Title of Invention

"PROCESS FOR THE PREPARATION OF BIS-DMTD"

Abstract The present invention relates to a process for the preparation of bis(dimercaptothiadiazole) (or bis-DMTD), more particularly of 5,5"-dithiobis(1,3,4-thiadiazole-2-thiol), said process being carried out in a single reactor and making possible a preparation with improved yields which is more respectful of the environment.
Full Text PROCESS FOR THE PREPARATION OF BIS-DMTD
[0001] The present invention relates to an improved process for the preparation of bis(dimercaptothiadiazole) (or bis-DMTD), more particularly of 5,5'-dithiobis(1,3,4-thiadiazole-2-thiol), also known as 5,5'-dithiobis(1,3,4-thiadiazole-2(3H)-thione) in its tautomeric form, said process making possible a preparation with improved yields which is more respectful of the environment. [0002] The preparation of bis-DMTD has been known for many years and is, for example, described in patent application CN-A-101096366. [0003] Thus, the synthesis of bis-DMTD is carried out by oxidation of 2,5-dimercapto-1,3,4-thiadiazole (or DMTD, CAS No. 1072-71-5), for example with hydrogen peroxide, according to the following reaction scheme:
(Formula Removed)
it also being possible for which reaction to be written, revealing the tautomeric forms:
(Formula Removed)
[0004] This reaction has formed the subject of a large number of studies, such as, for example, that published in 2006 in patent application US 2006/0168741, showing, inter alia, the difficulty in selectively obtaining bis-DMTD, that is to say while minimizing formation of cyclic dimer or the formation of oligomers, indeed even of polymers.
[0005] However, all these studies are based on the use, as starting material, of 2,5-dimercapto-1,3,4-thiadiazole (DMTD).
[0006] In point of fact, it is well known that the reaction for the synthesis of DMTD generates aqueous effluents in which a not insignificant amount of DMTD is dissolved. The solubility in water of DMTD is from approximately 8 g/l to 30 g/l, according to the temperature and pH conditions, which results in a loss in yield but also and especially in an expensive treatment of the effluents in order to reduce their very high content of oxidizable organic matter, measured by the Chemical Oxygen Demand (COD), which is generally in the order of 15 g/l to 60 g/l approximately.
[0007] This is because the synthesis of DMTD is generally carried out starting from hydrazine and carbon disulfide in aqueous solution, according to the following reaction scheme:
(Formula Removed)
the sodium salt of DMTD (DMTD-Na) being subsequently acidified to give DMTD
by means of an acidic aqueous solution, for example sulfuric acid in aqueous
solution.
[0008] There thus today remains a need relating to a process for the preparation
of bis-DMTD which is selective and more respectful of the environment, in
comparison with existing processes.
[0009] Thus, a first object of the present invention is to provide a process for the
synthesis of bis-DMTD which is as selective as possible, with the highest possible
yields.
[0010] Another object of the present invention is to provide a process for the
synthesis of bis-DMTD which is as respectful as possible of the environment, in
particular a synthesis process where the effluents generated have a smaller load
of organic products, consequently requiring treatments of said effluents with lower
costs.
[0011] The Applicant Company has now discovered a process which makes it
possible to achieve, in all or at least in part, the abovementioned objects by virtue
of the process of the invention which is described in detail in the continuation of
the present account.
[0012] The invention relates to a process for the preparation of bis-DMDT in which the synthesis intermediate DMTD, obtained as suspension in water (with a solubility from approximately 8 g/l to 30 g/l, according to the temperature and pH conditions, as indicated above), is not isolated, which thus does not generate aqueous effluents with a high load of DMTD, the generator of high COD. [0013] The process of the invention is thus carried out in just one reactor (one-pot reaction) by introduction of the starting materials (hydrazine and carbon disulfide) and recovery of the final product, bis-DMTD.
[0014] Surprisingly, in comparison with the state of the art, where the one-pot synthesis is not favored, the process according to the present invention, without isolation of the intermediate DMTD, results in bis-DMTD being obtained with good yields and a high selectivity. In addition, the final product obtained is of high purity, which is rarely the case in such one-pot syntheses, where the impurities generated in the first stages are not removed.
[0015] More specifically, the present invention relates to a process for the preparation of bis-DMTD comprising at least the following reaction stages:
a) reaction of hydrazine N2H4 with carbon disulfide CS2 in a basic medium;
b) acidification of the reaction medium;
c) oxidation of the reaction medium;
d) recovery and optional purification of the bis-DMTD formed.
[0016] Stage a) is carried out in an aqueous phase, for example in water. The use of an aqueous/organic phase can be envisaged but is not preferred due to the difficulties in treating these aqueous/organic and organic effluents at the end of the reaction and their impact on the environment.
[0017] The hydrazine used can be of any type and it is preferable to use hydrazine monohydrate N2H4.H2O. Likewise, there exists no particular recommendation with regard to the nature of the carbon disulfide CS2 used, apart from the usual operating precautions related to the use of this product. [0018] According to a preferred embodiment, the starting materials used in the process of the present invention comprise a content of dissolved metals which is as low as possible, indeed even are devoid of dissolved metals. According to a more particularly preferred embodiment, the contents of dissolved metals in the
starting materials are less than 300 ppm, advantageously less than 200 ppm and
very advantageously less than 100 ppm.
[0019] The carbon disulfide/hydrazine (CS2/N2H4) molar ratio can vary within wide
proportions and is advantageously between 1.8 and 4.0, preferably between 2.0
and 3.0, more preferably between 2.0 and 2.5 and entirely preferably between
approximately 2.2 and 2.4.
[0020] This first stage of reaction between hydrazine and carbon disulfide is
carried out in a basic medium, for example in the presence of a strong inorganic or
organic base, preferably a strong inorganic base. More preferably, the inorganic
base is an alkali metal or alkaline earth metal hydroxide, sodium hydroxide being
preferred, in particular because of its low cost.
[0021] The amount of base in the reaction medium can also vary within wide
proportions. Generally, the base/hydrazine molar ratio is between 0.8 and 1.5,
preferably between 1.0 and 1.2 approximately.
[0022] According to a preferred aspect, the carbon disulfide is slowly added to the
basic aqueous hydrazine solution at a temperature of between 20°C and 45°C,
preferably, for example, in the vicinity of 40°C.
[0023] After addition of the carbon disulfide, the reaction temperature can be
adjusted according in particular to the desired reaction kinetics. Thus, the reaction
temperature can be set at a value of between 0°C and 100°C, for example in the
vicinity of 98°C.
[0024] This first stage is generally carried out at atmospheric pressure but it is not
ruled out to operate under pressure or also under slight vacuum. Particularly
advantageously, this step, and also the entire process, is carried out under an inert
atmosphere, for example under nitrogen.
[0025] The reaction between hydrazine and carbon disulfide results in the
formation of a DMTD salt, which is not isolated, with release of hydrogen sulfide,
which can advantageously be trapped, according to any method known to a
person skilled in the art, for example in a trap containing an aqueous sodium
hydroxide solution.
[0026] After cooling the reaction medium resulting from stage a), the DMTD salt
is acidified, in the same synthesis reactor, to give DMTD.
[0027] This acidification stage b) is carried out under the action of an acid,
generally a strong acid, which is inorganic or organic, preferably inorganic, such
as, for example, sulfuric acid, nitric acid or hydrochloric acid, preferably sulfuric
acid.
[0028] Use will preferably be made of a solution of acid in water in carrying out
this stage. The concentration of acid can vary within wide proportions, according to
the nature of the base used in stage a) and according to the pH of the reaction
medium.
[0029] Preferably, the amount of acid added to the reaction medium is such that
the pH of the medium is less than 5, preferably less than 4, more specifically
between 0 and 4.
[0030] According to an alternative form, the amount of acid added is necessary
and sufficient to acidify the reaction medium while keeping the DMTD formed in
the DMTD monosalt form, comprising a free -SH functional group and an -SX
functional group, where X represents the counterion of the base used in stage a),
as illustrated by the following formula:
(Formula Removed)
[0031] By way of example, when the base used in stage a) is sodium hydroxide, X represents the sodium atom Na. The use of the above monosalt in stage c) of oxidation to give bis-DMTD defined below exhibits the advantages described in patent application US 2006/0168741, making it possible to improve the selectivity for formation of DMTD dimer while reducing the risks of formation of higher polymers and of cyclic dimers.
[0032] Stage b) is generally carried out at ambient temperature and it may be necessary, but not compulsory, to cool the reaction medium in order to keep the temperature in the vicinity of ambient temperature during the addition of the acid solution.
[0033] On conclusion of this acidification stage, the reaction medium, comprising mainly DMTD predominantly in suspension in the water and a part in solution in the water, is used, still in the same reactor, without isolation or drying of the intermediate DMTD, in stage c) of oxidation of the DMTD to give bis-DMTD.
[0034] To do this, an amount of an oxidizing agent which can be of any type generally used in the field, for example chosen from peroxides, such as hydrogen peroxide (aqueous hydrogen peroxide solution), organic or inorganic peracids, in particular peracetic acid, and mixtures between them or with strong acids, for example hydrogen peroxide/strong acids mixtures where the strong acid may be sulfuric acid or hydrochloric acid, is added to the reaction medium. [0035] It is preferable to use hydrogen peroxide as oxidizing agent. The use of peracetic acid releases, after the reaction, acetic acid into the effluents, then increasing the COD load. However, this COD load due to the presence of acetic acid can be easily lowered by conventional treatment of the effluents (for example treatment plant). This treatment of effluents loaded with acetic acid is, of course, much easier than the treatment of the effluents loaded with DMTD observed with the known conventional processes of the prior art.
[0036] The oxidizing agent preferred for the process of the present invention is aqueous hydrogen peroxide solution (hydrogen peroxide) at a concentration of between 30 and 70% by weight, for example approximately 35% by weight. [0037] The oxidizing agent/DMTD molar ratio is generally between 0.35:1 and 0.65:1; preferably the molar ratio is between 0.45:1 and 0.55:1. A molar ratio below 0.45:1 may be insufficient to provide the completest possible conversion of DMTD to give bis-DMTD without generating by-products, whereas a molar ratio above 0.55:1 can result in the formation of undesired by-products, such as products from the polymerization of DMTD.
[0038] For the oxidation stage, the oxidizing agent is added to the reaction medium resulting from stage b) and the oxidation reaction is carried out at a temperature generally of between 10°C and 100°C, preferably between 35°C and 65°C and very particularly preferably between 50°C and 55°C. [0039] As for the preceding stages, the oxidation stage is preferably and advantageously carried out at atmospheric pressure, preferably under an inert atmosphere.
[0040] The bis-DMTD formed exists in the form of fine particles. It can also be advantageous to add, to the reaction medium, during or after the oxidation reaction, a processing aid which makes possible easier recovery of the bis-DMTD
precipitate by making it possible to limit the pulverulent nature of the final powder
and thus to facilitate the use thereof.
[0041] The processing aids can be of any type and are well known to the person
skilled in the art. Particularly appropriate processing aids are, for example, oils,
advantageously of naphthenic or paraffinic oil type, in particular the oil "85 Neutral
Solvent" from Total.
[0042] The amount of processing aid can vary within wide proportions and a
person skilled in the art will know how to adjust this amount to the specific
requirements resulting from the synthesis carried out. As a general rule, the
amount of processing aid is between 0.01 and 10% by weight, with respect to the
expected weight of bis-DMTD formed; preferably, in particular when the
processing aid is an oil as indicated above, the amount by weight added is
between 0.1 and 5% of the expected weight of bis-DMTD, more preferably
between 1 and 3%.
[0043] The process according to the present invention can advantageously be
carried out in the presence of at least one surfactant, preferably nonionic
surfactant, such as, for example, Tergitol™ 15-S-5 from Dow Chemicals.
[0044] The amount of surfactant is generally between 0.01% by weight and 10%
by weight, preferably between 0.1 and 5%, more preferably between 0.1 and 1%,
of the expected weight of bis-DMTD.
[0045] The final product expected, in the form of a precipitate in the reaction
medium, which is an aqueous phase, indeed even an aqueous/organic phase, is
thus recovered according to conventional methods known in the field, for example
chosen from one or more of the following operations: separation by settling,
filtration, centrifuging, draining, pressing and others.
[0046] The bis-DMTD obtained in the solid form can subsequently be washed,
advantageously with water, in particular with the aim of removing water-soluble
impurities, such as sulfates and hydrogensulfates. The bis-DMTD can, if desired or
if necessary, be purified according to any conventional purification method known
to a person skilled in the art, for example by recrystallization from one or more
appropriate solvents.
[0047] Finally, the bis-DMTD is advantageously dried, for example under vacuum or under a stream of air, optionally in combination with a temperature advantageously of between 50°C and 150°C, preferably between 60°C and 110°C and more preferably between 70°C and 90°C, before optional packaging, in particular for the storage and transportation of the finished product. [0048] The process of the present invention exhibits the advantage of involving, in the oxidation reaction, both solid DMTD in suspension and DMTD soluble in the water, with a virtually complete degree of conversion of the DMTD, without discharge or only with very small amounts of DMTD discharged in the effluents resulting from the reaction.
[0049] Furthermore, as bis-DMTD is virtually insoluble in water, the effluents thus generated during the process of the invention, including the aqueous mother liquors resulting from the recovery, comprise neither DMTD nor bis-DMTD, or only traces of these products. The result of this is that the amount of organic matter in these effluents (COD) is very low, generally less than 10 g/l, more generally less than 5 g/l, indeed even less than 2 g/l, in contrast to the conventional processes carried out in two stages, the COD content of which in the effluents generally amounts to values of greater than 15 g/l.
[0050] The chemical oxygen demand (COD) of the water is defined as being the weight by volume of oxygen equivalent to the weight of sodium dichromate consumed under given operational conditions for the oxidation of the oxidizable matter in the water. The measurement of the COD can be carried out according to any method known to a person skilled in the art, in particular according to the method of reference ISO 15705:2002.
[0051] The process of the invention thus makes it possible to avoid the discharge of effluents loaded with DMTD and, consequently, a loss of the synthesis intermediate. This results in not insignificant increases in yield with respect to the syntheses of the prior art, all the DMTD formed as intermediate being used in the oxidation reaction resulting in the bis-DMTD.
[0052] Thus, according to the concentrations of the reaction medium which are employed, increases in yield, based on the number of moles of bis-DMTD formed
with respect to the number of moles of hydrazine involved at the start, are of the
order of 5 to 10%, and even greater.
[0053] The process according to the present invention is consequently entirely
suitable for industrial production, this being all the more the case as said one-pot
process makes it possible to obtain bis-DMTD with a high purity, generally of
greater than 96%, more generally of greater than 98%, indeed even of greater
than 99%.
[0054] The bis-DMTD prepared according to the process of the invention has
applications in many fields, in particular due to its antiwear properties and its good
resistance to high temperatures and pressures.
[0055] Thus, bis-DMTD can advantageously be used as antiwear agent in
lubricants, for example for engine oils, heat-transfer fluids or metalworking oils,
and more generally in any type of oil liable to be subject to high temperatures
and/or pressures.
[0056] Bis-DMTD also exhibits antioxidant properties and can thus be used in a
large number of applications, such as, for example, those defined above but also
coatings, in particular paints, lacquers, varnishes and other film-forming products,
in particular aqueous-based ones, especially for the coating of metal parts
(construction, door and window frames, hardware, ironwork), and in the production
of electrochemical devices, such as batteries (rechargeable chemical batteries,
fuel cells and others), accumulators, capacitors, electrolysis cells or electroplating
cells, to mention only some among them and without introducing the slightest
limitation.
[0057] The present invention is now illustrated by means of the example which
follows and which does not exhibit any limiting purpose from the viewpoint of the
scope of the present invention, the scope furthermore defined by the appended
claims.
Example of the synthesis of bis-DMTD :
Stage a)
[0058] 4000 liters of water, 800 kg of hydrazine monohydrate and 1300 kg of a
50% by weight aqueous sodium hydroxide solution are added to a 16 m3
enameled reactor or a reactor made of stainless steel which has been rendered
inert beforehand with nitrogen and which is provided with a stirring system. The
temperature rises to approximately 30°C.
[0059] 2900 kg of carbon disulfide are subsequently added over approximately
10 hours at a temperature of between 36°C and 40°C. The hydrogen sulfide
released during the reaction is trapped by absorption/reaction in an aqueous
sodium hydroxide solution.
[0060] The reaction medium is gradually heated to approximately 98°C and
stripping with nitrogen is carried out at this temperature for 5 hours. The reaction
medium is subsequently cooled to 20°C and then 2000 I of water are added.
Stage b)
[0061] 2200 kg of 42% sulfuric acid are added, still with stirring and under
nitrogen, while maintaining the temperature at 20°C.
Stage c)
[0062] 770 kg of 35% aqueous hydrogen peroxide (H202) are then added while
maintaining the temperature between 50°C and 55°C, and then stirring is
maintained at 50°C for 2 hours.
Stage d)
[0063] 36 kg of 85 Neutral Solvent oil from Total are then added and then the
product is filtered off on a centrifuge; the product is washed with water and then
dried under vacuum at 70°C. 2240 kg of bis-DMTD are recovered, which product
has a melting point of 162-164°C and a purity of 98% (yield = 92%).
[0064] The COD (chemical oxygen demand) of the aqueous mother liquors is
measured with a DR/5000 spectrophotometer (Hach-Lange), after filtration of the
bis-DMTD. The COD measured is less than or equal to 5 g/l.
[0065] The low toxicity of the effluents generated by the process of the present
invention and the good yields observed render said process entirely appropriate
for manufacture of bis-DMTD at the industrial level.







We Claims:-
WHAT IS CLAIMED IS:
1. A process for the preparation of bis-DMTD, which comprises at least the
following stages:
a) reaction of hydrazine N2H4 with carbon disulfide CS2 in a basic medium;
b) acidification of the reaction medium;
c) oxidation of the reaction medium;
d) recovery and optional purification of the bis-DMTD formed.

2. The process as claimed in claim 1, wherein the CS2/N2H4 molar ratio is between 1.8 and 4.0, preferably between 2.0 and 3.0, more preferably between 2.0 and 2.5, entirely preferably between approximately 2.2 and 2.4.
3. The process as claimed in claim 1 or claim 2, wherein stage a) is carried out in an aqueous phase.
4. The process as claimed in any one of the preceding claims, wherein stage a) is carried out in a basic medium, preferably in the presence of a strong base, more preferably in the presence of an alkali metal or alkaline earth metal hydroxide.
5. The process as claimed in any one of the preceding claims, wherein the base/hydrazine molar ratio is between 0.8 and 1.5, preferably between 1.0 and 1.2 approximately.
6. The process as claimed in any one of the preceding claims, wherein stage a) is carried out in the presence of a surfactant, preferably a nonionic surfactant.
7. The process as claimed in any one of the preceding claims, wherein the acidification stage is carried out under the action of an acid, preferably a strong

inorganic or organic acid, more preferably a strong inorganic acid, preferably sulfuric acid.
8. The process as claimed in any one of the preceding claims, wherein the oxidation stage c) is carried out by addition of an oxidizing agent to the reaction medium, said oxidizing agent being chosen from peroxides, such as hydrogen peroxide, organic or inorganic peracids, in particular peracetic acid, and the mixtures among them or with strong acids, for example hydrogen peroxide/strong acids mixtures, where the strong acid is sulfuric acid or hydrochloric acid, the oxidizing agent preferably being hydrogen peroxide.
9. The process as claimed in any one of the preceding claims, wherein the oxidizing agent/DMTD molar ratio is between 0.35:1 and 0.65:1; preferably, the molar ratio is between 0.45:1 and 0.55:1.
10. The process as claimed in any one of the preceding claims, wherein a processing aid is added to the reaction medium during stage d), said processing aid preferably being an oil, advantageously a naphthenic or paraffinic oil type.
11. The process as claimed in any one of the preceding claims, wherein the bis-DMTD recovered in the solid form is washed with water and then advantageously dried at a temperature of between 50°C and 150°C, preferably between 60°C and 110°C, more preferably between 70°C and 90°C.
12. The process as claimed in any one of the preceding claims, wherein the
amount of organic matter dissolved in the reaction effluents is very low and results
in a Chemical Oxygen Demand (COD) value of less than 10 g/l, more generally of
less than 5 g/l, indeed even of less than 2 g/l.


Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=B3tvzlNF6GhHs01SGqYcbg==&loc=+mN2fYxnTC4l0fUd8W4CAA==


Patent Number 277175
Indian Patent Application Number 1570/DEL/2010
PG Journal Number 48/2016
Publication Date 18-Nov-2016
Grant Date 15-Nov-2016
Date of Filing 05-Jul-2010
Name of Patentee MLPC INTERNATIONAL
Applicant Address 209, AVENUE CHARLES DESPIAU, 40370 RION DES LANDES, FRANCE
Inventors:
# Inventor's Name Inventor's Address
1 CAROLE COUCHARRIERE NAYOYE, 40400 CARCEN PONSON, FRANCE
2 DOMINIQUE BONHOMME 12 RUE BLERIOT-LES VIGNES OCEANES, 40130 CAPBRETON, FRANCE
3 JEAN-YVES EHLINGER 24 BOULEVARD DES FORCERIES, 40100 DAX, FRANCE
4 THIERRY AUBERT 1 RUE JEAN PERRIN, 64000 PAU, FRANCE
PCT International Classification Number C07D
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 09.03323 2009-07-06 France