °C in N/mm^ for hearth masses of the type described above made of MgO sinter (grain size: up to 8 mm) and different carbon contents, in the form of graphite, after an oxidizing pre-firing at 1,300 °C.

In contrast to the teaching of European Patent 0 214 882 Bl, the addition of a binding agent was intentionally dispensed with. The effects described arise independently of the grain size selected for the MgO sinter. This may even be
starting from one and the same base mass (MgO sinter), hearth masses having different sintering behavior may be produced exclusively by selecting and setting the quantity of the reducing agent added.
In this way, a fireproof lining may be produced in multiple layers, subsequent masses of the type described above being used, however, each having a reduced proportion of reducing agent. While the first layer, for example, comprises a mass having 5 weight-percent carbon, the carbon content of the layer subsequently applied to this first layer and/or following layers is reduced to, for example, 0,5 % in the last layer applied, which neighbors the molten metal in application.
While the carbon of this last applied layer having the lowest carbon content burns out a few centimeters deep as the furnace is put into operation (on the fire side), so that in this layer almost complete sintering is achieved/ as in typical hearth masses, the degree of sintering of the layers lying behind it is reduced more and more (with increasing carbon content), so that, for example, the external layer, which neighbors the metal casing of the furnace, remains brittle even after a long period of use and is only slightly sintered, which significantly favors breaking out the lining in case of repair or replacement.
Different types of MgO sinter may be used. Due to the chemism described, MgO sinters having higher iron contents (chemical analysis), which until now could only be used in a limited way, are particularly suitable-According to one embodiment, MgO sinter having a Fe2O3 content > 1.5 or > 3 weight-percent is suggested, and

according to a further embodiment, MgO sinter having a Fe203 content > 5 weight-percent is suggested.
Expressed as a mineral paragenesis, this corresponds to a C2F content of approximately 2 or 4 weight-percent and/or 7 weight-percent.
The carbon may be added as graphite, carbon black, or the like. In any case, a homogeneous mixture with the sintered grain is desirable. The grain size of the carbon may be


WE CLAIM:
1. A method of producing a refractory lining of a metallurgical melting vessel in
multiple superimposed layers, wherein refractory masses, which have MgO sinter and up to 5 weight-percent of at least one reducing agent from the group: metals, carbonaceous substances, being applied sequentially, with a reduced content of reducing agent in each case.
2. The method as claimed in claim 1, wherein elemental carbon is used as the reducing
agent.
3. The method as claimed in claim 1, wherein a reducing agent from the group: resins,
pitch, tar, organic additives is used.
4. The method as claimed in claim 1, wherein the refractory mass comprises
exclusively MgO sinter and reducing agent.
5. The method as claimed in claim 1, wherein a refractory mass is used whose MgO
sinter has a Fe2O3 content > 1.5 weight-percent.
6. The mass as claimed in claim 1, wherein a fireproof mass is used whose MgO sinter
has a Fe2O3 content > 3 weight-percent.
7. The mass as claimed in claim 1, wherein a fireproof mass is used whose MgO sinter
has a FcaOs content > 5 weight-percent.


8. A method of producing a refractory lining substantially as herein described.


Documents:

581-chenp-2003-abstract.pdf

581-chenp-2003-claims duplicate.pdf

581-chenp-2003-claims original.pdf

581-chenp-2003-correspondnece-others.pdf

581-chenp-2003-correspondnece-po.pdf

581-chenp-2003-description(complete) duplicate .pdf

581-chenp-2003-description(complete) original.pdf

581-chenp-2003-form 1.pdf

581-chenp-2003-form 26.pdf

581-chenp-2003-form 3.pdf

581-chenp-2003-form 5.pdf

581-chenp-2003-other documents.pdf

581-chenp-2003-pct.pdf


Patent Number 202225
Indian Patent Application Number 581/CHENP/2003
PG Journal Number 05/2007
Publication Date 02-Feb-2007
Grant Date 21-Sep-2006
Date of Filing 17-Apr-2003
Name of Patentee M/S. REFRACTORY INTELLECTUAL PROPERTY GMBH & CO. KG
Applicant Address Twin Tower 11, Wienerbergstrasse 1100 Wien
Inventors:
# Inventor's Name Inventor's Address
1 BUXBAUM, Franz 10, Anzengruberstrasse 2540 Bad Vöslau
2 ECKSTEIN, Wilfried 28, Dellachergasse 8703 Trofaiach
PCT International Classification Number C04B 35/43
PCT International Application Number PCT/EP2001/012016
PCT International Filing date 2001-10-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 100 52 352.8 2000-10-21 Germany