Title of Invention

A PROCESS FOR THE PREPARATION OF AMMONIA FROM AMMONIA SYNTHESIS GAS

Abstract Process for the preparation of ammonia from ammonia synthesis gas by contacting the synthesis gas with ammonia forming conditions with a catalyst comprising ruthenium as the active catalytic material supported on a carrier of boron nitride and/or silicon nitride.
Full Text The present invention relates to synthesis of ammonia by contacting ammonia synthesis gas with an ammonia catalyst with ruthenium as the active catalytic material supported on a metal nitride carrier.
Ruthenium based catalysts for use in the synthesis of ammonia from ammonia synthesis gas are known in the art (US Patent No. 4,600,571, JP Patent Publication No. 9168739 and GB Patent No. 2,033,766).
In order to minimise the necessary amount of expensive ruthenium such catalysts are usually supported on a carrier material to maximise the accessible surface area of the active ruthenium particles.
Several supports have been proposed as suitable in catalytic ammonia synthesis, those are MgO, AI2O3 and MgAl204. At present the most active ruthenium catalysts are those being supported on graphitised carbon as carrier material.
However, a severe drawback in using carbon-based support is susceptibility to hydrogenation under industrial conditions. The carbon support transforms slowly into methane resulting in a gradual loss of the support and eventually into operating difficulties.
The general objectjs of this invention is to provide ruthenium based ammonia synthesis catalysts with an improved carrier of boron nitride and/or silicon nitride as support material. Nitrides are isoelectronic with carbon. Boron nitride and silicon nitride exist like carbon as sev-eral allotropes. One of these allotropes is a graphitic

form usually called white graphite. Contrary to carbons, boron nitride and silicon nitride are thermodynamically stable under industrial ammonia synthesis conditions.
Both BN and Si3N4 can be obtained as high surface area materials (> 25 m^/g) and shaped into suitable carriers by methods known in the art.
Promoted ruthenium catalysts supported on BN or Si3N4 are completely stable during catalytic ammonia synthesis.
Accordingly, this invention makes use of boron nitride and/or silica nitride as catalyst carrier for ammonia catalyst with ruthenium as the active catalytic material in the ammonia synthesis.
BN or Si3N4 can either be obtained from commercial manufactures or prepared according to methods known in the art. The surface area of the nitride support is preferably above 25 m2/g. Alternatively, the nitride support is obtained from Si and B precursor that will transform into the nitride during treatment with ammonia.
Ruthenium is introduced onto the support by conventional methods, e.g. by impregnation with an appropriate ruthenium
containing compound;such as the chloride or the acetate.

Prior to promotion the catalyst can be reduced by treatment with a reducing gas such as hydrogen or synthesis gas.
Promotion can be conducted by impregnation with salts of the promoters. The promoters are chosen from the known am-

monia synthesis catalyst promoters, i.e. alkali or alkaline earth metals or from the rare earth metals.
The promoters can be introduced sequentially or together.
EXAMPLES
Example 1
Preparation of catalysts.
A boron nitride support (hexagonal, surface area 85 m2/g, crystal size determined by X-ray powder diffraction 7.5 nm) is impregnated with ruthenium nitroso nitrate to obtain a Ru concentration of 5 wt%. The impregnated sample is dried at 80°C and reduced in a flow of dihydrogen at 450°C. This sample is marked 5RuBN.
Another sample is prepared similarly but contains 7 wt% Ru. This sample is marked 7RuBN. The catalyst density is approximately 1.5 g/ml.
Example 2
Cesium promotion of catalysts.
5RuBN and 7RuBN are impregnated with aqueous solutions of Cs-nitrate to obtain a concentration of Cs of 3 wt%. The sampels are marked 3Cs5RuBN and 3Cs7RuBN, respectively.

Example 3
Barium promotion of catalysts.
5RuBN and 7RuBN are impregnated with aqueous solutions of Ba-nitrate to obtain a concentration of Ba of 3 wt%. The sampels are marked 3Ba5RuBN and 3Ba7RuBN, respectively.
Example 4
Testing of catalysts.
The catalysts are tested in an isothermal plug flow reactor operating at 100 bar and 400°C. The inlet gas contains 4.5% ammonia in a 3:1 mixture of dihydrogen/dinitrogen. The flow is adjusted to obtain 12% ammonia in the exit. Under these conditions the catalysts produces ammonia at different rates expressed as ml ammonia produced per gram of catalyst per hour:
Catalyst ml NH3/{g-h)
5RuBN 140
7RuBN 190
3Cs5RuBN 1150
3Cs7RuBN 1320
3Ba5RuBN 4600
3Ba7RuBN 4930
Example 5
Thermostability of catalysts.
To determine the stability of the catalysts, 3Ba5RuBN and 3Ba5RuBN are heated in the reactor to 550°C for 1000 h. Under these conditions the exit concentration of ammonia is

around 7.0%. After this treatment the catalyst is tested again:
Catalyst ml NHs/lg-h)
3Ba5RuBN 4580
3Ba7RuBN 4960
Example 5
Passivation and reactivation of catalyst,
To determine whether the catalyst can be reactivated after passivation. The catalyst from Example 5 (3Ba5RuBN) was treated at room-temperature with 1000 ppm O2 in N2 for 10 hours and then exposed to the ambient atmosphere. Then it was loaded into the reactor again at tested under identical conditions:
Catalyst ml NH3/(g-h)
3Ba5RuBN 4610





1. Process for the preparation of ammonia from ammonia synthesis gas by contacting the synthesis gas with ammonia forming conditions with a catalyst comprising ruthenium as the active catalytic material supported on a carrier of boron nitride and/or silicon nitride.
2. Catalysts being active in the synthesis of ammonia from ammonia synthesis gas comprising ruthenium on a support of boron nitride and/or silicon nitride.

3. Process for the preparation ot ammonia from ammonia synthesis gas substantially as hereinabove described and exemplified.


Documents:

900-mas-2000-abstract.pdf

900-mas-2000-claims filed.pdf

900-mas-2000-claims grand.pdf

900-mas-2000-correspondnece-others.pdf

900-mas-2000-correspondnece-po.pdf

900-mas-2000-description(complete) filed.pdf

900-mas-2000-description(complete) grand.pdf

900-mas-2000-form 1.pdf

900-mas-2000-form 19.pdf

900-mas-2000-form 26.pdf

900-mas-2000-form 3.pdf

900-mas-2000-form 5.pdf

900-mas-2000-other documents.pdf


Patent Number 200979
Indian Patent Application Number 900/MAS/2000
PG Journal Number 8/2007
Publication Date 23-Feb-2007
Grant Date 15-Jun-2006
Date of Filing 24-Oct-2000
Name of Patentee M/S. HALDOR TOPSOE A/S
Applicant Address NYMOLLEVEJ 55, DK-2800 KGS, LYNGBY
Inventors:
# Inventor's Name Inventor's Address
1 CLAUS J.H.JACOBSEN RUNESTIEN 9 DK-3630 JAEGERSPRIS
PCT International Classification Number C01C1/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/162,151 1999-10-29 U.S.A.