Title of Invention

TELEVISION PROXIMITY SENSOR AND A MTHOD OF CALCULATING AUDIENCE MEASUREMENT DATA

Abstract Systems and methods for determining whether a television is on and in near proximity are provided. An example system includes a sensor, an analog-to-digital converter, and a digital signal processor. The digital signal processor processes a set of digital audio samples detected by the sensor to determine if the sensor is in near proximity to a television in an on state
Full Text The present invention relates to apparatus and methods for determining whether a television is on and in near proximity to a sensor, and, more particularly, to apparatus and methods for determining whether a television audience member is in the same room as a television that is turned on.
Description of the Related Art
Television audience measurement systems are based either on portable devices carried by members of the audience, or on fixed devices placed in the vicinity of a television set. In both these applications, a microphone on the device picks up an audio signal associated with a television program. The usual objective is to determine the program or channel being viewed from an analysis of the audio signal. For example, in one approach, the device computes a "signature" for subsequent matching with a reference signature recorded at a central facility. Alternatively, in a second approach, the device extracts embedded identification codes that have been inserted into the audio stream at the broadcast facility, in order to identify the program.
One of the problems encountered by a portable device is to determine whether the audio signal picked up by the microphone is originating from a nearby television set. The microphone in such devices, being extremely sensitive, can respond to audio signals emitted in a neighboring room. There is a need to disregard such audio and process only the audio emanating from within a room in which the carrier of the device is present. In the case of the fixed device, it is essential to determine whether or not the television set is turned on or off.
SUMMARY OF THE INVENTION
In one aspect, the invention provides a television proximity sensor system. The system includes an audio sensor, an analog-to-digital converter, and a digital signal processor. The audio sensor is situated in near proximity to the television. When the

television is turned on, the television emits an audio signal, the audio sensor detects the audio signal, the analog-to-digital converter converts the audio signal into a set of digital audio samples, and the digital signal processor processes the set of digital audio samples such that the processor determines that the television is turned on. When the television is turned off, the digital signal processor determines that the television is turned off. The system may also include an amplifier. The amplifier may amplify the detected audio signal and provide the amplified signal to the analog-to-digital converter.
The processing of the set of digital audio samples may include measuring a first power level of the audio signal at a first frequency, measuring a second power level of the audio signal at a second frequency, measuring a third power level of the audio signal at a third frequency, computing a ratio of the first power level to a sum of the first, second, and third power levels, and comparing the computed ratio to a predetermined first threshold value. When the computed ratio is greater than or equal to the first threshold value, it may be determined that the television is turned on. The digital signal processor may also continuously update the measurements of the first, second, and third power levels and compare the most recent measurement of the first power level to a predetermined second threshold value. When the first power level is greater than or equal to the second threshold value, it may be determined that the television is turned on. When the computed ratio is less than the first threshold value and the first power level is less than the second threshold value, it may be determined that the television is turned off.
The digital signal processor may use a sliding Fast Fourier Transform algorithm to detect a presence of an audio signal at the first frequency. The predetermined first threshold value may be substantially equal to 0.9, or it may be substantially greater than or equal to 0.6. The first frequency may be associated with a horizontal scan fly-back transformer used by the television. The horizontal scan flyback transformer may be associated with a frequency substantially equal to 15.75 kHz.
3

The second and third frequencies may have predetermined spacings from the first frequency.
In another aspect, the invention provides an apparatus for determining whether a first television set is turned on, while distinguishing the first television set from other devices such as a radio or a second television set. The apparatus includes receiving means for receiving an analog audio signal, digitizing means for converting the received analog audio signal to a set of digital audio samples, processing means for processing the set of digital audio samples, and determining means for using a result of the processing to determine whether the first television set is turned on. The apparatus may also include amplifying means for amplifying the received analog audio signal. The processing means may include first measuring means for measuring a first power level of the audio signal at a first frequency, second measuring means for measuring a second power level of the audio signal at a second frequency, third measuring means for measuring a third power level of the audio signal at a third frequency, computing means for computing a ratio of the first power level to a sum of the first, second, and third power levels, and first comparing means for comparing the computed ratio to a predetermined first threshold value. When the computed ratio is greater than or equal to the first threshold value, the determining means may determine that the first television set is turned on. The processing means may also include updating means for continuously updating the measurements of the first, second, and third power levels, and second comparing means for comparing the most recent measurement of the first power level to a predetermined second threshold value. When the first power level is greater than or equal to the second threshold value, the determining means may determine that the first television set is turned on. When the first power level is less than the second threshold value and the computed ratio is less than the first threshold value, the determining means may determine that the first television is turned off.
The processing means may also include transforming means for using a sliding Fast Fourier Transform algorithm to detect a presence of an audio signal at the first
4

frequency. The predetermined first threshold value may be substantially equal to 0.9, or it may be substantially than or equal to 0.6. The first frequency may be associated with a horizontal scan fly-back transformer used by the first television. The horizontal scan fly-back transformer may be associated with a frequency substantially equal to 15.75 kHz. The second and third frequencies may have predetermined spacings from the first frequency.
In yet another aspect, the invention provides a method of determining whether a television set is turned on and in near proximity. The method includes receiving an analog audio signal, converting the received analog audio signal to a set of digital audio samples, processing the set of digital audio samples, and using a result of the processing to determine whether the first television set is turned on and in near proximity. The method may also include amplifying the received analog audio signal. The processing may include measuring a first power level of the audio signal at a first frequency, measuring a second power level of the audio signal at a second frequency, measuring a third power level of the audio signal at a third frequency, computing a ratio of the first power level to a sum of the first, second, and third power levels, and comparing the computed ratio to a predetermined first threshold value. When the computed ratio is greater than or equal to the first threshold value, a determination may be made that the television set is turned on and in near proximity.
The processing may also include continuously updating the measurements of the first, second, and third power levels, and comparing the most recent measurement of the first power level to a predetermined second threshold value. When the first power level is greater than or equal to the second threshold value, a determination may be made that the television set is turned on and in near proximity. When the first power level is less than the second threshold value and the computed ratio is less than the first threshold value, a determination may be made that the television is turned off or out of proximity.

The processing may also include using a sliding Fast Fourier Transform algorithm to detect a presence of an audio signal at the first frequency. The predetermined first threshold value may be substantially equal to 0.9, or it may be substantially greater than or equal to 0.6. The first frequency may be associated with a horizontal scan fly-back transformer used by the television. The horizontal scan flyback transformer may be associated with a frequency substantially equal to 15.75 kHz. The second and third frequencies may have predetermined spacings from the first frequency
In still another aspect, the invention provides a method of detecting whether a first television set is turned on, while distinguishing the first television set from other devices such as a radio or a second television set. The method includes measuring a first power level of an audio signal at a first frequency, measuring a second power level of the audio signal at a second frequency and a third power level of the audio signal at a third frequency, computing a ratio of the first power level to a sum of the first, second, and third power levels, making a first comparison of the ratio to a predetermined threshold ratio value, and making a first determination of whether the first television set is on based on a result of the first comparison. The first frequency is associated with a horizontal scan fly-back transformer used by the first television set. The second and third frequencies have predetermined spacings from the first frequency. The method may also include using a measured value of the first power level to set a threshold first power value, continuously updating the measurements of the first, second, and third power levels, and making a second comparison of a most recently updated measurement value of the first power level to the threshold first power value when a first determination that the first television set is not on is made. A second determination of whether the first television set is turned on is then made, based on a result of the second comparison

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a flowchart illustrating a method of determining whether a television is considered on and in near proximity.
Figure 2 is a block diagram showing a system for determining whether a television is considered on and in near proximity
DETAILED DESCRIPTION OF THE PREFERRED EXAMPLES
The present invention is based on the detection of a television display device property to determine whether the television is on. For example, all television sets with Cathode Ray Tube (CRT) displays contain circuitry for scanning an electron beam across the picture tube. The transformers, which generate the required voltage to perform scanning, emit a characteristic audio signal (e.g., transformer buzz). This audio signal permeates the vicinity of a television set. Vibrations of the laminations within the transformer generate the audio. In a television system operating with the NTSC standard, the horizontal scan fly-back transformers emit a 15.75 kHz wave. The presence of this characteristic frequency can be detected from the audio signal picked up by the microphone. This high frequency tone has a fixed intensity for a given television set. It typically does not penetrate through walls, and as a result, only a microphone placed in the same room as the television set can pick up the characteristic frequency. Either an analog phase locked loop or a digital Fast Fourier Transform ("FFT") can be used to detect this signal. Of course, other characteristic signals emitted from a CRT, Liquid Crystal Display (LCD), or other display device may be used.
Accordingly, as used in this patent application, as applied to a television and a microphone or other appropriate signal detector, the term "in near proximity" is defined as "within the same room and with no physical obstruction, such as a wall, floor, or ceiling, between the television and the detector", and the term "out of proximity" is defined as "not in the same room and with a physical obstruction, such as a wall, floor, or ceiling, between the television and the detector". Thus, the
7

microphone is able to detect the characteristic audio signal for a television that is in near proximity, but the microphone is not able to detect the characteristic audio signal for a television that is out of proximity. When the microphone is attached to a portable device that is being carried by a member of the television audience, determination of whether the television is "in near proximity" or "out of proximity" becomes equivalent to a determination of whether the member of the television audience carrying the portable device is in the same room as a television that is turned on.
If an FFT is used to detect the signal, this can be advantageously embodied in the type of audience measurement system in which "active" embedded codes are detected in the program signal. The extraction of these codes usually involves a spectral analysis of the detected audio using an FFT. The FFT analysis can be easily extended to analyze the frequency neighborhood around the characteristic frequency emitted by the television set. Based on spectral power, the sensed audio can be classified as originating from a television signal or other audio.
The presence of an audio signal at the fly back frequency of 15.75 kHz can be most conveniently detected by means of a "sliding" implementation of the Fast Fourier Transform (hereinafter referred to as "SFFT"). Such an implementation can continuously monitor the spectral power in a neighborhood surrounding the frequency of interest and compute the relative as well as the absolute power of the 15.75 kHz signal. It is noted that in extracting embedded "active" spectral audio codes of the type described in U.S. Patent 6,272,716 (entitled "Broadcast Encoding System and Method" and incorporated herein by reference), the SFFT algorithm is employed.
Referring to Figure 1, a flow chart 100 illustrates an example method of determining whether a television is turned on and in near proximity. Referring also to Figure 2, an example hardware implementation 200 of a television proximity sensor is shown. In block 105, the audio signal picked up by the microphone 205 is generally amplified by an amplifier 210 and converted into a digital stream by an analog-to-

digital converter 215. Then, at block 110, an SFFT is computed using the digital signal processor 220. The digital signal processor 220 includes an internal data memory 225 and an internal program memory 230. The program memory 230 stores the SFFT algorithm, as well as any other algorithms used by the processor 220. The data memory 225 stores data, including the results of performing the SFFT at block
110. In order to compute the Fourier spectrum, a buffer comprising s =512 audio samples captured at a 48 kHz sampling rate may be used. The spectral frequency indices ("bins") ranging from 0 to 255 represent frequencies in the range 0 to 24 kHz. The frequency separation between adjacent spectral lines is preferably 93.75 Hz. The horizontal scanning frequency (i.e., 15.75 kHz) corresponds to a bin with index 168. In a typical operating environment, such as a room in a household, the spectral energy in the 15 kHz band is extremely low and is on the order of-60 dB. In order to obtain a relative spectral magnitude of the frequency of interest, the power in bins 160, 164 and 168 is computed at block 115. It is noted that the detection of other characteristic signals would involve the measurement of energy in different bins.
Unlike the well-known Fast Fourier Transform, which computes the complete spectrum of a given block of audio, the sliding FFT or SFFT is more useful for computing power in selected frequency bins and constantly updating the spectrum as new audio samples are acquired. Assuming that spectral amplitude aQ[j] and phase
angle stored in the buffer, these values represent the spectral values for the Ns audio
samples currently in the buffer. If a new time domain sample v^_, is inserted into the
buffer to replace the earliest sample v0, then the new spectral amplitude ajjjand
phase
9

Thus, the spectral amplitude and phase values at any frequency with index J in an audio buffer can be computed recursively merely by updating an existing spectrum according to Equation 1. The updated spectral power is P, -a1. Even if all the
spectral values (amplitude and phase) were initially set to 0, as new data enters the buffer and old data gets discarded, the spectral values gradually change until they correspond to the actual Fourier Transform spectral values for the data currently in the buffer. In order to overcome certain instabilities that may arise during computation, multiplication of the incoming audio samples by a stability factor usually set to 0.999 and the discarded samples by a factor 0.999n-1 may be used. The sliding FFT algorithm provides a computationally efficient means of calculating the spectral components of interest for the Ns-1 samples preceding the current sample location
and the current sample itself.
At block 120, in order to detect the presence of a television set that is turned on, or to check if an audio signal picked up by the microphone is associated with a
television set, the ratio is computed for each block of audio
indexed by n. When a television set is turned on, this ratio has a value close to 1.0
because When a television is in the off state, the ratio is close to
0.333 because all three frequency bins have low power values. At block 125, a ratio
threshold such as '* " ' can then be used to detect the state of the television set. At block 135, when used in conjunction with an "active" embedded audio code-
decoding algorithm, the absolute value of l68 at an instant of time when an embedded
code has been successfully extracted may be used to set an additional reference value
pth Both conditions may be used to determine the state of the
television set at a given instant of time. If either of these inequalities is true, then at
block 130 it is determined that the television is turned on and in near proximity. If
both inequalities are false, then at block 140 it is determined that the television is
either turned off or out of proximity. It is noted that the ratio threshold Rth can be
10

chosen to be any appropriate value between 0 and 1; for example, Rth may be chosen
as 0.6, 0.75, or 0.9.
The use of the ratio threshold as described above in block 125 has the effect of providing an adaptive measure of the television audio spectrum at the frequencies of interest. The use of the absolute power level of bin 168 as described above in block 135 provides a method of mitigating a possible "clipping" effect that may occur if the audio power exceeds the maximum power allowed by the automatic gain control. For example, if a noise spike occurs due to a television program, it is possible that the audio power will reach the maximum possible level, and thus the measurement of the power level will be clipped at that maximum level. In such an instance, the ratio Rn may drop below 0.95, because the power levels in P160 and P}64 have risen proportionately as the noise spike. Despite this, the use of the threshold value Pth enables the detection of the presence of a television set that is turned on. The threshold value P& can also be adaptive to a particular television, and is not limited to bin 168. Rather, the threshold can be applied to whatever bin happens to sustain the maximum power levels for the neighborhood of the frequency of interest, typically 15.75 kHz.
In a practical implementation, a sequence of Rnmd Pmvalues covering a long
interval of time (typically on the order of seconds) is examined for determining the presence of a television set that has been turned on. In such a sequence, if a majority of the entries indicate that the television set is turned on, a decision can be made that an active television set is present. Alternatively, an averaging of the ratio and power values captured in the sequence can also be used for decision-making. Several stray effects can occasionally produce spectral energy at 15.75 kHz and averaging the observations over a longer interval results in greater reliability. Yet another factor to be taken into account is the presence of an Automatic Gain Control (AGC) amplifier that may cause a change in the absolute value of P168. If the AGC is software
controlled, the reference value Pth used for comparison can be varied based on the
actual instantaneous gain setting.
11

An alternative method of detecting whether a television is turned on involves observing a transient effect in the frequency spectrum which is associated with the actual transition from the off state to the on state. When a television has been in the off state and is presently turned on, an audio pulse of energy moves through the frequency spectrum in a "ripple"-like fashion from 0 Hz up to the 15.75 kHz steady-state frequency. Thus, a detection of the frequency ripple acts as an indicator that the television has been turned on.
The technique described above may be applied to television systems operating with standards other than the NTSC standard, whose horizontal scan fly-back transformer frequency is actually 15.734 kHz. For example, the PAL standard has a horizontal scan fly-back transformer frequency of 15.635 kHz. Line doublers can be used with either the NTSC standard or the PAL standard. The use of a line doubler has the effect of doubling the frequency, to 31.47 kHz in the NTSC case and 31.25 kHz in the PAL case. Digital television includes several formats that are associated with the following frequencies: 15.63 kHz; 26.97 kHz; 27.00 kHz; 28.13 kHz; 31.25 kHz; 31.47 kHz; 33.72 kHz; 33.75 kHz; 44.96 kHz; 45.00 kHz; 62.50 kHz; 67.43 kHz; and 67.50 kHz. In each case, the audio is sampled at a rate which is at least double the fly-back frequency. Thus, for example, if a 96 kHz sampling rate is used instead of the 48 kHz rate described above, then any format associated with a fly-back frequency not exceeding 48 kHz may make use of the technique of this invention. In the case of the 67.50 kHz format, the sampling rate is at least 135 kHz.
From the foregoing, persons of ordinary skill in the art will appreciate that the disclosed television proximity detector is intended for use in an audience measurement system based either on portable audience measurement devices carried by members of the audience or on fixed audience measurement devices placed in the vicinity of a television set. In both these applications, a sensor on the audience measurement device picks up the audio signal associated with a television program with the objective of determining the program or channel being viewed from an
12

analysis of the audio signal. Because the microphone of the audience measurement device can respond to signals emitted in a neighboring room, there is a need to disregard such signals and instead process audio emanating from within a room in which the device is present to identify programs or channels being presented in the room in which the device is located. By attempting to detect audio noise associated with being in proximity to a television in the on state, the television proximity detector enables the audience measurement system to disregard signals detected when the audience measurement device is not in proximity to a television in the on state.
While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it is to be understood that neither the invention nor the scope of this patent is limited to the disclosed embodiments. To the contrary, this patent is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. For example, it is to be understood that the invention is applicable to and this patent covers any frequency that can reliably be associated with the fact that a television is actually on, such as a motor spin of a video-cassette recorder (VCR), a tray ejection of a VCR, a motor spin of a digital video disk (DVD) player, a modem connected to the television, or static electricity emitted by the television screen. As
another example, although a ratio threshold of Rth =0.95 is described above, the ratio
threshold th may be set to a lower value such as 0.8 or 0.75 without reducing detection reliability. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.



WE CLAIM :
1. A system comprising: an audience measurement device to detect at least one of a code and a signature associated with a television program; and, a television proximity sensor system having: a sensor configured to attempt to detect a signal emitted by a transformer of a television when the television is on; an analog-to-digital converter to convert a signal detected by the sensor into a set of digital samples; and a digital signal processor in communication with the analog-to-digital converter, and configured to process the set of digital samples to determine if the sensor is located in proximity to a television that is turned on; wherein an audience measurement system associated with the audience measurement device disregards the at least one of the code and the signature associated with the television program if the television proximity sensor determines that the sensor is not located in proximity to a television that is turned on.
2. The system as claimed in claim 1, comprising an amplifier to amplify the detected signal and to provide the amplified signal to the analog-to-digital converter.
3. A television proximity sensor system comprising: a sensor configured to
attempt to detect a signal emitted by a transformer of a television when the
television is on; an analog-to-digital converter to convert a signal detected by
the sensor into a set of digital samples; and a digital signal processor in
communication with the analog-to-digital converter, and configured to process
the set of digital samples to determine if the sensor is located in proximity to a
television that is turned on; wherein the digital signal processor is configured
to: measure a first power level of the set of digital samples at a first frequency;
measure a second power level of the set of digital samples at a second
frequency; measure a third power level of the set of digital samples at a third
frequency; compute a ratio of the first power level to a sum of the first, second,

and third power levels; compare the computed ratio to a predetermined first threshold value; and when the computed ratio is greater than or equal to the first threshold value, determine that the sensor is located in a same room as a television which is turned on.
4. The sensor system as claimed in claim 3, wherein the digital signal processor is configured to: continuously update the measurements of the first, second and third power levels; compare the most recent measurement of the first power level to a predetermined second threshold value; when the first power level is greater than or equal to the second threshold value, determine that the sensor is in proximity to a television which is turned on; and when the computed ratio is less than the first threshold value and the first power level is less than the second threshold value, determine that the sensor is not in proximity to a television that is turned on.
5. The sensor system as claimed in claim 4, wherein the audio sensor is portable.
6. The sensor system as claimed in claim 3, wherein the digital signal processor is configured to use a sliding Fast Fourier Transform algorithm to process the set of digital samples.
7. The sensor system as claimed in claim 3, wherein the predetermined first threshold value is equal to substantially 0.9.
8. The sensor system as claimed in claim 3, wherein the predetermined first threshold value is greater than or equal to substantially 0.6.
9. The sensor system as claimed in claim 3, wherein the first frequency is associated with a horizontal scan fly-back transformer used by the television.
10. The sensor system as claimed in claim 9, wherein the horizontal scan fly-back transformer is associated with a frequency equal to substantially 15.75 kHz.
15

11. The sensor system as claimed in claim 3, wherein the second and third frequencies have predetermined spacings from the first frequency.
12. The sensor system as claimed in claim 3, wherein the audio sensor is portable.
13. The system as claimed in claim 1, wherein the television proximity sensor system is disposed within the audience measurement device and the audience measurement device is portable.
14. An apparatus comprising: an audience measurement device to collect audience measurement data; receiving means for attempting to receive a predetermined analog noise signal associated with a transformer of a television when the television is in an on state; digitizing means for converting the received analog signal to a set of digital samples; and processing means for processing the set of digital samples to determine if the audience measurement device is in proximity to a television which is in the on state, wherein the audience measurement device disregards the audience measurement data if the processing means determines that the audience measurement device is not located in proximity to a television that is turned on.
15. The apparatus as claimed in claim 14, comprising amplifying means for amplifying the received analog signal.
16. An apparatus to determine whether an audience measurement device is in
proximity to a television in an on state, the apparatus comprising: receiving
means for attempting to receive a predetermined analog noise signal associated
with a transformer of a television when the television is in the on state;
digitizing means for converting the received analog signal to a set of digital
samples; processing means for processing the set of digital samples to
determine if the audience measurement device is in proximity to a television
which is in the on state, wherein the processing means comprises: first
measuring means for measuring a first power level of the signal at a first
frequency; second measuring means for measuring a second power level of the
16

signal at a second frequency; third measuring means for measuring a third power level of the signal at a third frequency; computing means for computing a ratio of the first power level to a sum of the first, second, and third power levels; and first comparing means for comparing the computed ratio to a predetermined first threshold value, wherein when the computed ratio is greater than or equal to the first threshold value, the processing means determines that the audience measurement device is in proximity to a television which is in the on state.
17. The apparatus as claimed in claim 16, wherein the processing means comprises: updating means for continuously updating the measurements of the first, second, and third power levels; and second comparing means for comparing the most recent measurement of the first power level to a predetermined second threshold value, wherein when the first power level is greater than or equal to the second threshold value, the processing means determines that the audience measurement device is in proximity to a television which is in the on state; and when the first power level is less than the second threshold value and the computed ratio is less than the first threshold value, the processing means determines that the audience measurement device is not in proximity to a television which is in the on state.
18. The apparatus as claimed in claim 17, wherein the receiving means is portable.
19. The apparatus as claimed in claim 16, wherein the processing means comprises transforming means for using a sliding Fast Fourier Transform algorithm to process the set of digital samples.
20. The apparatus as claimed in claim 16, wherein the predetermined first threshold value is equal to substantially 0.9.
21. The apparatus as claimed in claim 16, wherein the predetermined first threshold value is greater than or equal to substantially 0.6.
17

22. The apparatus as claimed in claim 16, wherein the first frequency is associated with a horizontal scan fly-back transformer used by the first television.
23. The apparatus as claimed in claim 22, wherein the horizontal scan fly-back transformer is associated with a frequency equal to substantially 15.75 kHz.
24. The apparatus as claimed in claim 16, wherein the second and third frequencies have predetermined spacings from the first frequency.
25. The apparatus as claimed in claim 16, wherein the receiving means is portable.
26. The apparatus as claimed in claim 14, wherein the receiving means is disposed within the audience measurement device, and the audience measurement device is portable.
27. A method of collecting audience measurement data comprising: attempting to receive an analog signal corresponding to a transformer signal of the television set; converting the received analog signal to a set of digital samples; processing the set of digital samples; using a result of the processing to determine whether the television set is turned on and in near proximity; disregarding audience measurement data detected when the television set is not turned on and in proximity.
28. The method as claimed in claim 27, comprising the step of amplifying the received analog signal.
29. A method of determining whether a television set is turned on and in near proximity comprising: receiving an analog signal corresponding to a transformer signal of the television set; converting the received analog signal to a set of digital samples; processing the set of digital samples; and using a result of the processing to determine whether the television set is turned on and in near proximity; wherein the processing comprises: measuring a first power level of the signal at a first frequency; measuring a second power level of the

signal at a second frequency; measuring a third power level of the signal at a third frequency; computing a ratio of the first power level to a sum of the first, second, and third power levels; comparing the computed ratio to a predetermined first threshold value; and when the computed ratio is greater than or equal to the first threshold value, determining that the television set is turned on and in near proximity.
30. The method as claimed in claim 29, wherein the processing further comprises: continuously updating the measurements of the first, second, and third power levels; comparing the most recent measurement of the first power level to a predetermined second threshold value; when the first power level is greater than or equal to the second threshold value, determining that the television set is turned on and in near proximity; and when the first power level is less than the second threshold value and the computed ratio is less than the first threshold value, determining that the television is turned off or out of proximity.
31. The method as claimed in claim 30, wherein receiving an analog signal corresponding to a transformer signal of the television set comprises detecting the analog signal using a portable detecting device.
32. The method as claimed in claim 29, wherein processing further comprises using a sliding Fast Fourier Transform algorithm.
33. The method as claimed in claim 29, wherein the predetermined first threshold value is equal to substantially 0.9.
34. The method as claimed in claim 29, wherein the predetermined first threshold value is greater than or equal to substantially 0.6.
35. The method as claimed in claim 29, wherein the first frequency is associated with a horizontal scan fly-back transformer used by the television set.

36. The method as claimed in claim 35, wherein the horizontal scan fly-back transformer is associated with a frequency equal to substantially 15.75 kHz.
37. The method as claimed in claim 29, wherein the second and third frequencies have predetermined spacings from the first frequency.
38. The method as claimed in claim 29, wherein receiving an analog signal corresponding to a transformer signal of the television set comprises detecting the analog signal using a portable detecting device.
39. The method as claimed in claim 27, wherein receiving an analog signal corresponding to a transformer signal of the television set comprises detecting the analog signal using a portable detecting device.
40. A method of detecting whether a first television set is turned on comprising: measuring a first power level of a signal at a first frequency, the first frequency being associated with a horizontal scan fly-back transformer used by the first television set; measuring a second power level of the signal at a second frequency and a third power level of the signal at a third frequency, the second and third frequencies having predetermined spacings from the first frequency; computing a ratio of the first power level to a sum of the first, second, and third power levels; making a first comparison of the ratio to a predetermined threshold ratio value; and making a first determination of whether the first television set is turned on based on a result of the first comparison.
41. The method as claimed in claim 40, comprising the step of: using a measured
value of the first power level to set a threshold first power value; continuously
updating the measurements of the first, second, and third power levels; and
when a first determination that the television set is not turned on is made,
making a second comparison of a most recently updated measurement value of
the first power level to the threshold first power value; and making a second
determination of whether the television set is turned on based on a result of the
second comparison.
20

42. The method as claimed in claim 41, measuring a first power level of the signal at a first frequency comprises detecting the signal using a portable detecting device.
43. The method as claimed in claim 40, wherein measuring a first power level of the signal at a first frequency comprises detecting the signal using a portable detecting device.
44. A method comprising: attempting to detect a noise signal associated with a television with a portable audience measurement device; if a noise signal is not detected with the portable audience measurement device, determining that the portable audience measurement device is not in proximity to a television in an on state; if a noise signal is detected with the portable audience measurement device, determining if the noise signal is indicative of the portable audience measurement device being in proximity to a television in an on state; if the noise signal is indicative of the portable audience measurement device being in proximity to a television in an on state, collecting any detected audience measurement data; and if the noise signal indicates that the portable audience measurement device is not in proximity to a television in an on state, disregarding any detected audience measurement data.
45. A method as claimed in claim 44, wherein attempting to detect a noise signal comprises attempting to detect a noise signal generated by a transformer of a television when the television is in an on state.
46. A method of determining if a sensor is in proximity to a television in an on state comprising: attempting to detect a noise signal associated with a television; if a noise signal is not detected, determining that the sensor is not in proximity to a television in an on state; and if a noise signal is detected, determining if the noise signal is indicative of the sensor being in proximity to a television in an on state; wherein attempting to detect a noise signal
21

comprises attempting to detect a noise signal generated by a transformer of a television when the television is in an on state; and wherein determining if the noise signal is indicative of the sensor being in proximity to a television in an on state comprises: identifying a first power level of the noise signal at a first frequency, a second power level of the noise signal at a second frequency, and a third power level of the noise signal at a third frequency; computing a ratio of the first power level to a sum of the first, second and third power levels; and comparing the ratio to a predetermined threshold.
47. An apparatus comprising: an audience measurement device to collect audience measurement data; a sensor to attempt to detect a noise signal associated with a television; and a processor to determine that the sensor is not in proximity to a television in an on state if the sensor does not detect a noise signal, and to determine if a noise signal detected by the sensor is indicative of the sensor being in proximity to a television in an on state, wherein the audience measurement device collects the audience measurement data if the processor determines that the noise signal detected by the sensor is indicative of the sensor being in proximity to a television in an on state, but the audience measurement device disregards the audience measurement data if the processor determines that the sensor is not in proximity to a television in an on state.
48. An apparatus as claimed in claim 47, wherein the sensor and processor are located in a portable audience measurement device.
49. An apparatus as claimed in claim 47, wherein the noise signal the sensor attempts to detect comprises a noise signal generated by a transformer of a television when the television is in an on state.
50. An apparatus comprising: a sensor to attempt to detect a noise signal associated with a television; and a processor to determine that the sensor is not in proximity to a television in an on state if the sensor does not detect a noise signal, and to determine if a noise signal detected by the sensor is indicative of
22

the sensor being in proximity to a television in an on state, wherein the processor determines if the noise signal is indicative of the sensor being in proximity to a television in an on state by: identifying a first power level of the noise signal at a first frequency, a second power level of the noise signal at a second frequency, and a third power level of the noise signal at a third frequency; computing a ratio of the first power level to a sum of the first, second and third power levels; and comparing the ratio to a predetermined threshold.

Dated this 19 day of February 2004
(D J SOLOMON) OF DePENNING & DePENNING AGENT FOR THE APPLICANT

Documents:

0350-chenp-2004 abstract granted.pdf

0350-chenp-2004 abstract-duplicate.pdf

0350-chenp-2004 claims granted.pdf

0350-chenp-2004 claims-duplicate.pdf

0350-chenp-2004 description(complete) granted.pdf

0350-chenp-2004 description(complete)-duplicate.pdf

0350-chenp-2004 drawings granted.pdf

0350-chenp-2004-abstract.pdf

0350-chenp-2004-assignement.pdf

0350-chenp-2004-claims.pdf

0350-chenp-2004-correspondnece-others.pdf

0350-chenp-2004-correspondnece-po.pdf

0350-chenp-2004-description(complete).pdf

0350-chenp-2004-drawings.pdf

0350-chenp-2004-form 1.pdf

0350-chenp-2004-form 3.pdf

0350-chenp-2004-form 5.pdf

0350-chenp-2004-form13.pdf

0350-chenp-2004-pct.pdf


Patent Number 202186
Indian Patent Application Number 350/CHENP/2004
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date
Date of Filing 19-Feb-2004
Name of Patentee NIELSEN MEDIA RESEARCH, INC.
Applicant Address 150 N. Martingale Road, Schaumburg, IL 60173 (US)
Inventors:
# Inventor's Name Inventor's Address
1 SRINIVASAN, Venugopal 2845 Jarvis Circle, Palm Harbor, FL 34683 (US).
2 PEIFFER, John, C 5638 Antelope Lane, New Port Richey, FL 34653 (US)
3 NELSON, Dan 12562 Leatherleaf Drive, Tampa, FL 33623 (US).
PCT International Classification Number H04H9/00
PCT International Application Number PCT/US02/12333
PCT International Filing date 2002-04-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/313,816 2001-08-22 U.S.A.