Title of Invention

A NOZZLE FOR DISCHARGING MOLTEN METAL IN A CASTING DEVICE

Abstract (57) Abstract: The present invention relates to a nozzle vetch is tuneful for pining mutant . metal, aluminum killed mohair steel. The nozzle is fined from t in a carbonized matrix. Graphite is present in an amount of ignore than 33 % by wt based fly the total solid bleakly Nozzles for tubes made in accordance with tins invention have mooned biennale shock resistance. nozzles tubes of this invaded resist of ammonium oxide therein they we used five pouring killed steel. PRICE: THIRTY RUPEES
Full Text



a nozzle for discharging molten metal m a casting device and The present invention relates to/the art of casting aluminum killed molten steel and related ferrous alloys. The invention is directed toward tubes such as casting shrouds, nozzles (including submerged entry nozzles and submerged entry shrouds) and the like through which the molten metal passes during a continuous casting process. Typically these tubes are used in a continuous casting process for pouring the molten metal from a ladle into a tundish or from a tundish into a casting mold. The tubes of the present invention are made from a composition which is effective in preventing the deposition of non-metallic inclusions, especially alumina (AI2O3), on the interior surface of the tube as the metal passes therethrough. In addition, the tubes made from this material also have a surprising thermal shock resistance. The invention is more particularly directed toward submerged entry nozzles and submerged entry shrouds which resist clogging caused by the deposition of aluminum oxide therein and which also have a surprising thermal shock resistance.
2. Background Information
It is well known that aluminum metal or alloys thereof may be added to molten steel in order to remove dissolved oxygen. The aluminum removes the oxygen from the steel by reacting with the oxygen to produce solid AljOg most of which floats to the top of the molten steel where it can

be easily removed. However, a small amount of AljOg remains in the steel. The AI2O3 which remains in the steel is known to accumulate and form a deposit on the Inner surface of casting shrouds and nozzles as the molten metal passes therethrough. Although the reasons for this phenomenon are not completely understood, it is believed that the deposition occurs due to the presence of alumina in the refractory material of the nozzle which comes in contact with the molten steel containing residual alumina from the aluminum killing process.
The deposition of alumina is particularly troublesome in the nozzles and shrouds associated with a tundish which is used in a continuous casting process. In this type of process, the mo}ten is teemed from a ladle through a nozzle or shroud into a tundish. The tundish includes a plurality of holes in the bottom which are connects to nozzles for the flow of molten steel therethrough into the casting machine. In order to accomplish this objective, it is important that tote nozzles be able to provide a regular flow of molten metal to the casting machine. Typically, such casting machines operate at a specific casting rate. Obviously, it is important that the supply of molten metal which flows through the nozzles to the casting machine must remain as constant as possible during the casting procedure. Thus, nozzles which become tray or wholly occluded due to the deposition of alumina within the bore of the nozzle will cause serious problems in the casting procedure.
Various techniques are known in the prior art for avoiding the above-noted clogging problems. However, none of these have been totally satisfactory for a variety of reasons. For example, it is known in the art to provide a nozzle with a plurality of openings in the internal surface for the passage of an inert gas into the bore while the metal is flowing therethrough. In operation, gas is injected through these openings into the bore and this gas minimizes contact between the molten metal and the

nozzle surface, thus preventing interaction between the metal and the nozzle which, in turn, prevents clogging from taking place. Typically, the openings constitute a highly porous surface which may be in the form of a porous sleeve within the bore of the nozzle. A nozzle of this type must include a complex and costly internal structure in order for the inert gas to reach the openings or pores within the internal portion of the nozzle. Thus, the manufacturing steps and costs associated with such a nozzle make this type of nozzle undesirable. In addition, the use of such nozzles is known to produce defects such as pinholes in the steel product due to the large amount of inert gas which is required to avoid the clogging problem.
Another approach to solve the clogging problem involves the fabrkation of the nozzle from a material which does not interact with the molten metal to form deposits of alumina. However, there are only a limited number of materials which are capable of functioning in this manner and which have the refractory properties which are needed in the environment of the molten metal casting apparatus. \n particular, it is difficult to ftTHJ a material which has the required thermal shock resistance needed for and the like through which nrwiten metal flows.
U.S. Patent PJos. 5.244,130; 5,046,647; 5,0«»331 and 5,083,687 disclose various types of materials which are used to make nozzles and the like for casting molten metal. The specifications of each of the above-noted patents are incorporated herein by reference.
U.S. Patent No. 5,244,130 (Ozeki ef a/.) provides an improved nozzle which is said to overcome the problems associated with other prior art nozzles. Ozeki ef a/, mention two types of prior art nozzles over which their invention is said to be an improvement. The first prior art nozzle is made from graphite and calcium zirconate (zirconia clinker) containing 23%-36% CaO. Ozeki et al. mention that the cateium rsj’e contained in the

calcium zirconate does not sufficiently move toward the surface of the nozzle bore through which the steel flows and consequently the calcium oxide does not come into sufficient contact with the non-metallic inclusions such as a-alumina, and for this reason, this prior art nozzle is not effective in preventing the accumulation and deposition of alumina within the nozzie.
The second type of prior art nozzle discussed in U.S. Patent No. 5,244,130 is similar to the first, but additionally includes calcium metasilicate 1CaO.Si02). It is said the that presence of the calcium metasilicate in the second type of prior art nozzle overcomes the problems noted with respect to the first type of prior art nozzle due to the combined effects of caJcium zirconate and calcium metasilicate which allows the (dictum oxide in each particle of zirconia clinker to move toward tfw surface. However, Ozeki et at also note with respect to the second type of prior art nozzle that the calcuim metasilicate has a low content of calcium oxide which is insufficient to adequately replenish the calcium QKide which reacts with the alumina in the molten steel; thus making it impossible to prevent clogging of the nozzle for a long period of time. In order to overcome this problem, Ozekj et a/, use crystal stabilized caicium aScate (aCaO.SiOj and SCaO.SiO’}.
The nozzles disclosed by Ozeki etal. include graphite in the amoOnt of 10-35 wt.% which is added to improve oxide resistance, wetting resistance against moiten steel and to increase thermal conductivity. Graphite in amounts which exceed 35% are avoided since such large amounts of graphite degrade corrosion resistance. There is no suggestion for adding flake graphite to improve the thermal shock resistance which is noi surprising since the zirconia clinker used by Ozeki etal. is said to have

U.S. Patent No. 5,083,687 (Saito etat.) provides an Improved nozzle for overcoming the above-noted clogging problem. Saito eta/, mention that one type of prior art nozzle which was designed to avoid the clogging problem uses an inner lining made from a material containing 90-50 wt.% MgO and 10-50 wt.% C. However, it is noted in the specification that such materials containing graphite (C) and MgO suffer from cracking due to a large thermal expansion coefficient as compared to conventional nozzles made from alumina and graphite. Saito et a/, also note that nozzles containing MgO and C exhibit inferior anti-spalling. In view of these undesirable features associated with refractories containing MgO and carbon, particularly the poor thermal shock resistance associated with the presence of MgO in the composition, Saito er al. concluded that nozz\es which includes these ir>gredtents would be unacceptable. Thus, Saito efaL avoid any materia) which contains MgO as a material for making the nozzle. Instead, they use a composition containing boron nitride, zirconium oxkle and a sintering assist’it containing SiC and B’C.
U.S. Patent tio. 5,046,647 (Kavrai et ai.\ discloses two types of improved rwzzles for de’mg *with the clogging problem. One noz’ is made from 2’02. C and ‘O’ l’vvai et a/, emphasize that CaO aM MgO should be avoided, or at best, can be tolerated in small amounts so that tiw sum of CaO and MgO is less than 1 %. Kawai et al. also describe a seconti type of nozzle containing CaO and SiOj in which the ratio of CaO to SiO’ is limited to 0,18 to 1.86. No MgO is disclosed for use in this second type of nozzle which is not surprising in view of the lack of thermal shock resistance noted in the prior art when MgO is included in the compositior of the nozz\e.
Patent No. 5,060,831 (Fishier et al.) discloses a material for covertnt a casting shroud such as a tundish nozzle used for casting steel. Tbt

composition includes CaO and a zirconium oxide carrier. There is no suggestion for including MgO in the composition.
SUMMARY OF THE INVENTION It is art object of the present invention to provide a casting element such as a nozzle or the tike which does not become clogged with alumina when used in a process for casting aluminum killed ferrous metal alloy, especially aluminum killed steel.
It is a further object of this Invention to provide a casting element such as a nozzle or the like which combines the aforementioned clogging resistance with enhanced thermal shock resistance.
It is a further object ofthe present invention to provide a method for
casting aluminum killed ferrous metal, especially aluminum killed steel which utilizes the casting element of the present invention.
-These and other objectives are accomplished by providing a tubular casting element containing doloma {i.e.. doloma or CaO.MgO) and flake graphite in a carbon matrix or network derived from a binder resin by heating the resin urtder csternzing conditions. It has been discovered that tubular casting elements such as a nozzle made from the above material avoids the clogging problem. In addition, it has also been discovered that the selection of doloma as the refractory material for such casting elements combined with flake graphite results in a casting element having highly desirable thermal shock resistance so that the molten metal can flow through the casting element without cracking with a minimum or absence of preheating of the casting efement being necessary. The thermal shock resistance obtained wife the dolman refractory is surprising in view of the prior art observation that nozzles which include MgO have an unacceptable

level of thermal shock resistance which causes them to crack when used in a casting process.
Although the present invention is more particularly directed to nozzles used in continuous casting procedures, the invention is not limited to such nozzles but is more generally applicable to any tube or the like through which moiten metal flows and which is susceptible to clogging as described above. Thus, while the following descriptive material refers to nozzles used In casting procedures, it will be understood that the description applies equally well to related devices which are susceptible to the aforementioned clogging problem.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a sectional view illustrating an err’KKJiment of the nozzle of the present invention.
Figure 2 is a vertical section illustrating anottier embodiment of the nozzle according to the present invention.
Figure 3 is a graph which illustrates the r’ationship between the parameter R’ mvi the probability of failure.
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS The nozzles of the present invention are made by substituting doloma/graphite in place of the Al’Oj/graphite used in prior art nozzles. It has been discovered that the doloma avoids the clogging problem associated with alumina/graphite tubes because the doloma causes the production of soluble reaction products which do not clog the rrazzle. Doloma is a well krwwn and commercially available refractory material which is currently used for a variety of refractory appHcattons due to its

heat resistant capability. It is made by calcining dolomite to convert the MgCOj to MgO and the CaCOg to CaO. Sintering is then performed on the calcined dolomite to densify the grain. Typically, the doloma is sold in pulverized form which can be shaped into a variety of structures.
The nozzles of the present invention are made by mixing doloma powder with graphite, preferably flake graphite, with sufficient Hqui The agglomerates are pressed isostaticalty in a mold at ambient temperature to shape the nnaterial into the c’ired fofm. The shaped mass is baked in a curing oven where the temperature is gradually increased to harden (cure) the resin. Next the formed mass is carbonized (coked) in a furnace at a carbonizing temperature greater than 850*0 {e.g.. 1800-2400*F) in an inert gaseous atmosphere which is unreactive with the resrn (e-flL, nitrogen or argon) to fully carbonize the resin and form a carbon netwwi'k or matrix which holds the doloma aruJ gr’>hite together.
Resins which have sufficient green stren’b to biiKi the refractory materials and which can be carbonized to form a carbon network are well known to those skilled in the art. Many synthetic resins are known to be useful for forming refractory materials such as nozzles and can be used in the present invention. In general, it is known that these resins form a carbon network after the carbonizing or coking step. The carbon network holds the article together so that it resists breaking. Thus, the amount o1 resin should be enough to provide a sufficient amount of carbon network to accomplish this well knowm objective. Excessive amounts of carbor network should be avoided. Thus, it is preferable that the amount o carbon network should be no more than the amount wrtireh is required tc

hold the finished articie together so that it resists breaking. Generally, the carbon network constitutes 4-7 wt.% of the finished nozzle, preferably about 5-6% (e.g.. 6%).
If solid resin is used, it should be dissolved in a solvent to form a liquid binding resin composition. Typically, resins which are known for use in forming nozzles have a high coking value in the range of about 45%-50% to produce sufficient carbon network after carbonization. Also, curing the resin should avoid a condensation reaction since the water produced by such a reaction would be expected to react with the calcium oxide in the dolomite to produce the corresponding hydroxide which occupies a higher volume and thereby causes the structure to come apart. Thus, resins whkJh are known for use with other calcium oxide containing reiractory materials can be used in the present invention. The binding resin will produce a carbon network after the carbonizing or coking step which is sufficient so that the nozzle resists breaking. It is known that some wei’t loss of the resin occurs during the carbonization step. This weight loss results in some open porosity. Ideally, the weight loss which accompanies the thermal treatments does not result in an open porosity ‘eat’ than 16%.
A preferred resin is phenol-formaldehyde resin. Such resins'are well known and are produced by the reaction of phenol and formafdehyde. Preferably, the resin system contains formaldehyde and phenol in a ratio of 0.85 formaldehyde to phenol. The reaction between the phenol and formaldehyde is normally acid catalyzed so that the resulting resin must be buffered, dewatered and have the free phenol adjusted. The preferred levels are pH about 7.0, water below 0.1% and free phenol between 0.2-0.9%. The resin should then be put into solution with solvent. Suitable solvents include primary alcohols such as methyl, ethyl, isopropyl and fuffuryl alcohol; glycol such as ethylene glycol; ketones such as methyl

ethyl ketone and methyl isobutyl ketone; aldehyde such as furfuraldshyde and acetaldehyde; dibasic esters and dimethyl formamide. Preferably the solvent is a furan compound, preferably furfuraldehyde or a solution of furfuryl alcohol and furfuraldehyde. In practice, the resin solution includes a basic co-reactant such as triethylene tetramine, diethylene tetramine, ethylene diamine or tetraethylene pentamine. Other suitable co-reactants include diamines having an amine value of 1000±100 and the equivalent molecular weight of 30 ±2.
As an alternative to the B staged phenolic novolak-furfural solution, the invention may use a phenolic novolak dissolved in glycol and methyl alcohol but this resin is less desirable.
Another alternative binder system involves the use of furfuraJ and a powdered phenolformaldehyde resin, mixed until the furfural picks up the solid, powdered resin and the resulting plasticized resin then causes the raw materials to roll up into agglomerates. A tumble dryer is subsequently used to densify the agglomerates. This process -results in agglomerates with excellent properti’. .
The graphite used is preferably natural flake graphite with a c’ixm content of nbt less than about 94%. Preferably the flake size should be described by a normal distribution curve centering around 250 microns. Although minor amounts of impurities may be tolerated in the graphite, it is preferable to minimize such impurities. Preferably the graphite should be substantially free from contaminates and residual flotation compounds and the water content shouid be less than 0.5%. An analysis of a preferred flake graphite is shown in Table 1.

1 TABLE 1
1 Specie Wt. %
Carbon 95 ±1
CaO 0.15
MgO 0.06 1
M,0, 0.87
SiOj 2.7
Fe’Oa 1.0
Other 0.22 1
The graphite is in the form of a powder so that it can form agglomerates with the doloma powder and resin and so that these agglomerates can then be molded into a fixed shape for carbonization. Preferably the particles are 0.044-0.3mm in diameter.
The doloma is also in the form of a powder which can form agglomerates with the graphite and resin. Preferably the doioma is small ' enough to pass through a 14 mesh screen and large enough to be held on a 100 mesh screen [iiJS. standard mesh). However, when screening the doloma to obt’ tte ‘ipropriate size range for this invwition, it is not absolutely necessary to remove all of the material which would pass through the TOO mesh screen. For example, it is acceptable to include up to about 10 v\ft.% of the fines which would eventually pass through the 100 mesh screen if the screening process were continued for a very long period of time. In addition, doloma ball mill fines may also be included. Ball mill fines are small enough to pass through a 325 U.S. standard mesh and can be defirwd as particles having a surface area-to-weight ratio of 2300 Cm’fgm to 2800 CmVgm. A suitable doloma is a powder having particles rwiging in size from 0.15mm to 1.4mm in diameter and which may further include dolomite ball mill fines. Minor amounts of impurities may be tolerated in the-
impurities. Preferably, the doloma should contain a minimum of 56.5% CaO, 41.5% MgO and a maximum of 2% other impurities with a maximum of 1 % Fe203. An analysis of a preferred doloma is shown below in Table 2.

TABLE 2 1
Specie Wt. %
CaO 56.7
MgO 41.2
A(,03 0.5
SIOj 0.4 1
Fe=0, 1.2 1
Preferably the density of the dofoma is from 3.25 to 3.28 grams/cubic centimeter. Thus, the doloma should be sintered until the bulk density of the grain is a minimum of 3.25 grams/cubic centimeter. Preferably the total porosity, open and ck’ed, shouW not exceed 5%. The preferred particle size distribution of the doloma fraction contained in the nozzle is 150 microns - 1300 microns vaith the ball mill fines having a statistH:al mean particle diameter of 7.2 rracrcH’. In another preferred embodiment, the doloma includes a fraction ha’ong a particle size range from 0.15mm - 1.4mm in diameter (coarse fraction] and a ball mill fines fraction. In this preferred embodiment, the coarse fraction of doloma should be in the range from about 32 wt.% to about 43 wt,% with respect to the solids blend. The solids blend includes all the solid material {e.g., graphite and doloma) and excludes the resin, solvent and resin co-reactant. in this preferred embodiment, the ball mill fines fraction may range from 20-25 wt.% of the solids blend.
The solids blend used in the present invention may further include other oxides which are compatible with CaO and MgO. Such oxides include silica (SiOj), zirconia (ZrOj), hafnia (HfOj), ceria (CeOj), titania

(TiOj) and magnesia (MgOJ. These oxides should be betow 25 wt.%ofthe solids blend, preferably no more than 10 wt. % and most preferably no more than 5 wt.%. The amount of MgO may exceed 1% {e.g., more than 1% up to 10% or more than 1% up to 5%). In addition, effective amounts of known antioxidants used in refractory nozzles may also be included in the solids blend. Suitable antioxidants can include the metal powders of aluminum, silicon, boron, calcium and magnesium or the carbides of silicon, calcium, zirconium, boron, tantalum and titanium. Some low melting oxides such as boric oxide, sodium borate or any combination of glass formers -aluminum, silicon, boron, phosphorous and zirconium oxides can be added to the body in order to form a protective layer on the surface to ban the ingress of oxygen into the body. This oxygen will destroy the bond carbon, and therefore, must be prevented from doing so by some barrier layer. The additions of metals or glass-fornrung oxides or carbides accomplish this. These materials are added in antioxidant effective amounts to protect the nozzle from oxidation particularly wften the nozzle is hot.
The nozzles and related articles of this invention are made by -’ conventional molding techniques. First, tfte solid blend containing the dolomite, graphite aruj optional me’ oxkJe additives and optional antioxidant additives are mixed. Next, the msm is added to the dry solid blend and the ingredients are mixed in an agglomerating mixer to form agglomerates. Preferably the agglomerates have a normal size distribution centered around 400 microns with no agglomerates being greater than about 2000 microns and none being finer than about 150 microns. The agglomerates are formed in the mixing operation when the solids blend is wet blended with the resin. For example, in a preferred embodiment, the agglomerates are formed by wet mixing the solids blend with the resin solution along with the co-reactant. Derwification of the agglomerates occurs during the mixing operation through viscosity enhancement of the resin which occurs when the volatile JiwJfis&’sj’iialSjand the resin and co-

reactant react with each other. Preferably, the bulk density of the agglomerates should not be less than 1.65 grams/cubic centimeter, more preferably from 1.9-2.1 grams/cubic centimeter. Such agglomerates, when pressed at 10000 PSI, will form an article having a bulk density of 2.37-2.45 grams/cubic centimeterr
The agglomeration is best performed at ambient temperature with onfy a graduaf and limited amount of warming which occurs due to the mixing and slight exothermic reaction which occurs as the resin cures. Preferably the material being agglomerated should not be allowed to exceed a temperature more than about 1ACF and the rate of temperature increase should be no more than about 3°F per minute.
The agglomerates are placed in a mold {e.g.. rubber mo*d) and formed at high pressure, e.g., 8500 PSI (580 bar) to 25000 PSI (1700 bar) to form the shaped structure having a bulk density in the range of 2.35-2,45 grams/cubic centimeter which is a preferred density for operation in a metal casting procedure. An isostatic press with rubber tooling may be used for the molding operation. After molding, the shaped structitfe is’ heated in the absence of oxygen {e.g., in an atmosphere of nitrogen or argon) at a high temperature {e.g., 975-1375°C) untii the reski tond is converted to a carbon bond. The articles in this coked state will have the required physical characteristics to permit successful use as nozzles and the like for casting molten metal.
There may be wide variation in the amount and proportion of the solid materials which are used to form the nozzles and similar articles of this invention. Generally, the doloma (including ball mill fines) can vary from 30-70% based upon the weight of the solids blend. Unless otherwise stated, all percentages given herein are percentages by weight.

There should be at least about 25 wt.% graphite in the solids blend. There is no upper limit to the amount of graphite as long as there is sufficient dolomite to avoid the clogging problem. However, it is preferred to limit the graphite to no more than 45% to avoid excessive erosion associated with nozzles containing a large amount of graphite. Thus, a preferred embodiment of this invention, the graphite can vary from about 25 wt.% to about 45 vrt.% based upon the weight of the solids blend, more preferably about 30% to about 45% by weight. However, in order to combine the anticlogging advantage with the desired thermal shock resistance required for adequate performance, the graphite content should be greater than 33% {e.g., greater than 35%) to about 43%, preferably about 37-43% and most preferably about 38% and the doloma should be in the range of 37-63 vvt.% based upon the weight of the solids blend.
The thermal shock resistance property of the nozzles of this invention is very significant since it allows the nozzles to be used without having to undergo an extensive and time consuming pre-warming procedxire.
When moltwi steel which can vary from 285O-3100'F amending on the grade, hits a cooler tube, the interior of the tube begins to expcffid at a faster rate than tfie outer parts of the tube. This generates a teaisfle "hoop stress" in the outer parts of the tube. The tube will crack if this stress exceeds the tensile fracture strength of the material. Air will be admitted to the steel stream when the tube cracks and this will result in unwanted oxidation.
A parameter which is used to evaluate thermal shock resistance is shown in the formula below:


In the above formula: G is the surface fracture energy; a is the linear coefficient of thermal expansion and E is Young's modulus which is the rstio of stress-to-strain in the elastic region of the stress-to-strain curve.
for the purposes of the present invention, adequate thermal shock resistance is achieved when the probability of failure {i.e., cracking) is below an acceptable level. Figure 4 is a graph which shows the relationship between the probability of failure on the vertical axis and the R„ value on the horizontal axis. For practical purposes, an acceptable thermal shock resistance is obtained when the R„ value is about 25 or higher, since such R’ values are associated with a probability of failure which is Jess than 10'‘. Such values begin to be achieved when the graphite content is more than about 33% since it has been observed that when the graphite content is 33% with 62% doloma, the R„ value is 24.6. There is a distinct improvement in the thermal shock resistance when the graphite level is greater than 35 wt.% of the solids blend.

This invention will now be described with reference to the figures in the accompanying drawings.
Accordingly, the present invention provides a nozzle for discharging molten metal in a casting device, said nozzle having an inner portitxi «4iich fonns a bore ext’ding therethrou’ fw the passage of molten metal through said nozzle w’ein at least part of said inner ptnticm of said nozzle is formed of a refi-act Accordingly, the present invention also [H-ovides a method for casting molten aluminum killed ferrous metal to produce a moulded article which fon’uises pairing said molten metal throu’ a nozzle into a mold and then solidifying said metal wherein said nozzle has an inner portion which forms a bore extending therethrough for the passage of molten metal through said nozzle and wherein at least a part of said inner porticm of said nozzle is formed of a refractory containing, solids blend which consists essentially of doloma and graphite and said solids of said solids blend being bonded in a carbonized matrix; wlierein said graphite is present in an amount of more than 33 wt % based on the weight of said solids blend

The nozzles of the present invention may be formed entirely of the above described composition like the embodiment shown in figure 1. Figure 1 shows a nozzle indicated generally by reference numeral 1. The entire nozzle is made from the refractory material of this invention which is shown by reference numeral 2.
Figure 2 shows an alternative embodiment wherein only the inner portion of the nozzle is made from the refractory material of this invention. Thus, figure 2 includes an inner lining 3 made from the refractory material of this invention while the outer material 4 may be less expensive material which does not come in contact with the molten metal. Figures 1 and 2 show an inner bore 5 within the nozzle for the passage of molten metal therethrough.

The following examples illustrate preferred embodiments of the invention which have acceptable thermal shock resistance values.

1 TABLE 3
Example
1 Example 2 Example 3 Example 4 Example 5 Example 6
Graphite
0.3mm-0.15mm
dia. 38 30 38 30 45 38
Graphite 0.15mm-0.044mm 0 8 0 8 0 7
Doloma 0.42mm-0.15mm 7 7 37 37 0 12
Doloma 1.4mm-0.15mm 30 30 0 0 37 25
Doloma Ball Mill Fines 25 25 25 25 25 25
Liquid Resin 10 10 10 10 10 10
Basic Coreactant 1 1 1 1 1 1
Examples 1-6 were made from the compositions shown in Table 3 which shows the parts by weight for each ingredient used therein. In examples 1-6, the dry ingredients (graphite, doloma and ball mill fines) are dry mixed to form a blend which is then wet mixed with the resin and co¬reactant. Mixing is continued to form agglomerates of the cured resin and solid particles. These agglomerates are placed in a rubber mold and formed at high pressure (e.g., 8500-25000 PSI). Next, these parts are then heated in the absence of oxygen until the resin is converted to a carbon bond. The parts in this coked state have desirable physical properties to permit successful use as pouring tubes. These properties are shown below in Table 4.

TABLE 4
Example
1 Example 2 Example 3 Example 4 Example 5 Example 6
Bulk Density 2.28±0.0 5 2.29 ±0.0 5 2.26±0.0 6 2.26±0.0 6 2.23±0.0 5 2.20 ±0.0 5
Apparent Porosity 15.4±2 % 15.1 ±2
% 16.1 ±2 % 16.0±2.0
% 16.3±2.0
% 16.7±2.0
%
Room
Temp.
MOR (psi) 700 ± 200 7 00 ±200 600 ± 200 660 ±200 600 ±200 550 ±100
Rst 38. t 36.4 36.4 35 41 40
All of the above examples have R’ values well in excess of 25. However, lowering the amount of graphite from 38% of the solids blend to 33% of the solids blend results in an R„ value of only 24.6 compared to an R’ value of 38.5 when the amount of graphite is 38%. This distinction is illustrated by a comparison between the composites A and B formed by pressing and carbonizing the compositions shown below in Table 5 which indicates the parts by weight of each ingredient.

TABLES
Example A Example B
Graphite
0.3mm-01.5mm
dia. 38 33
Doloma 1.4mm-0.59mm 30 30
Doloma 0.42mm-0.15mm 7 1 ‘
Doloma BMF 25 25
Resin 10 10
Coreactant 1 1

The physical properties of the composites A and B are shown below in Table 6.

TABLE 6
Example A Example B
Coefficient of Thermal Expansion 6.8x10*"C' 8.7xlO«'C'
Young's Modulus GPA 1.65 2.33 1
1 /2 6, e, 119 107 1
Rst 38.5 24.6 1
■ ■"—™ =■■—'1
It can be seen from the R’ values in Table 6 and the graph of figure 3 that the probability of failure for composite A is very low at about 1 tube in 1428 tubes while the probability of failure for composite B Is much higher at about 1 tube in 100 tubes.
While the present invention has been described in terms of certain preferred embodiments, one skilled in the art will readily appreciate that various modifications, changes, omissions and substitutions may be made without departing from ‘ thereof. It is intended, therefore, that the present invention be limited solely by the scope of the following claims:


WE CLAIM:
1. A no2zle for discharging molten metal in a casting device, said nozzle having an aimer portion which forms a bore extending therethrough the passage of Mohan metal through said nozzle wherein at least part of said inner portion of said nozzle is funned of a refractory containing solids blend w4uch consists essentially of dolomite and said solids of said solids being bonded in a carbonized matrix wherein said graphite is present in an amount of more than 33 wt % based on the weight of said solids blend.
2. The nozzle as claimed in claim 1, wherein the solids blend contains 37-66 based upon the weight of said solids blend.
. 3. The nozzle as claimed in claim 2, ligroin the dolman has a density of at least
3.25 grams/cm'.
4. The nozzle as claimed in claim 3, wherein the solids blend contains at least 35 wt. % of g7 based upon the weight of said solids blend.
5. The nozzle as claimed in claim 3, warn the solids blend attains up to 45 wt % of graphite based upon the weigh of said solids blend.
6. The nozzle as claimed in claim 5, wherein the gene is flake graphite.
7. The nozzle as claimed in claim 5, wed the solids blend C(Matins 35-45 wt. % of graduate based upon the weight of said sounds blend.

8. The nozzle as claimed in claim 7, veteran the graphite is flake graphite.
9. "Hoe nozzle as claimed in claim 7, wherein the solids blend contains 35-43 wt. % of grit based upon the weight of said solids blend.
10. The nozzle as claimed in claim 9, Merlin the graphite is flake
11. The nozzle as claimed in claim 6, wherein the solids blend contains about 62 wt. % of dolman based upon the weight of said solids blend.
12. The nozzle as claimed in claim 10, wherein the solids blend contains about 38 based upon the weight of said solids blend.
13. The nozzle as claimed in claim 12, wherein the
14. The nozzle as claimed in claim 13, The nozzle as claimed in claim 14, wherein the amount of ball mill fines constitutes about 25 wt % of the solids blend and the coarse fraction of doloma constitutes about 37 wt. % of the solids blend and said coarse fraction includes a first subfraction having a diameter of 0.15 mm to 1.4 ram and a second subfraction having a diameter of 0.15 mm to 0.42 mm; said first coarse subfraction being persist in an amount of about 30 wt. % based upon the weight of said solids blend and said sec(»id subfraction being present in an amount of about 7 wt. % based exam the weight of said solids blend.
15. The nozzle as claimed in claim 15, wherein the graphite has a diameter of 0.15 mm to 0.3 mm.
The nozzle as claimed in claim 8, wherein the solids blend further includes an oxide selected from the group consisting of Si02, 20. The nozzle as claimed in claim 5, wherein the entire inner portion of said
nozzle is formed from said refract containing solids blend which is bonded
in said carbonized matrix.
21. The nozzle as claimed in claim 10, wherein the whole of said nozzle is
fern said refractory containing sounds blend which is bonded in said carbonized
matrix.
22. A method for casting molten aluminum killed ferrous metal to produce a
molded article which pouring said molten metal through a nozzle
into a mold and then codifying said metal wherein said nozzle has an inner
portion which form a bore extending therethrough for the passage of monkey
metal through said nozzle and wherein at least a part of said inner portion of
said nozzle is formed of a refractory containing, solids blend which consists
essentially of doloma and graphite and said solids of said strides blend being
bonded in a carbonized matrix; wherein said is present in an amount of
more than 33 wt % based on the weight of said solids blend.
23. A nozzle for discharging Mohan metal in a casting device substantially as herein described with reverence to the accompanying drawings.
24. A method for casting molten aluminum killed ferrous metal to produce a molded article substantially as herein described with reference to the accompanying drawings.


Documents:

0697-mas-1996 abstract.pdf

0697-mas-1996 claims.pdf

0697-mas-1996 correspondence -others.pdf

0697-mas-1996 correspondence -po.pdf

0697-mas-1996 description (complete).pdf

0697-mas-1996 drawings.pdf

0697-mas-1996 form-1.pdf

0697-mas-1996 form-26.pdf

0697-mas-1996 form-4.pdf

0697-mas-1996 form-9.pdf

0697-mas-1996 others.pdf

0697-mas-1996 petition.pdf


Patent Number 193074
Indian Patent Application Number 697/MAS/1996
PG Journal Number 30/2009
Publication Date 24-Jul-2009
Grant Date 11-Mar-2005
Date of Filing 26-Apr-1996
Name of Patentee M/S. BAKER REFRACTORIES
Applicant Address PENNSYLVANIA, 232 EAST MARKET STREET, P.O.BOX 1189, YORK PENNSYLVANIA 17405-1189
Inventors:
# Inventor's Name Inventor's Address
1 DONALD BRUCE HOOVER 1710 HILLOCK LANE, YORK, PENNSYLVANIA 17403
PCT International Classification Number C21B 7/12
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA