Title of Invention

PRESSURE SWING ADSORPTION GAS FLOW CONTROL METHOD AND SYSTEM

Abstract The flow of gas between two vessels, each of which undergoes cyclic changes in gas pressure, is controlled by two check valves installed in parallel between the vessels. The first check valve allows gas to flow from the first vessel to the second vessel when the differential pressure between the vessels exceeds a first value, and the second check valve allows gas to flow from the second vessel to the first vessel when the differential pressure between the vessels exceeds a second value. The gas flow control method is particularly useful in pressure swing adsorption processes.
Full Text The present invention relates to a method for controlling the flow of gas and a pressure swing adbsorption system for the separation of bulk gas mixtures and for the purification of gas streams containing low concentrations of undesirable components. The method has been developed and adapted for a wide range of operating conditions, product purity, and product recovery. Many pressure swing adsorption systems utilize two or more adsorber beds operated in a cyclic sequence in order to maintain a constant product flow rate while selected beds undergo various steps including adsorption, depressurization, desorption, purge, pressure equalization, repressurization, and other related steps. Multiple adsorber beds using numerous process steps are required to achieve high purity and/or recovery of valuable gaseous products such as hydrogen, carbon oxides, synthesis gas, light hydrocarbons, and the like. The high cost of generating the feed gas mixtures containing these valuable components and the high purity requirements for certam products usually justify the complexity and capital expense of multiple-bed pressure swing adsorption systems.
US-A-4,561 ,865 discloses a single-bed PSA system comprising an adsorber and a surge tank operated with a feed compressor in a three-step cycle. First, compressed feed air is introduced into the adsorber, which increases the pressure in the adsorber, and simultaneously adsorber effluent is withdrawn into the surge tank. A portion of the gas is withdrawn from the surge tank as an oxygen-enriched product. The adsorber feed is then discontinued and the adsorber is vented countercurrently (i.e. through the adsorber feed end) to the atmosphere. During this venting step, purge gas from the surge tank is introduced into the product end of the adsorber. Upon completion of the vent/purge step, the adsorber and the surge tank are pressure equalized through the adsorber product end (i.e. countercurrently). The steps are repeated in a cyclic manner. US-A-4,511,377 describes a modular apparatus using this PSA process.
A single-bed PSA system is described in US-A-4,892,566 which utilizes an adsorber in conjunction with a surge tank, feed compressor, and switch valves to carry

out a series of steps. First, compressed feed air is introduced into the adsorber, which increases the pressure in the adsorber while at the same time adsorber effluent is withdrawn into the surge tank. A portion of the gas is withdrawn from the surge tank as an oxygen-enriched product. The adsorber feed is discontinued and the adsorber outlet closed, and the adsorber is vented countercurrently (i.e. through the adsorber feed end) to the atmosphere. The shut-off valve is opened after venting to permit product flow from the surge tank to the bed. When product flow to the adsorber bed is commenced, the bed can be vented to maintain constant pressure; supplied with feed gas or neither vented to maintain constant pressure; supplied with feed gas or neither vented nor supplied with feed gas. Flow of product gas between the adsorber bed and surge tanks can be suspended after an initial pressure equalization to permit separate adsorber repressurization.
US-A-5,032,150 discloses a single-bed PSA process which utilizes multiple gas storage tanks in a PSA cycle to separate air. Compressed air is fed from an air feed tank into an adsorber presaturated with oxygen-rich gas from a previous cycle and the adsorber effluent is directed into a product collector tank, from which a portion of the gas is withdrawn as an oxygen-rich product. The adsorber outlet is then closed and the adsorber is pressure equalized with the air feed tank. Next, the adsorber is rinsed with nitrogen rich gas from a nitrogen product tank, and the displaced gas is stored in the air feed tank. The nitrogen-saturated adsorber then is depressurized countercurrently (i.e. through the adsorber feed end) into the nitrogen product tank. Nitrogen may be withdrawn as a product if required. Finally the adsorber is purged countercurrently with oxygen-rich gas from the product collector tank to displace the nitrogen therein and then is pressurized countercurrently with the oxygen-rich gas to the adsorption pressure. The steps are repeated in a cyclic manner,
A single-vessel rapid PSA system is described in US-A-5,071,449 in which the vessel contains dual adsorption layers and operates in alternating fashion with a

continuous feed gas and two continuous product streams. A product surge tank is not used. Another rapid PSA system utilizing a single adsorbent bed operating in a cycle of 30 seconds or less is described in US-A-4,194,892. The adsorber effluent optionally flows through a product surge tank to dampen flow fluctuations during adsorber cycling.
A single-bed PSA system with a product surge tank and an equalization tank is disclosed in US-A-5,370,728. In the operation of this system, compressed air feed is introduced into the adsorbent bed, pressurizing the bed from an intermediate pressure up to a maximum adsorption pressure, and the effluent product is withdrawn from the bed into the product surge tank. The adsorbent bed then is isolated and depressurized cocurrently (i.e. through the product end) into an equalization tank at the intermediate pressure. Next, the bed is further depressurized countercurrently (i.e. through the feed end) to a lower desorption pressure, and the bed is purged countercurrently with gas from the product surge tank. The bed is then pressurized countercurrently to the intermediate pressure with gas from the equalization tank. Finally the bed is pressurized with feed air and the steps are repeated in a cyclic manner.
Other single-bed PSA processes are described in US-A-4,065,272; US-A- 25 4,477,264; US-A-5,228,888; US-A-5,415,683; US-A-5,658,371; US-A-5,679,134; and US-A-5,772,737; and in JP-A-H9-77502 and JP-A-HlO-1947080; and in EP-A-0 771 583.
Several of the above-cited documents disclose multiple gas storage tanks to provide purge and repressurization gas. US-A-5,370,728, US-A-5.658,371, and EP-A-0 771 583 Al describe the use of dual gas storage tanks in single-bed air separation systems for oxygen recovery. One tank stores void space gas or partial depressurization gas having lower oxygen purity and the other tank stores higher purity oxygen product gas. Stored gas having lower oxygen purity is used for partial repressurization of the adsorber while a portion of stored higher purity product gas is used for adsorber purging. US-A-5,032,150 describes the recovery of nitrogen from

air in a PSA system which use multiple gas storage tanks, wherein one tank stores oxygen- rich gas for purging the adsorber and another tank stores nitrogen-rich product for displacing oxygen from the adsorber after purging is completed.
US-A-5486226 discloses a PSA system using product gas back-fill only on start-up on when there is temporary loss of product purity, Product gas flow from the adsorber vessel to a surge tank is controlled by a non-return valve in series with a flow control valve and flow m the reverse direction is controlled by a flow control valve in series with a shut-off valve and non-return valve. During normal operation, there is no return flow from the surge tank to the bed. The flow control valves are manually operated and the shut-off valve 52 is operated in response to a product purity monitor.
US-A-5711787 discloses with reference to Figure 1 B thereof a dual bed PSA process in which each of the beds has a mam product line and a supplemental product line connected to an exit line feeding a storage tank. Flow between the beds and the exit line is controlled bv check valves in the respective product lines. The check valve in each main product line permits flow only in the direction of the exit line and the check valve in each supplemental product line permits flow only in the direction of the respect vie bed. The main product lines are interconnected upstream of their respective check valves to permit pressure equalization of the beds (via a pressure equalization valve) and product gas purge (via a purge valve). Flow from the exit line to the storage tank is controlled by product make valve.
The supplemental product lines of US-A-5711787 permit flow of product gas From one bed through the main product line of that bed and exit line into the other bed in order to provide purge that bed instead of via the purge valve. However, claims 3 refers generally to discharging product gas from the storage tank to the product end of one bed whilst the other bed is providing product gas.
EP-A.0663229 (corresponding to US 5505765) discloses a multiple bed PSA

process in which a balance tank receives product gas from the beds and feeds a product tank. Product gas from the balance tank flows through a rinse line controlled by check valves and downstream orifices whenever the pressure in the respective bed is lower than that in the balance tank. Flow of product gas from the respective bed to the balance tank is controlled by on-off valves and regeneration involves equalization of pressure between two beds.
The PSA processes and systems described above provide for the efficient production of an enriched gaseous product from a feed gas mixture. These processes requu multiple valves and appropriate control systems to confrol gas flow rate and flow direction during the cyclic adsorption, depressurization, evacuation, and repressurization steps. Future improvements will encourage the wider use of these PSA processes and systems, and such improvements should include the simplification of equipment, particularly blowers, valves, and associated gas flow control systems, which are required in PSA processes. The invention described below and defined in the appended clauns offers a simplified gas flow control method and system which is particularly useful in PSA processes.
In a fnst aspect, the present mvention provides a method for controlling the flow of gas between an adsorber vessel and a gas storage vessel of a pressure swing adsorption process for the separation of a pressurized feed gas containmg at least one more strongly adsorbable component and at least one less sttongly adsorbable component, which process comprises the steps of:
(a) introducing the pressurized feed gas at a feed pressure mto a feed end of the adsorber vessel containing a solid adsorbent which preferentially adsorbs the more strongly adsorbable component, withdrawing from a product end of the ad sorber vessel an adsorber effluent gas enriched in the less strongly adsorbable component. and introducing at least a portion of the adsorber effluent gas into the gas storage vessel;

(b) terminating introduction of the pressurized feed gas into the adsorber vessel and depressurizing the adsorber vessel by evacuating gas from the feed end of the adsorber vessel and during which step (b) there is a period of no open flow path between the adsorber vessel and the as storage vessel;
(c) continuing to evacuate gas from the feed end of the adsorber vessel while simultaneously introducing stored adsorber effluent gas from the gas storage vessel into the product end of the adsorber vessel until the pressure in the adsorber vessel reaches a minimum adsorber pressure;
(d) terminating the evacuating of gas from the feed end of the ad sorber vessel and repressurizmg the adsorber vessel from the minimum adsorber pressure to an intermediate pressure by introducing pressurized feed gas into the feed end of the adsorber vessel while continuing to introduce stored adsorber effluent gas from the gas storage vessel into the product end of the adsorber vessel;
(e) further repressurizing the adsorber vessel to the feed pressure by continuing to introduce pressurized feed gas into the feed end of the adsorber vessel; and (f) repeating steps (a) through (e) in a cyclic manner, wherein

(a) flows from the adsorber vessel to the gas storage vessel whenever the differential pressure between the adsorber vessel and the gas storage vessel is equal to or greater than a first determined differential pressure;
(b) flows from the gas storage vessel to the adsorber vessel whenever the differential pressure between the gas adorage vessel and the adsorber vessel is equal to or greater than a second predetermined differential pressure; and
(c) no gas flows in either direction between said vessels whenever the differential pressure between the adsorber vessel and the gas storage vessel is less than the first differential pressure and when the differential pressure between the gas storage vessel and the adsorber vessel is less than the second differential pressure.
The flow of gas from the adsorber vessel to the gas storage vessel preferably is

controlled by a first check valve installed in flow communication between the said vessels and the first check valve opens at the first differential pressure and allows gas flow at or above the first differential pressure.
The flow of gas from the gas storage vessel to the adsorber vessel can be controlled by a second check valve installed in flow communication between the said vessels wherein the second check valve typically opens at the second differential pressure and allows gas flow at or above the second differential pressure.
The first and second check valves allow no gas flow between the adsorber and gas storage vessels whenever the differential pressure between the said vessels is less than the first differential pressure and when the differential pressure between the said vessels is less than the second differential pressure.
A final product gas can be obtained during step (a) by withdrawing a portion of the adsorber effluent gas. or altemativety by withdrawing a portion of the stored adsorber effluent gas from the gas storage vessel. Preferably, a portion of the stored adsorber effluent gas is withdrawn from the gas storage vessel as a final product gas during steps (b), (c), (d), and (e).
According to a second aspect, the present invention provides a system for controlling the flow of gas between an adsorber vessel and a gas storage vessel by a method of the first aspect of the first aspect of the present invention, which system comprises:
(a) a first check valve having an inlet and an outlet, wherein the valve is installed in flow communication between the adsorber vessel and the gas storage vessel, and wherein the first check valve opens at the first differential pressure;
(b) a second check valve having an inlet and an outlet, wherein the valve is 15 installed in flow communication between the gas storage vessel and the adsorber vessel, and wherein the second check valve opens at a the second differential pressure;

(c) piping means connecting the inlet of the first check valve to the adsorber vessel and the outlet of the first check valve to the gas storage vessel;
(d) piping means connecting the inlet of the second check valve to the adsorber vessel and the outlet of the second check valve to the adsorber vessel
(e) a third vessel;
(f) a third check valve having an inlet and an outlet, wherein the valve is installed in flow communication between the gas storage vessel and the third vessel;
(g) piping means connecting the inlet of the third check valve to the gas storage vessel and the outlet of the third check valve to the third vessel; and
allows gas flow from the gas storage vessel Into the thhd vessel.
(a) a first check valve having an inlet and an outlet, wherein the valve is installed in flow communication between the adsorber vessel and the gas storage vessel, and wherein the first check valve opens at the first differential pressure;
(b) a second check valve having an inlet and an outlet, wherein the valve is installed in flow communication between the gas storage vessel and the adsorber vessel, and wherein the second check valve opens at the second differential pressure;
(c) pipmg means connecting the inlet of the fust check valve to the adsorber vessel and the outlet of the first check valve to the gas storage vessel;
(d) piping means connecting the inlet of the second check valve to the gas storage vessel and the outlet of the second check valve to the adsorber vessel
(e) a third vessel
(f) a third check valve having an inlet and an outlet, wherein the valve is installed in flow communication between the gas storage vessel and the third vessel;
(g) piping means connecting the inlet of the third check valve to the gas storage vessel and the outlet of the third check valve to the third vessel; and to allow gas flow from the gas storage vessel into the third vessel
In another aspect of the invention, there is provided a system for controlling the flow of gas between an adsorber vessel and a gas storage vessel by a method of the

/
first aspect of the present invention, which system comprises:
(a) a first check valve having an inlet and an outlet, wherein the valve is installed in flow communication between the adsorber vessel and the gas storage vessel, and wherein the first check valve opens at the first differential pressure;
(b) a second check valve having an inlet and an outlet, wherein the valve is 25 installed in flow commxmication between the gas storage vessel and the adsorber vessel, and wherein the second check valve opens at the second differential pressure;
(c) piping means connecting the inlet of the first check valve to the adsorber vessel and the outlet of the first check valve to the gas storage vessel; and
(d) piping means connecting the inlet of the second check valve to the gas storage vessel and the outlet of the second check valve to the adsorber vessel,
(e) a third vessel i.e. an additional as storage vessel;
(f) a third check valve having an inlet and an outlet, wherein the outlet is installed in flow communication with the third vessel; and
(g) piping means cormectmg the outlet of the third check valve to the third vessel to allow gas flow of a portion of the effluent adsorber gas from the first check valve into the third vessel.

(f) a third check valve having an inlet and an outlet, wherein the outlet is installed in flow communication with the third vessel; and
(g) piping means cormecting the outlet of the third check valve to the third vessel to allow gas flow of a portion of the effluent adsorber gas from the first check valve into the third vessel (basis original claim 15).
The method of the invention controls the fiow of gas between vessels in a PSA process during cyclic feed, evacuation, purge, and repressurization steps to provide a final gas product enriched in one of the feed components. The process is carried out in a simple system which utilizes a single two-way four-port valve for controlling gas flow between an adsorber vessel and a blower, and the blower is used for the introduction of feed gas into the adsorber and the evacuation of gas from the adsorber.

The control of gas flow in either direction between the adsorber vessel and a product gas storage vessel is accomplished by two check valves installed in parallel between the vessel and the vessel. The system thus functions with only two mechanical drivers -one for operating the two-way four-port valve and one for operatmg the blower. The check
valves between the adsorber and the gas storage vessel are activated directly and automatically by the gas differential pressure between the adsorber and the storage vessel.
The present invention also provides a pressure swing adsorption system for the separation of a pressurized feed gas containing at least one more strongly adsorbable component and at least one less strongly adsorbable component said system comprising :
an adsorber vessel for containing a solid adsorbent which preferentially adsorbs the more strongly adsorbable component;
a ("first") gas storage tank;
pressurized gas feed means for introducing a pressurized feed gas at a feed pressure into a feed end of the adsorber vessel,
effluent gas withdrawal means for withdrawing from a product end of the adsorber vessel an adsorber effluent gas enriched in the less strongly adsorbable component and introducing at least a portion of the adsorber effluent gas into the gas storage tank;
gas evacuation means for depressuring thea adsorber vessel by evacuating gas from the feed end of the adsorber vessel
gas purge and repressurization means for introducing stored adsorber effluent gas from the gas storage tank into the product end of the adsorber vessel: characterized in that said effluent means withdrawal means comprises a check valve opening at a first predetermined differential pressure to allow effluent gas to flow from the adsorber vessel and the storage tank whenever the differential pressure

between the adsorber vessel and the storage tank is equal to or greater than said first differential pressure:
and in that said gas purge and repressurization means comprises a second check valve opening at a second predetermined differential pressure to allow effluent gas to flow from the the storage tank and the adsorber vessel is equal to or greater than said second predetermined differential pressure.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS Fig. 1 is a schematic flow diagram of an embodiment of the present invention. Fig. 2 is a plot of adsorber and gas storage tank pressures vs. time for a process cycle of the present invention.
Fig. 3 is a schematic flow diagram of an alternative embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for controlling the flow of gas between vessels in a PSA process during cyclic feed, evacuation, purge, and repressurization steps tc provide a final gas product enriched in one of the feed components. The process is canied out in a simple system which utilizes a single two-way four-port valve for controlling gas flow between an adsorber vessel and a blower, and the blower is used for the introduction of feed gas into the adsorber and the evacuation of gas from the adsorber. The control of gas flow in either direction between the adsorber vessel and a product gas storage tank is accomplished by two check valves installed in parallel between the vessel and the tank. The system thus functions virith only two mechanical drivers - one for operating the two-way four-port valve and one for operating the blower. TTie check valves between the adsorber and the gas storage tank are activated directly and automatically by the gas differential pressure between the adsorber and the storage tank.
In the descriptions of the embodiments of the present invention given herein, the following meanings are associated with speciflc terms used.
A feed step occurs during the time in which pressurized feed giss. is introduced into the adsorber vessel. Depressurization is defined as the withdrawal of gas from the

adsorber vessel accompanied by decreasing adsorber pressure. Depressurization can be achieved by venting gas from a superatmospheric pressure directly to the atmosphere, or alternatively to another process vessel or endosed volume which is at a lower pressure. Depressun'zation also can be achieved by evacuation, defined as Vha withdrawal of gas from the adsoiter by mechanical means such as a vacuum pump w blower. Evacuation can be carried out over any range of adsortrer pressures, but typically is carried out at subatmospheric pressures, i.e., under vacuum. Repressurization is denned as the introduction of gas into the adsorber vessel accompanied by increasing adsorber pressure.
Purge is defined as the introduction of a purge gas, typically product gas, bio one end of the adsorber while an effluent gas is withdrawn from the other end of tfie vessel. Purge can be carried out at any pressure, but is most effective at subatmospheric pressures. Purge can be can-ied out during depressurization, evacuation, or nspressurization, and thus the adsorber pressure may increase, decrease, or remain constant during any portion of a purge step. Preferably, as described below, purge is carried out during the latter portion of the depressurizatton or evacuation step.
Differential pressure (or alternatively pressure differential) is defined as the positive difference in gas pressure between a vessel or tank at a higher pressure and a vessel or tank at a lower pressure. Differential pressure aleo is defined as the pcive difference in gas pressure between the inlet and outlet of a check valve. The opoiing differential pressure of a check valve is the difference in pressure between the Hat and outlet required to open the valve and allow gas flow from the inlet to the outlet

Void space gas is defined as nonadsorbed gas contained wthin the interstitial or interparticle volume within the adsorber vessel, and includes gas in the piping and vessel dead volume which is not occupied by adsorbent.
The a portion of the adssorber effluent gas from the adsorber vessel, which also can be defined as adsorber product gas, is stored in a product gas storage tank. Gas withdrawn for external consumption is deftned as a final product gas (or alternatively a final gas product), and this final product gas can be supplied by withdrawal from the product gas storage tank or as a portion of the adsorber product gas.
The process of the present invention is carried out in the pressure swing adsorption system shown schematically in Figure 1. Feed gas and waste evacuation gas (later defined) flovi through intake/vent line 1 connected to silencer 3 which reduces the noise of gas intake and exhaust. Line 5, through which gas flows in either direction, is connected to two-way four-port valve 7 at inlet/outlet port 7a. Line 9, through which gas flows in either direction, connects inlet/outlet port 7b of two-vray four-port vaivs 7 to blower 11. Line 13. through which gas flows in either direction, connects Inlet/outlet port 7c of two-way four-port valve 7 to blower 11. Line 15, through which gas flows in either direction, connects inlet/outlet port 7d of hvo-way four-port valve 7 with the feed end of adsoftser vessel 17.
Two-way four-port valve 7 can be any type of commercially-available two-way four-port valve which can be operated in two positions to direct gas in two flow directions. This valve typically is a four-ported bail valve with a double angle or double L ball actuated by means of an electric reversing motor actuator with brake. Valves and actuators suitable for such service are available commercially, and can be obtained for example from Pittsburgh Brass Manufacturing Co. and from AMSCO Sales Corp.

Adsorirer vesse! 17 contains adsorbent material which selectively adsorbs one or more of the components in a feed gas mixture, thereby enriching the non-adsort>ed gas in the remaining components as explained later. Line 19, through which gas flows in either direction, isconnected to the product end of the adsorber vessel.
Line 21; through which gas flows in only one direction as shown, is connected to the inlet of check valve 23. Line 25, through which gas flows in only one direction as shown, is connected to the outlet of check valve 23. Check valve 23 allows flow only from adsorber vessel 17 to gas storage tank 39, in the direction shown, when the differential pressure between adsorber vessel 17 (the higher pressure) and gas storage tank 39 (the lower pressure) is equal to or greater than a predetermined value, This differential pressure ia the opening differential pressure of the check valve. When the differential pressure is less than this value, check vaive 23 is closed. This predetermined value of the differential pressure is typically between about 0.05 and 1.0 pounds per square inch differential (psid), and is set by the design of the specific check valve used in this service. Line 29, through which gas flows in either direction, Is connected to line 31, through which gas flows to the inlet of control valve 33. Final product gas iine 35 is connected to the outlet of control valve 33. Line 37, through which gas flows in either direction, is connected to line 29 and to gas storage tank 39.
Line 41. through which gas flows in only one direction as shown, is connected to the inlet of check valve 43. Line 45, through which gas flows in only one direction as shown, is connected to the outlet of check vaJve 43 and to line 19. Check vaJve 43 allows flow from gas storage tank 39 to adsorber vessel 17, in the direction shown, only when the differential pressure between gas storage tank 39 (the higher pressure) and adsorber vessel 17 (the lower pressure) is equal to or greater than a predetermined value. This is the opening differential pressure of the check valve. When the differential

pressure Is less than this value, check valve 43 is dosed. This predetermined value of the differential pressure is typically between about 2.0 and 20 pounds per squarfe inch differential (psid), and is set by the design of the specific check valve used in this service.
An alternative mode for the withdrawal of final product gas is given in F 1 in which the product is withdrawn directly from gas storage tank 39 via line 31, valve 33. and product line 35 as shown.
The description of the process of the present invention which utilizes the system of Fig. 1 is given below. The process is illustrated by the recovery of oxygen from BT, but the process can be used to separate other gas mixtures as explained later. 1") Air Feed
Atmospheric air, preferably filtered by known methods (not shown) to remove harmful particulate material, flows through intake/vent line 1, silencer 3, fine 5, two-way four-port valve 7 via ports 7a and 7b, and line 9 into the inlet of blower 11. Blower 11, which typically is a rotary lobe Roots-type blower, compresses the air to a feed pressure typically in the range of IS to 23 psia. An aftercooler (not shown) followong the blower optionally can be used. Pressurized feed gas flows through line 13, two-way ir-poft valve 7 via ports 7c and 7d, and line 15 into adsorber vessel 17 containing adsortsent materiai which selectively adsorbs nitrogen, a more strongly adsorbed componait in ttie air feed. Adsorber vessel 17 is initially at a typical intermediate pressure of about 14.5 to 15.5 psIa as a result of a previous repressurization step (described below), and the pressures in adsorber vessel 17 and gas storage tank 39 are nearly equal except for the differential pressure required to keep check valve 23 open. Pressurized feed air increases the pressure in the adsorber vessel to the full adsorption pressure of about 18 to 23 psia over a period of about 13 to 30 seconds. Water present in atmospheric air

can be removed upstream of adsorber vessel 17 by known methods, or alternatively can be removed by the use of a layer of adsorbent at the adsorber inlet end which preferentially adsorbs water.
As the pressurized air feed passes through the adsorber vessel, it is enriched in oxygen, a less strongly adsorbed component in the air feed, Oxygen-enriched adsorber effluent typically containing 85 to 95 vol% oxygen is withdrawn through line 1 g, line 21, check valve 23, and line 29, A portion of the adsorber effluent gas flows through line 37 into gas storage tank 39, and the remainder passes through flow control valve 33 and line 35 to provide a final oxygen product gas.
The air feed step continues until the adsorbent approaches a predetennined level of nitrogen breakthrough and before complete adsorption equilibrium with feed air is reached in the adsorber, at which time the step is terminated. The typicai duration of the air feed step Is about 13 to 30 seconds-
AdsoriDer vessel 17 contains one or more adsorbents which preferentially adsorb nitrogen and thus enrich the adsorber effiuent in oxygen. These adsorbents can be selected from the group consisting of monovalent or bivalent cation-exchanged zeolites having type A, type X, or mordenrte structure. Specific examples are NaX, NaA, CaX, and CaA type zeolites, 2. Evacuation
The air feed step is terminated by changing the position of two-way four-port valve 7 such that blower 11 evacuates adsorber vessel 17, whereby void space and desorbed gas from the adsorber flow through line 15, two-way four-port valve 7 via ports 7d and 7b, blower 11, and line 13, Shortly after the termination of the air feed step, check valve 23 automatically closes when the differential pressure between adsorber vessel 17 (the higher pressure] and gas storage tank 39 (the lower pressure) falls below

a predetemiined value in the range of 2 to 10 psid. Check valve 23 ttierefore is closed for most of the evacuation step. Evacuated gas flows through two-way four-port valve 7 via ports 7c and 7a, line 5, and silencer 3, and is vented to the atmosphere through inlet/vent line 1. Adsorber vessel 17 is countercurrently evacuated (i e. in the opposite flow direction as the feed step), which desorbs nitrogen adsorbed during the air feed step, thereby partially regenerating the adsorbent for the next air feed step. Evacuation continues until an Intermediate adsorber pressure of about 4 to 10 psia is attained. 3- Combined Evacuation and Purge
When the differential pressure between gas storage tank 39 (the higher pressure) and adsorber vessel 17 (the lower pressure) increases to a predetermined value between about 2 and 10 psid, check valve 43 automatically opens and oxygen-rich product gas flows from tank 39 into adsorber vessel 17 via lines 37, 29, 41, 45, and 19. "ITiis countercun-ent flow of purge gas sweeps the adsoitent and further desorbs residual nitrogen. ITie purge gas admission rate is such that the pressure in adsorber vessel 17 continues to fail. When a predetermined minimum adsorber pressure of between about 4 and 10 psia )s reached, this combined evacuation and purge step is terminated. Typically, the duration of the step is between about 2 and S seconds. Termination of the step is effected by switching the position of two-way four-port valve 7 so that blower 11 is changed from the evacuation mode to the feed compression mode earlier described. If desired, the rate of purge gas supplied through check valve 43 and the switch time of valve 7 can be selected such that the combined evacuation and puie step is carried out for a period of time at the minimum adsorber pressure. 4. Dual-Ended Repressurization
Repressurizaticn of adsoiter vessel 17 is initiated by introducing compressed feed air through line 15 as earlier described in the air feed step. Air flows through

intakevent line 1, silencer 3, line 5, two-way four-port valve 7 via ports 7a and 7b, and line 9 into the inlet of blower 11. Blower 11 thus introduces feed air at increasing pressure into adsorber vessel 17. Pressurized feed gas flows through line 13, two-way four-port valve 7 via ports 7c and 7d, and line 15 into adsorber vessel 17. Stored product gas from gas storage tank 39 continues to flow into the adsorber vessel through line 37, line 29. line 41. check valve 43, line 45, and line 19. When Uie differential pressure between gas storage tank 39 (the higher pressure) and adsorber vessel 17 (the lower pressure) decreases to the predetermined value between about 2 and 10 psid, check valve 43 automatically closes, and the dual-ended repressurizafion step ends. The duration of the dual-ended repressuriration step typicaliy is about 2 to 8 seconds. 5. Feed Repressyirization
As pressurized air feed continues, the pressure in adsorber vessel increases to the feed pressure, at which time the cycle is repeated beginning with the air feed step described above. At the end of this step, check valve 23 opens and adsorber product effluent gas begins to flow through line 19, line 21, check valve 23, line 25, and tine 29. Check valve 23 automatically opens when the differential pressure between adsorber vessel 17 (the higher pressure) and gas storage tank 39 (the lower pressure) reaches the predetermined value in the range of 0.05 to 1.0 psid. A portion of the product gas flows via line 37 into gas storage tank 39 and the remainder is withdrawn as the final oxygen product gas via line 31, control valve 33, and line 35.
During steps 1 through 5 described above, final oxygen product gas is withdrawn continuously through valve 33 and line 35. During step 1, the total gas flow from adsortser vessel 17 through lines 19, 21, 25, and 29 provides gas to storage tank 39 via line 37 and final oxygen product gas via line 35. During steps 2 through 5, final oxygen

product gas is withdrawn from gas storage tank 39 via lines 37 and 31. During steps 2, 3, and 4, product gas also is withdrawn from gas storage tank 39 via lines 37, 29, 41,45, and 19 for adsorber vessel purge and repressunzation. Gas storage tank 39 Is designed to be of sufficient volume to provide purge and repressunzation gas while providing final oxygen product gas at the required pressure and flow rate.
In an alternative embodiment of the invention, ail adsorber effluent gas can be introduced via lines 29 and 37 into gas storage tank 39. Final product gas is withdrawi directly from gas storage tank 39 via line 31, valve 33, and product line 35 as shown. Gas for purge and repressunzation of the adsorber is withdrawn via lines 37 and 29 as described above.
A summary of the PSA cycle described above is given in Table 1, which indicates the valve position and time duration for each cycle step for the cycle described above. A plot of the absolute pressures in adsorber vessel 17 and gas storage tank 39 as a function of time Is shovvn in Fig. 2 in conjunction with the Example given below. The time axis of Fig. 2 is not necessarily to scale, and the lengths of the cycle steps shown are illustrative only.

Table 1
Cycle and Valve Position Summar/ (Time Periods from Fig. 2)

Time Two-Wji/ four-port Valve? Check Valves
Cycle Step Period Sec. Port Connections 23 43
1) Air Feed to-ti 15-30 7a to 7b; 7c to 7d 0 C
2) Evacuation U-h 15-36 7d to 7b; 7c to 7a C c-
3) Evacuation/Purge k-h 2-8 7d to 7b; 7c to 7a c 0
4) Dual-end Repressurization k-u 2,8 7a to 7b; 7c to 7d c 0
5) Feed Repressurization Vt, 2-8 7a to 7b; 7c to 7d c C
Vaive Position; O = Open C = Closed C* = closes slightly after step 2 begins Tola) cycle time from to - tj is typically in the range of 36 to 94 seconds.
In an alternative embodiment of the invention, ail adsorber effluent gas can be introduced via lines 29 and 37 into gas storage tank 39. Final product gas is withdrawn directly from gas storage tank 39 via line 31, valve 33, and product line 35 as shown optionally in Fig. 1. Gas for purge and repressurization of the adsorber is withdrawn from tank 39 via lines 37 and 29 in as described above.
Another alternative embodiment of the invention is given in Fig. 3. In this embodiment, gas storage tank 39 of Fig. 1 is replaced with two tanks 47 and 49. These tanks can be partitioned volumes of a single vessel as shown, or alternatively can be separate vessels if desired. Tank 47 is in flow communication with line 25 via line 57 such that adsorber effluent gas can flow into storage tank 47 and stored gas can be withdrawn from storage, tank 47 for purge and repressurization of the adsorber vessel as

earlier described. Tank 47 provides gas for these purposes in a manner similar to tank 39 of Fig. 1 as earlier discussed.
Tank 47 also is in one-way flow communication with gas storage tank 49 via line 51, check valve 53, and line 55. Check valve 53 opens to allow iow of stored adsorber effluent gas from tank 47 to tank 49 only when the differential pressure between tank 47 (the higher pressure) and tank 49 (the lower pressure) equals or exceeds a predetermined value in the range of 0.05 to 1.0 psid. When the differential pressure between tank 47 and tank 49 drops below the predetermined, no gas can flow from tank 47 into tank 49. Typically the opening differential pressure of check valve 53 is essentially the same as that of check valve 25, although the opening differential pressures of the two check valves can differ if desired. Final product gas can be withdrawn via line 69, valve 33, and line 35.
Alternatively, instead of transferring gas from tank 47 to tank 49 as described above, a portion of adsorber effluent gas from line 57 can be introduced directly into tank 49 via check valve 53 and line 55 (not shown). The remaining portion of the adsorber effluent gas is stored in tank 47, and this gas is used only for purge and repressurization of the adsortjer vessel. Final product gas would be withdrawn via line 59, valve 33, and line 35 as above. In another version of this alternative, check valve 53 can be installed between lines 57 and 59 (not shown) rather than directly between tanks 47 and 49 as described above.
These alternative embodiments of the invention allow the use of lovtfer pressure gas from tarUt 47 for purge and repressurization while utilizing higher pressure gas from tank 49 for final product gas. During the periods of stored gas withdrawal, the pressure in tank 47 will drop fester than the pressure in tank 49. This allows a mors efficient use of available adsorber effluent gas pressure than the earlier-described use of the single

gas storage tank of Fig. 1. This also allows better flow control of final product gaa via valve 33, since the average pressure in tank 49 is higher than the pressure In the single tank version.
The PSA process cycle of the present invention is described above for the preferred application of air separation for oxygen production. The process cycle also can be used for the separation of other gas mixtures by using appropriate adsorbGnt(s) and cycle times. The process can be applied, for example, in the recovery of moderate purity hydrogen from petroleum refinery offgases, in the drying of air, and in the removal of heavier hydrocarbons from natural gas, Adsorlents useful for these separationu include activated cartion, types A and X zeolites, and mordenite. The system as described utilizes a single adsorber, but multiple adsorbers can be used in parallel if higher production rates are required.
EXAMPLE
A PSA system according to Fig. 1 is operated to recover oxygen from air as described above and as summarized in Table 1. The minimum differential pressure t>etween adsorber 17 and gas storage tank 39 required to allow flow through check valve 23 is 0.25 psid. Thus the opening differential pressure of checl TTie cycle is described in Fig. 2, which presents the pressure-time profile for adsorber vessel 17 and gas storage tank 39. The cycle and air feed step (1) begin at Kme at to in which the initial pressure in adsorber vessel 17 is 17.0 psia. The gas flow

through the system proceeds as described in air feed step (1) above and the valves operate in the positions summarized in Table 1. Since the minimum differential pressure required to maintain flow through check valve 23 is 0.25 psid, the pressure in gas
storage tank 39 at tg is 0.25 psia lower than the pressure in adsort>er vessel 17. The
pressure in adsorber vessel 17 rises approximately linearly from to to t while the
pressure in gas storage tank 39 rises more slowly because only a portion of the product gas in line 29 flows through tine 37 into tank 39.
At time ti (20 seconds after tg), when the adsorber pressure reaches 22 psia, the
air feed step is terminated and the evacuation step is initiated by switching the position of feed valve 7 as described above. Blower 11 immediately begins to withdraw evacuatfon gas from adsorber vessel 17, and the pressure therein decreases rapidly. Shortly after time t, the differential pressure between adsorber 17 and tank 39 falls
below 0.25 psid, and flow through check valve 23 stops. Evacuation proceeds ar the pressure In adsorber 17 continues to decrease. At the same time, the final oxygen gas product is withdrawn from storage tank 39 via line 31, and the pressure in the tank decreases slowly.
At time tj (30 seconds after t), the evacuation step automatically terminates, and
the combined evacuation and purge step begins when the differential pressure between gas storage tank 39 and adsorber 17 exceeds 10 psid. This initiates flow of oxygen product gas from tank 39 through check valve 43 and into adsorber vessel 17, tfiereby providing purge gas into the product end of the adsorber while evacuation continues from the feed end of the adsorber, The pressure in adsorber 17 continues to decrease,

although at a slightly lower rate, and the pressure in storage tank 39 decreases niore rapidly as both purge gas and final product gas are withdrawn therefrom.
At time ts {8 seconds after tj), adsorber vessel 17 reaches a pressure of 4.0 psla
and the evacuaWon/purge step is teiminated by switching the position of two-way four-port valve 7 so that blower 11 is changed from the evacuation mode to the feed compression mode as earlier described. This switch introduces compressed f6ed sar into the feed end of adsorber 17, while product gas continues to flow from storage tank 39 into the adsorber, thereby providing dual end repressurization of the adsorber. This step continues as the pressure in the adsorber increases and the pressure in the gas storage tank decreases.
At time t4 (4 seconds after t, the dual end repressurization step automatically
terminates and the feed repressurization step begins when the differential pressure between gas storage tank 39 and adsorber 17 drops below 10 psid. This terminates the flow of oxygen product gas from tank 39 through check valve 43 and into adsorber vessel 17 as check valve 43 closes, and feed repressurization proceeds until the adsorber pressure reaches the initial feed pressure of 17.0 psia. The pressure in storage tank 39 continues to decrease, but at a slightly slower rate, as final oxygen product gas withdrawal continues through line 31. At time tf (6 seconds after x), the
differential pressure between adsorber 17 and tank 39 exceeds 0.25 psid, and flow through check valve 23 begins, At this point the cycle repeats beginning with the air feed step.
While specific cycle step durations and pressures are described in this Example, other cycle step durations and pressures can be used depending on required product rate and purity, adsorber size, ambient temperature, and type of adsorbent. The relative

durations and pressures rn the main segments of the PSA cycle in Fig. 2, namely the air feed step (tQ-ti), the evacuation steps (t -i), and the repressurization steps (tj-tf), are controlled by the switch times of two-way four-port valve 7. The relative duration of the evacuation step (t - tj), the evacuation and purge step H2 - tg), the dual end
repressurization step {tj-14), and the product repressurization step (t4 -1{) are controlled
by the selection of the differential pressures at which check valves 23 and 43 open. For e)«imp(e, selecting a higher value of this differential pressure for chedt valve 43 would lengthen the evacuation step and the product repressurization step, and would shorten the dual end repressurization step and the evacuation and purge step. Conversely, selecting a lower value of this differential pressure for check valve 43 would shorten the evacuation step and the product repressurization step, and would lengthen the dual end repressurization step and the evacuatign and purge step.
The process described above is earned out In a simple system which utilizes a single two-way four-port valve for confrolling gas flow between an adsorber vessel and a blower, and the blower is used for the introduction of feed gas into the adsorber and the evacuation of gas from the adsorber. The control of gas flow in either direction between the adsortier vessel and the product gas storage tank is accomplished automatically by two check valves installed In parallel between the vessel and the tank. The system thus functions with only two mechanical drivers - one for operating the two-way four-port valve and one for operating the blower. The check valves between the adsorijer and the gas storage tank are activated directly and automatically by the gas differentral pressure between the adsorber and the storage tank. The deaign of the present PSA system thus reduces capitai cost and Increases operating refiability when compared with previous

systems which require the controlled mechanical opening and closing of numerous valves to direct gas flow during the various PSA steps.
Since only one actuated valve and one blower are required, the PSA system is simple and compact. The single two-way four-port valve is controlled by a single timer, which in combination with the check valves eliminates the need for a more complex microprocessor to control the cyde.
The use of check valves can be applied to control gas flow between vessels which undergo cyclic pressure changes in any other type of PSA process, and is not limited to the specific single-bed PSA cycle described above. In addition, the method can be used in other processes in which gas flow must be controlled between vessels which undergo cyclic pressure changes.
The essential characteristics of the present invention are described completely in the foregoing disclosure. One skilled In the art can understand the invention and make various modifications without departing from the basic spirit of the invention, and without deviating from the scope and equivalents of the claims which follow.


WE CLAIM :
1. A method for controlling the flow of gas between an adsorber vessel and a gas storage vessel of a pressure swing adsorption process for the separation of a pressurized feed gas containing at least one more strongly adsorbable component and at least one less strongly adsorbable component, which process comprises the steps of:
(i) introducing the pressurized feed gas at a feed pressure into a feed end of the adsorber vessel containing a solid adsorbent which preferentially adsorbs the more strongly adsorbable component(s), withdrawmg from a product end of the adsorber vessel an adsorber effluent gas enriched in the less strongly adsorbable component(s), and introducmg at least a portion of the adsorber effluent gas into the gas storage vessel;
(ii) terminating introduction of the pressurized feed gas into the adsorber vessel and depressurizing the adsorber vessel by evacuating gas from the feed end of the adsorber vessel;
(iji) terminating the evacuating of gas from the feed end of the adsorber vessel and repressurizing the adsorber vessel from aminimum adsorber pressure to an intermediate pressure by introducing pressurized feed gas into the feed end of the adsorber vessel while continuing to introduce stored adsorber effluent gas from the gas storage vessel into the product end of the adsorber vessel;
(iv) further repressurizing the adsorber vessel to the feed pressure by continuing to introduce pressurized feed gas into the feed end of the adsorber vessel; and
(v) repeatmg steps (i) through (iv) in a cyclic manner,
characterised in that:
said evacuation of gas from the feed end of the adsorber vessel durmg step (ii) is first (step (ii.a) without introduction of stored adsorber effluent gas mto the adsorber vessel and during which step (ii.a) there is a period of no open flow path between the

adsorber vessel and the gas storage vessel and is then (step (ii.b) continued while simultaneously introducmg stored adsorber effluent gas from the gas storage vessel into the product end of the adsorber vessel until the pressure in the adsorber vessel reaches the minimum adsorber pressure;
and in that the gas flow between the adsorber vessel and the gas storage vessel is controlled by the difference in pressure between said vessels whereby;
whenever the pressure in the adsorber vessel is greater than that in the gas storage vessel by a differential pressure equal to or greater than first predetermined differential pressure gas automatically flows from the adsorber vessel to the gas storage vessel;
pressure in the gas storage vessel is greater than that in the adsorber vessel by a differential pressure equal to or greater than a second predetermined differential pressure gas automatically flows from the gas storage vessel to the adsorber vessel and
whenever there is not difference in pressure between said vessels the pressure in the adsorber vessel is higher than that in the gas storage vessel by less than the first differential pressure or and the pressure in the gas storage vessel is higher than in the adsorber vessel by less than the second differential pressure there is no gas flows in either direction between the vessels.
2. The method as claimed in Claim 1, wherein the flow of gas from the adsorber vessel to the gas storage vessel is controlled by a first check valve installed in flow communication between the said vessels, and wherein the first check valve opens at the first differential pressure to allow gas flow at or above the first differential pressure.
3. The method as claimed in either of the preceding claims, wherein the flow of gas from the gas storage vessel to the adsorber vessel is controlled by a second check

valve installed in flow communication between the said vessels, and wherein the second check valve opens at the second differential pressure to allow gas flow at or above the second differential pressure.
4. The method as claimed in Claim 3. wherein the first and second check valves are in installed in parallel between the first and gas storage vessels.
5. The method as claimed in anyone of the preceding claims, wherein a portion of the adsorber effluent gas enriched in the less strongly adsorbable component(s) is withdrawn as a product gas during step (a).
6. The method as claimed in anyone of the preceding claims, wherein a portion of the stored adsorber effluent gas enriched in the less strongly adsorbable compQnent(s) is withdrawn from the gas storage vessel as a product gas during step (a).
7. The method as claimed in anyone of the preceding claims, wherein a portion of the stored adsorber effluent gas from the gas storage vessel is withdrawn as a product gas during steps (b), (c). (d), and (e).
8. A system for controlling the flow of gas between an adsorber vessel (17) and a gas storage vessel (39), by a method as claimed in Claim 1, which system comprises:

(a) a first check valve (23) installed in flow communication between the adsorber vessel (17) and the gas storage vessel (39) and opening at the first differential pressure to allow gas to flow automaticallv from the adsorber vessel to the gas storage vessel whenever the pressure in the adsorber vessel is greater than that in the gas storage vessel bv a differential pressure equal to or greater than the first predetermined differential pressure;
(b) a second check valve (43) installed in flow communication between the gasstorage vessel (39) and the adsorber vessel (17) and opening at the second

differential pressure to allow gas to flow gas automatically from the gas storage vessel to the adsorber vessel whenever the pressure in the gas storage vessel is greater than that in the adsorber vessel by a differential pressure equal to or greater than the second predetermined differential pressure;
(c) piping means (21,19 & 25,29,37) connecting the inlet of the first check valve (23) to the adsorber vessel (17) and the outlet of the first check valve (23) to the gas storage vessel (39);
(d) piping means (41,29,37 & 45.19) connecting the inlet of the second check valve (43) to the gas storage vessel (39) and the outlet of the second check valve (43) to the adsorber vessel (17),
(e) an additional gas storage vessel (49);
(f) a third check valve (S3) installed in flow communication between the gas storage vessel (47) and the additional gas storage vessel (49); and
(g) piping means (51,55) connecting the inlet of the third check valve (53) to the gas storage vessel (47) and the outlet of the third check valve (53) to the additional gas storage vessel (49).to allow gas flow from the gas storage vessel (47) into the additional gas storage vessel (49).
9. A system for controlling the flow of gas between an adsorber vessel (17) and a gas storage vessel (39), by a method as claimed in Claim 1, which system comprises:
(a) a first check valve (23) installed in flow communication between the adsorber vessel (17) and the gas storage vessel (39) and opening at the first differential vessel whenever the pressure in the adsorber vessel is greater than that in the gas storage vessel by a differential pressure equal to or greater than the first predetermined differential pressure;
(b) a second check valve (43) installed in flow commimication between the gas storage vessel (39) and the adsorber vessel (17) and opening at the second differential pressure to allow gas to flow gas automaticallv from the gas storage vessel to the

adsorber vessel whenever the pressure in the gas storage vessel is greater than that in the adsorber vessel by a differential pressure equal to or greater than the second predetermined differential pressure;
(c) piping means (21,19 & 25,29,37) connecting the inlet of the first check valve (23) to the absorber vessel (17) and the outlet of the first check valve (23) to the gas storage vessel (39);
(d) piping means (41,29,37 & 45,19) connecting the inlet of the second check valve (43) to the gas storage vessel (39) and the outlet of the second check valve (43) to the adsorber vessel (17),
(e) an additional gas storage vessel (49);
(f) a third check valve (53) installed in flow communication between the first check valve (23) and the additional gas storage vessel (49); and
(g) piping means connecting the inlet of the third check valve (53) to the first check valve (23) and the outlet of the third check valve to the additional gas storage vessel to allow gas flow of a portion of the effluent adsorber gas from the first check valve (47) into the additional gas storage vessel (49).
10. A pressure swing adsorption system for the separation of a pressurized feed gas containing at least one more strongly adsorbable component and at least one if less strongly adsorbable component, said system comprising;
an adsorber vessel (17) for containing a solid adsorbent which preferentially adsorbs the more strongly adsorbable component;
a ("first") gas storage tank (39);
pressurized gas feed means (1, 5, 7a, 7b,9, 11,13, 7c, 7d, 15) for introducing a
pressurized feed gas at a feed pressure into a feed end of the adsorber vessel (17); effluent gas withdrawal means (19,21,25,29,37) for withdrawmg from a product end of the adsorber vessel (17) an adsorber effluent gas enriched in the less strongly adsorbable component and introducing at least a portion of the adsorber effluent gas into the gas storage tank (39);

gas evacuation means (15, 7d, 7c, 13, 11,9, 7b, 7a,5,3,l) for depressurizing the adsorber vessel by evacuating gas from the feed end of the adsorber vessel (17);
gas purge and repressurization means (37,29,45,19) for introducing stored adsorber effluent gas from the gas storage tank (39) into the product end of the adsorber vessel (17);
characterized in that said effluent gas withdrawal means comprises a check valve (23) opening at a first predetermined differential pressure to allow effluent gas to flow automaticallv from the adsorber vessel (17) to the storage tank (39) whenever the pressure in between the adsorber vessel (17) is greater than that in the storage tank (39) is-by a differential pressure equal to or greater than said first differential pressure;
and in that said gas purge and repressurization means comprises a second check valve (43) opening at a second predetermined differential pressure to allow effluent gas to flow automatically from the storage tank (39) to the adsorber vessel (17) whenever the pressure between the storage tank (39) is greater than that in the adsorber vessel (17) bv a differential pressure equal to or greater than said second predetermined differential pressure.
11. A pressure swing adsorption system as claimed in Claim 10, which further comprises:
a second gas storage tank (49);
a third check valve (53) installed in flow communication between the first gas storage tank (47) and the second gas storage tank (49); and
piping means (51,55) connecting the inlet of the third check valve (53) to the first gas storage tank (47) and the outlet of the third check valve (53) to the second gas storage tank (49) to allow transfer of a portion of the effluent gas from the first gas storage tank (47) into the second gas storage tank (49) and
means (59,33,35) for withdrawing gas from the second gas storage tank (49) as a product gas.

12. A pressure swing adsorption system as claimed in Claim 10, which further
comprises:
a second gas storage tank (49);
a third check valve (53) installed in flow communication between the first check valve (23) and the second gas storage tank (49); and
piping means connecting the inlet of the third check valve (53) to the first check valve (23) and the outlet of the third check valve (53) to the second gas storage tank (49) to allow gas transfer of a portion of the effluent gas from the first check valve (23) into the second gas storage tank (49) and
means (59,33,35) for withdrawing gas from the second gas storage tank (49) as a product gas.
13. A pressure swing adsorption system as claimed in anyone of Claims 10 to 12,
wherein said pressurized gas feed means and gas evacuation means comprise a
common two-way four-port valve (7) for controlling gas flow between the adsorber
vessel (17) and a common blower (II) for both the introduction of feed gas into the
adsorber and the evacuation of gas from the adsorber vessel (17).


Documents:

1170-mas-1999 abstract duplicate.pdf

1170-mas-1999 abstract.pdf

1170-mas-1999 claims duplicate.pdf

1170-mas-1999 claims.pdf

1170-mas-1999 correspondence others.pdf

1170-mas-1999 correspondence po.pdf

1170-mas-1999 description (complete) duplicate.pdf

1170-mas-1999 description (complete).pdf

1170-mas-1999 drawings.pdf

1170-mas-1999 form-1.pdf

1170-mas-1999 form-19.pdf

1170-mas-1999 form-26.pdf

1170-mas-1999 form-3.pdf

1170-mas-1999 form-5.pdf

1170-mas-1999 others.pdf

1170-mas-1999 petition.pdf


Patent Number 202068
Indian Patent Application Number 1170/MAS/1999
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date
Date of Filing 03-Dec-1999
Name of Patentee AIR PRODUCTS AND CHEMICALS, INC.
Applicant Address 7201 HAMILTON BOULEVARD ALLENTOWN, PA 18195-1501
Inventors:
# Inventor's Name Inventor's Address
1 TARIK NAHEIRI 2775 KUTER ROAD BATH,PA 18014
PCT International Classification Number B01D53/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA