Title of Invention

METHOD FOR CONTROLLING A HYBRID ELECTRIC VEHICLE

Abstract The present invention provides a method adapted to control a hybrid electric vehicle having a primary power source and a secondary power source.The method includes estimating the power capability of the primary power source,and thereafter obtaining a power command from the vehicle"s driver.A primary power demand and a secondary power demand which collectively meet the driver power command are then established, and a desired power balance between the primary power demand and the secondary power demand is also obtained.A system power capability is calculated based on the desired power balance and the estimated power capability.The method of the present invention then determines if the driver power command exceeds the system power capability.If the driver power command exceeds the system power capability,the driver power command limited and thereafter the limited driver power command is executed.
Full Text GP-308232
1
METHOD FOR CONTROLLING A HYBRID ELECTRIC VEHICLE
TECHNICAL FIELD
[0001] The present invention pertains generally to a method for controlling a
hybrid electric vehicle to optimize performance and prevent over use of an energy storage
system
BACKGROUND 0F THE INVENTION
[0002] Hybrid electric vehicles typically include an engine and an electric
motor/generator which are operable to drive the vehicle When a person driving the vehicle depresses the gas pedal a control module establishes a driver power command and thereafter controls the engine and/or the electric motor/generator to meet such command It is well known to balance engine usage and electric motor/generator usage to meet the driver power command in a fuel efficient manner
SUMMARY OF THE INVENTION
[0003] The method of the present invention is configured to control a hybrid
electric vehicle having a primary power source and a secondary power source The
method includes estimating the power capability of the primary power source and
thereafter obtaining a power command from the vehicle's driver A primary power
demand and a secondary power demand which collectively meet the driver power
command are then established, and a desired power balance between the primary power
demand and the secondary power demand is also obtained A system power capability is
calculated based on the desired power balance and the estimated power capability
[0004] The method of the present invention then detemines if the driver power
command exceeds the system power capability If the driver power command exceeds the system power capability the driver power command limited and thereafter the limited driver power command is executed
[0005] The above features and advantages and other features and advantages of
the present invention are readily apparent from the following detailed description of the

GP-308232
2
best modes for carrying out the invention when taken in connection with the accompanying drawings
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIGURE 1 is a schematic illustration of a vehicle in accordance with the
present invention, and
[0007] FIGURE 2 is a flow chart illustrating a method in accordance with the
present invention
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0008] In a conventional hybrid vehicle system, a control module controls an
engine and/or an electric motor/generator in order to produce enough power to meet a
given driver power command The engine usage and the electric motor/generator usage
are generally balanced to meet the driver power command in an optimally fuel efficient
manner As an example, if the driver power command is 100 kilowatts (kW), the
controller may determine that the engine should produce 75 kW and the electric
motor/generator should produce 25 kW of power such that a total of 100 kW of power
is produced and the driver power command is met In other words, the control module
establishes an engine power demand (75 kW) and a motor/generator power demand (25
kW) which, when added together, equal the driver power command (100 kW)
[0009] If the engine in a conventional hybrid vehicle is not optimally performing
or is not fully capable, it may be incapable of meeting a given engine power command Eess than optimal engine performance may be attributable to, for example, a clogged fuel line of fuel filter, a boost leak in a turbocharged engine, or an engine over heating condition In order to meet the driver power command when the engine is not fully capable, a conventional hybrid vehicle will increase the motor/generator power demand by an amount necessary to compensate for the under performing engine Referring to the preceding example wherein the driver power command is 100 kW, if the engine is only capable of producing 65 kW of power the motor/generator would produce 35 kW

CiP-308232
of power in order to compensate for the engine and thereby meet the driver torque command
[0010] Implementation of the electric motor/generator to compensate for an
improperly performing engine can result in over use of the energy storage system powering the electric motor/generator This over use of the energy storage system can produce additional heat which may reduce component life and durability Additionally, implementation of the electric motor/generator to compensate for an improperly performing engine masks the underlying engine problem As the drivers demands are being met, overall vehicle performance is not diminished and the driver does not receive any indication that the engine is not fully capable Therefore, the engine is less likely to receive the service it requires
[0011] Conventional diagnostic methods for determining errors in the system
such as from the primary power source dealt with large errors in estimated power input into the transmission from the primary power source and did not adjust output capability for small percentage errors and account for tong term effects of these small errors Those methods also did not address cases where the primary power source would not meet the commanded power even though it reported correctly the power it was making
[0012] Referring to the drawings, wherein like reference numbers refer to like
components, Figure 1 shows a schematic illustration of a vehicle 10 in accordance with the present invention The vehicle 10 includes a primary power source such as the engine 12 which is operatively connected to a transmission 14 The transmission 14 includes a secondary power source such as the motor/generator 16 which is operatively connected to an energy storage system such as the battery 18 The motor/generator 16 may draw energy from the battery 18 m order to power the vehicle 10 of may generate and transmit energy to the battery 18 for storage The transmission 14 is connected to the wheels 20 of the vehicle 10 A gas pedal 22 is operatively connected to a control module 24 which controls the output of the engine 12 and the motor/generator 16 to power The vehicle 10 According to the preferred embodiment, the vehicle 10 is a commercial bus and the

GP-308232
5
in its entirety As desenbed in Heap et al, the system dynamic equations the determined using Newton s second law applicable to rotating bodies (i. e net external torque
rotational inertia * angular acceleration) A series of free body diagrams representing components of a particular vehicle transmission are then produced Newton s second law is applied to each component of the transmission which is represented by a free body diagram in order to obtain a summation of all the external torques acting on a given transmission component All the free body diagrams are combined to produce one of more system matrix equations These system matrix equations represent the characteristic open loop response of a particular vehicle system
[0017] To obtain an estimation of the engine torque error, a closed loop control
portion of the equation is added to the system matrix equations The closed loop control portion is based on a feedback response adapted to correct for an engine speed error The engine speed error is defined as the difference between a desired engine speed and an actual engine speed As the magnitude of the feedback response is proportional to the engine speed error, the magnitude of the feedback response may be used to estimate the engine torque error
[0018] After calculating the three indicators l1 l2 and l3 they are each preferably
filtered and normalized For purposes of the present invention the term filter refers to
the process of averaging a plurality of data points taken over a predetermined time
period, and the term 'normalize ' refers to the process of standardizing a given indicator
value to a maximum system power capability such that the normalized value is in the
form of a percentage of maximum capability The composite indicator to representing
the power capability estimation of the primary power source (e g engine) is then
obtained by according to the equation Ic - normalized I1 ' normalized I2 normalized I3
[0019] At step 44, the algorithm 40 obtains a driver power command The driver
power command is preferably obtained in the following manner A pedal position sensor 26 (shown in Figure 1) operatively connected to the gas pedal 22 transmits a signal indicative of the gas pedal position (I e , the amount by which the pedal 22 is depressed) to the control module 24 (shown in Figure 1) The gas pedal position is input into a throttle tookup table stored in the control module 24 in order to obtain the

GP-308232
6
from power command The throttle tookup table is preferably compiled through testing As an example if the pedal position sensor 26 indicates that the gas pedal 22 is 75% depressed, and previous testing indicates that a vehicle similar to the vehicle 10 produces 100 kW of power at 75% throttle then the current driver power command is 100 kW
[0020] At step 46, the algorithm 40 initially establishes an engine power demand
and a motor/generator power demand The engine power demand and the motor/generator power demand are generally selected to collectively meet the driver power command in an optimally fuel efficient manner In other words, engine output and motor/generator output are balanced such that they combine to meet the driver power command while consuming the least amount of fuel The desired power balance ratio may also be calculated at step 46 as (motor/generator power demand) divided by (engine power demand) Balancing the usage of multiple power sources in a hybrid vehicle in order to optimize fuel economy is well known to those skilled in the art and therefore will not be described further
[0021] At step 47 the algorithm 40 calculates a system power capability The
system power capability is prelerably based on the desired power balance between the engine power demand and the motor/generator power demand (established at step 46), and the estimated power capability of the engine 12 (established at step 42) As an example assume that the estimated power capability of the engine 12 obtained at step 42 is 70 kW, and the driver power command obtained at step 44 is 100 kW Further assume that the engine power demand and motor/generator power demand obtained at step 46 are respectively 80 kW and 20 kW The desired power balance defined as motor/generator power demand vs engine power demand is therefore equal to 20/80 of 1/4 Applying the desired power balance ratio (1/4) to the estimated power capability of the engine 12 (70kW) provides a reduced motor/generator output value of 70/4 = 17 5 Therelore, according to the present example, the system power capability is 70 + 17 5 = 87 5 kW In other words, even though the driver is requesting 100 kW of

GP-308232
7
system power at step 44, is has been estimated the system is only capable of providing
87 5 kW while maintaining the desired power balance ratio of 1/4
[0022] At step 48 the algorithm 40 determines it the driver power command
(established at step 44) is greater than the system power capability (established at step
47) If the driver power command is not greater than the system power capability, the
algorithm 40 proceeds to step 50 If the driver power command is greater than the
system power capability, the algorithm 40 proceeds to step 52
[0023] At step 50, because the vehicle system is capable of meeting the driver
power command (established at step 44), the algorithm 40 executes the driver power
command More precisely, the algorithm 40 controls the engine 12 (shown in Figure
1) to meet the engine power demand (established at step 46) and the algorithm 40
controls the motor/generator 16 (shown in Figure 1) to meet the motor/generator power
demand (established at step 46) such that the driver power command 44 (established at
step 44) is met while maintaining the desired power balance ratio (established at step
46) After completing step 50, the algorithm 40 returns to step 42
[0024] At step 52, because the vehicle system is not capable of meeting the
driver power command (established at step 44) the algorithm 40 limits of reduces the driver power command and proportionally reduces the engine power demand to match the amount of power the engine is capable of producing (I c , the engine power capability established at step 42) In other words, the driver power command is limited or reduced to the system power capability such that the capability of the engine 12 (shown in Figure 1) is not exceeded and the desired power balance ratio (established at step 46) is maintained
[0025] At step 54, the algorithm 40 executes the limited duvet power command
(established at step 52) More precisely, the algorithm 40 controls the engine 12 (shown in Figure 1) and the motor/generator 16 (shown in Figure 1) to collectively meet the limited driver power command such that desired power balance ratio (established at step 46) is maintained After completing step 54, the algorithm 40 returns to step 42

GP-308232
8
[0026] If the engine 12 (shown in Figure 1) is incapable of meeting a given
engine power demand because the engine 12 is not fully capable, the engine power demand is limited as described hereinabove The motor/generator power demand is not increased to compensate for engine performance issues as is the case in a conventional hybrid system, and the driver power command is therefore not fully met As the driver power command is not being fully met (l e , vehicle performance is diminished), the from can recognize that the engine 12 is not fully capable and requires service According to an alternate embodiment, information indicating that the engine 12 is not fully capable can be conveyed to the driver through an operator interface such as, for example a warning light (not shown) Additionally, as the motor/generator 16 (shown in Figure 1) is not being implemented to compensate for an engine which is not fully capable, there is a reduced risk of motor/generator overuse such that battery life and durability are improved
[0027] While the best modes for carrying out the invention have been described
in detail those familial with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims

GP-308232
9
CLAIMS
1 A method for controlling a hybrid electric vehicle having a primary
power source and a secondary power source composing
estimating the power capability of the primary power source
obtaining a driver power command
establishing a primary power demand for theprimary power source a secondary power demand for the secondary power source and a desired power balance between the primary power demand and the secondary power demand
calculating a system power capability based on the desired power balance and the estimated power capability of the primary power source
determining if the driver power command exceeds the system power capability,
limiting the driver power command if the driver power command exceeds the system power capability, and
executing the limited driver power command
2 The method of claim 1 wherein said obtaining a driver power
command includes monitoring the position of a gas pedal and implementing a throttle tookup table
3 The method of claim 1, wherein said establishing a primary power
demand and a secondary power demand includes establishing a primary power demand
and secondary power demand which collectively meet the driver power command in an
optimally fuel efficient manner.
4 The method of claim 1, further comprising executing the driver
power command if the driver power command docs not exceed the system power
capability
4
GP-308232
10
5 The method of claim 1, wherein the primary power source is an
engine
6 The method of claim 5, wherein the secondary power source is an
electric motor/generator
7 A method for controifing a hybrid electric vehicle having a primary
power source and a secondary power source compnsing
estimating the power capability of the primary power source
obtaining a driver power command
establishing a primary power demand for the primary power source and secondary power demand for the secondary power source which coifectively meet the driver power command
establishing a desired power balance between the primary power demand and the secondary power demand,
calculating a system power capability based on the desired power balance and the estimated power capability ot the primary power source,
determining if the driver power command exceeds the system power capability
executing the driver power command it the driver power command docs not exceed the system power capability,
limiting the driver power command if the driver power command exceeds the system power capability and
executing the limited duvet power command if the driver power command exceeds the system power capability
8 The method of claim 7, wherein said obtaining a duvet power
command includes monitoring the position of a gas pedal, and implementing a throttle tookup table

GP-308232
11
9 The method of claim 7, wherein the primary power source is an
engine
10 The method of claim 9, wherein the secondary power source is an
electric motor/generator
11 A method for controifing a hybrid electric vehicle having an engine
and an electric motor/generator comprising
estimating the power capability of the engine
monitoring the position of a gas pedal and implementing a throttle tookup table to obtain a driver power command
establishing an engine power demand for the engine and a motor/gcnciafor power demand for the motor/generator which collectively meet the driver power command,
establishing a desired power balance between the engine power demand and the motor/generator power demand,
calculating a system power capability based on the desired power balance and the estimated power capability of the engine,
determining if the driver power command exceeds the system power capability,
executing the driver power command if the driver power command docs not exceed the system power capability
limiting the driver power command if the driver power command exceeds the system power capability and
executing the limited driver power command if the driver power command exceeds the system power capability

The present invention provides a method adapted to control a hybrid electric vehicle having a primary power source and a secondary power source.The method includes estimating the power capability of the primary power source,and thereafter obtaining a power command from the vehicle's driver.A primary power demand and a secondary power demand which collectively meet the driver power command are then established, and a desired power balance between the primary power demand and the secondary power demand is also obtained.A system power capability is calculated based on the desired power balance and the estimated power capability.The method of the present invention then determines if the driver power command exceeds the system power capability.If the driver power command exceeds the system power capability,the driver power command limited and thereafter the limited driver power command is executed.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=Ar/hHfVuFMtrb+AmeX4X0w==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 279875
Indian Patent Application Number 383/KOL/2007
PG Journal Number 05/2017
Publication Date 03-Feb-2017
Grant Date 31-Jan-2017
Date of Filing 14-Mar-2007
Name of Patentee GENERAL MOTORS CORPORATION
Applicant Address Legal Staff 300 Renaissance Center Mail Code 482-C23-B21,P.O.Box 300 Detroit,MI 48265-3000
Inventors:
# Inventor's Name Inventor's Address
1 STEVEN C. HUSEMAN 11986 SAPLING CIRCLE NOBLESVILLE,INDIANA 46060
PCT International Classification Number B60K6/02
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/399,236 2006-04-06 U.S.A.