Title of Invention

A SUTURE PASSING INSTRUMENT

Abstract A suturing apparatus comprises a pair of jaws. A bendable needle housed in one of the jaws is adapted to carry a suture. An optional suture receiver may be disposed adjacent to the opposite jaw. A transition block curves the needle and directs it in a direction generally unparallel to an axis of the carrying jaw. The needle may also be configured to retrieve a suture. A retaining mechanism holds a suture in place to be engaged by the needle. The jaw housing the needle may include a lateral opening through which the suture may be inserted. The needle may also include a lateral notch which may be aligned with lateral opening to receive the suture. An actuator coupled to the needle enables the user to move the needle proximally to align the notch with the lateral slot.
Full Text SUTURING APPARATUS AND METHOD
RELATED APPLICATIONS
[0001] This application claims priority pursuant to 35 U.S.C. §120 as a
continuation-in-part of U.S. Patent Application Serial No. 10/255,523, filed September
25,2002, entitled "SUTURING APPARATUS AND METHOD," now pending, which
application relates to and claims priority pursuant to 35 U.S.C. §119(e) from U.S.
Provisional Application Serial No. 60/326,287, filed on October 1, 2001, entitled
"SUTURING APPARATUS AND METHOD", and also from U.S. Provisional Application
Serial No. 60/358,960, filed on February 25,2002, entitled "SUTURING APPARATUS
WITH RETAINING MECHANISM." Benefits of priority of these applications, including
the filing dates of October 1, 2001, February 25, 2002, and September 25, 2002, are
hereby claimed, and their disclosures are hereby incorporated by reference as if fully
set forth herein.
BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention
[0003] The invention relates generally to suturing devices and methods.
[0004] 2. Description of Prior Art and Related Information
[0005] Suturing apparatus in the past have been required to have an
elongate configuration and a low profile facilitating their use through cannulas in less
invasive surgery. These devices have typically included opposing jaws which clamp on

to the tissue to be sutured. Beyond this simple clamping motion, typically facilitated
by scissor handles, the mechanism for threading a suture between the jaws and
through the tissues have been exceedingly complex.
[0006] This complexity has derived primarily from the fact that the
elongated, low profile configuration calls for an operating force that can be transmitted
through an elongate tube. This force along the axis of the instrument must then be
converted into a force extending generally perpendicular to the axis between the jaws.
No simple structure has been devised to accommodate this transition. Furthermore,
loading a suture onto a mechanism has also been complicated due to the complexity of
the suturing mechanisms.


SUMMARY OF THE INVENTION
[0007] In accordance with the present invention, structures and associated
methods are disclosed which address these needs and overcome the deficiencies of
the prior art.
[0008] In one aspect, a suturing apparatus comprises a first jaw and a
second jaw movable with respect to each other. A bendable needle is carried by the
first jaw and adapted to carry a suture. The needle is movable between a first position
wherein the needle is substantially housed within the jaw and a second position
wherein a distal portion of the needle protrudes from the first jaw. The apparatus
further comprises means for securing the suture in place prior to being carried by the
bendable needle, and a suture receiver spaced apart from the first jaw and configured
to disengage the suture carried by the bendable needle.
[0009] The securing means may comprise a cantilevered spring included in
a distal portion of the first jaw, a groove defined in a distal portion of the first jaw, a
flap, or an elastomeric pad. The first jaw defines an axis and further comprises a
transition block adapted to guide the bendable needle in a direction substantially
perpendicular to the axis.
[0010] In another aspect, a suturing apparatus comprises a first jaw
defining an ingress, a second jaw movable with respect to the first jaw, and a bendable
needle carried by the first jaw and movable between a proximal position and a distal
position. The needle defines a needle slot that may be aligned with the ingress to
enable loading of a suture through the ingress into the needle slot.


[0011] The apparatus further comprises a suture receiver which may be
disposed adjacent to the second jaw, or integral with the second jaw. The apparatus
further comprises an actuator coupled to the bendable needle and configured for
moving the bendable needle between the proximal position and the distal position.
The actuator preferably comprises a thumb lever. The first jaw defines an axis and
further comprises an axial slot in communication with the ingress. The ingress may
comprise a lateral opening, and the needle slot may comprise a lateral slot.
[0012] A suture retrieving apparatus is also provided. The suture retrieving
apparatus comprises a first jaw and a second jaw movable with respect to each other,
a suture receiver spaced apart from the first jaw, the suture receiver being adapted to
releasably retain a suture, and a bendable needle carried by the first jaw. The bendable
needle is movable between a proximal position and a distal position. The bendable
needle has a distal needle portion adapted to engage with the suture when the
bendable needle is in the distal position. The distal needle portion comprises a hook.
The second jaw may comprise the suture receiver.
[0013] A method is provided for suturing a tissue. The method comprises
the steps of clamping a piece of tissue to be sutured, securing a suture in place for
engagement with a bendable needle, engaging a suture with a bendable needle,
carrying the suture toward a receiver with the bendable needle, retaining the suture
with the receiver, and retracting the bendable needle to release the suture.


[0014] The step of clamping a tissue to be sutured comprises the step of
capturing the piece of tissue with a first jaw and a second jaw. The method further
comprises the step of advancing the bendable needle in an axial direction.
[0015] The step of carrying the suture toward a receiver with the bendable
needle comprises the step of bending the bendable needle, and moving at least a
portion of the bendable needle in a transverse direction.
[0016] A method is also provided for loading a suture onto a suturing
apparatus. The method comprises the steps of housing a needle with a needle slot in a
first jaw, biasing the needle in a distal direction with respect the first jaw so that the
needle slot is not aligned with an ingress of the first jaw, aligning the needle slot with
the ingress, disposing a suture through the ingress into the needle slot, and releasing
the biased needle such that the needle engages the suture and carries the suture
distally.
[0017] The step of aligning the needle slot with the ingress may comprise
the step of moving the needle either proximally or distally. The step of moving the
needle proximally comprises moving the needle proximally with a finger slide. The
step of disposing a suture through the ingress into the needle slot comprises looping
the suture about the ingress.
[0018] In summary, a suturing apparatus comprises a pair of jaws. A
bendable needle housed in one of the jaws is adapted to carry a suture toward a suture
receiver disposed adjacent to the opposite jaw. A transition block curves the needle
and directs it in a direction generally not parallel to an axis of the carrying jaw. The


needle may also be configured to retrieve a suture. A retaining mechanism holds a
suture in place to be engaged by the needle. The jaw housing the needle may include a
lateral opening through which the suture may be inserted. The needle may also
include a lateral notch which may be aligned with lateral opening to receive the suture.
An actuator coupled to the needle enables the user to move the needle proximally to
align the notch with the lateral slot.
[0019] In another aspect, a suturing apparatus comprises a proximal
handle and an elongated distal shaft having a distal end; a grasping mechanism
positioned adjacent to the distal end, the grasping mechanism including a top jaw and
a bottom jaw, at least one of the top jaw and the bottom jaw hinged to the shaft at a
position proximal to the distal end, the grasping mechanism operationally coupled to
the handle for opening and closing the top jaw and the bottom jaw with respect to one
another at the distal end; a slot extending vertically through the top jaw and the
bottom jaw and extending proximally from the distal end to a slot end within at least
one of the top jaw and the bottom jaw, the slot having a slot width tapering proximally
toward the slot end for frictionally retaining an intermediate portion of a length of
suture; and a suture needle longitudinally positionable within and distally deployable
from the shaft, the needle having a open-sided notch engageable with the intermediate
portion of suture, for passing the suture when the needle is deployed from the shaft,
the needle operationally coupled to the handle for positioning and deployment.
[0020] In another aspect, a suturing apparatus comprises a ratchet that
locks unless positive disabled. In a preferred embodiment, such a suturing apparatus
comprises a proximal handle and an elongated distal shaft having a distal end; a


grasping mechanism positioned adjacent to the distal end, the grasping mechanism
including a top jaw and a bottom jaw, at least one of the top jaw and the bottom jaw
hinged to the shaft at a position proximal to the distal end for movement between an
open position and a closed position; a jaw movement mechanism that operationally
couples the grasping mechanism to the handle for opening and closing the top jaw and
the bottom jaw with respect to one-another at the distal end; a spring that biases
grasping mechanism to the open position; and a ratchet latch assembly that prevents
the jaw movement mechanism from moving toward the open position unless positive
action is taken to disable the ratchet latch assembly.
[0021] In another aspect, a suturing apparatus comprises a needle
movement mechanism that moves the needle distally when the needle movement
mechanism is moved proximally. In a preferred embodiment, such a suturing
apparatus comprises a bendable needle having a generally flat, narrow and elongate
configuration, and a distal needle tip; a first jaw defining an axis and a needle channel
that guides the bendable needle along the needle channel to a channel exit; a second
jaw movable with respect to the first jaw for holding tissue to be sutured between the
first and second jaws; the bendable needle reciprocally movable between a proximal
needle position where the needle tip is resting inside the first jaw and a distal needle
position where the needle tip is protruding from the first jaw; and a needle movement
mechanism comprising a needle trigger that reciprocally moves between a distal
trigger position and a proximal trigger position, the needle trigger operatively
connected to the bendable needle to move the bendable needle distally when the
needle trigger is pulled proximally.


[0022] In another aspect, a suturing apparatus comprises a needle that
automatically returns to a loading position. In a preferred embodiment, such a
suturing apparatus comprises a handle assembly; an elongate shaft extending from a
distal end of the handle assembly; a first jaw extending distally from the elongate shaft,
the first jaw having an axis, a needle channel, a channel exit, and a suture loading
ingress; a second jaw movable witn-respect to the first jaw for holding tissue to be
sutured between the first and second jaws; a bendable needle having a generally flat,
narrow and elongate configuration, a distal needle tip, and an open-sided needle notch,
the bendabie needle reciprocally movable between a proximal needle position where
the needle tip and open-sided needle notch are resting inside the first jaw and the
suturing apparatus is ready for suture to be loaded into the first jaw via the suture
loading ingress and a distal needle position where the needle tip and open-sided
needle notch are protruding from the first jaw with the suture loaded into the first jaw
via the suture loading ingress located on an opposite side of the tissue in the open-
sided needle notch; a needle movement mechanism that reciprocally moves the needle
distally and proximally between the proximal needle position and the distal needle
position; and a spring that automatically returns the bendable needle to the proximal
needle position and readies the suturing apparatus for suture to be loaded into the first
jaw via the suture loading ingress.
[0023] In another aspect, a suturing apparatus comprises a means for
loading suture in a single step. In a preferred embodiment, such a suturing apparatus
comprises a handle assembly; an elongate shaft extending distally from the handle
assembly; a first jaw extending distally from the elongate shaft, the first jaw having an


axis, a top, a bottom, a needle channel that runs along the first jaw's axis and around a
curve to a channel exit, and a suture loading ingress that extends through the first jaw
from the top to the bottom and leads to a suture channel that also extends through the
first jaw from the top to the bottom, the suture channel being in communication with
and in substantial alignment with the needle channel; a second jaw movable with
respect to the first jaw for holding-tissue to be sutured between the first and second
jaws; a bendable needle having a generally flat, narrow and elongate configuration, a
distal needle tip, and an open-sided needle notch, the bendabie needle reciprocally
movable between a proximal needle position where the needle tip and open-sided
needle notch are resting inside the first jaw and the suturing apparatus is ready for
suture to be loaded into the first jaw via the suture loading ingress and a distal needle
position where the needle tip and open-sided needle notch are protruding from the
first jaw with the suture loaded into the first jaw via the suture loading ingress located
on an opposite side of the tissue in the open-sided needle notch; and means for
retaining suture loaded into the first jaw via the suture loading ingress prior to
deployment of the bendable needle, the suture being loaded into the first jaw in a
single step without regard to the position of the bendable needle and its open-sided
needle notch.
[0024] In yet another aspect, a novel suturing needle comprises a needle
with a proximal end and a distal end, with at least a distal portion of the needle formed
from a bendable material having a generally flat, narrow and elongate configuration,
and with a sharp needle tip located at a distal end of the distal portion; and a finger tab


connected to the bendable needle at or near a proximal end of the needle for loading
the needle into the surgical suturing device.
[0025] In yet another aspect, a novel suturing needle comprises a needle
with a proximal end and a distal end, with at least a distal portion of the needle formed
from a bendable material having a generally flat, narrow and elongate configuration,
and with a sharp needle tip located at a distal end of the distal portion; and a lubricious
coating applied to a surface of the needle to reduce a force required to slide the needle
back and forth within the surgical suturing device or tissue to be sutured,
[0026] In yet another aspect, a novel method for loading suture in a single
step is provided for suturing a tissue. The method comprises loading the suture into
the suture channel via the suture loading ingress such that the protrudes from the top
and bottom of the first jaw and extends across the needle channel; retaining the suture
in the suture channel prior to deployment; and capturing the retained suture with the
bendable needle as the bendable needle is moved distally during deployment.
[0027] The invention, now having been briefly summarized, may be better
visualized by turning to the following drawings wherein like elements are referenced by
like numerals.


BRIEF DESCRIPTION OF THE DRAWINGS
[0028] FIG. 1 is a side elevation view of a first preferred embodiment of a
suturing apparatus according to the invention;
[0029] FIG. 2 is a close-up view of the first preferred suturing apparatus
showing a bendable needle substantially housed within a lower jaw;
[0030] FIG. 3 is a close-up view of the first preferred suturing apparatus
showing the bendable needle piercing a piece of tissue;
[0031] FIG. 4 is a close-up view of the first preferred suturing apparatus
removed from the piece of tissue;
[0032] FIG. 5A is a perspective view of a jaw of the first preferred suturing
apparatus housing the bendable needle;
[0033] FIG. 5B is a perspective view of the jaw of FIG. 5A showing the
bendable needle advanced to a distal, piercing position;
[0034] FIG. 6 is a front end view of the first preferred suturing apparatus;
[0035] FIG. 7A is an operative view illustrating a preferred suture receiver
intercepting the suture carried by the needle;
[0036] FIG. 7B is a perspective view of the preferred suture receiver of FIG.
7A retaining the suture after the needle is retracted;
[0037] FIG. 8A is an operative view of a further preferred suture receiver;


[0038] FIG. 8B is an operative of the preferred suture receiver of FIG. 8A
retaining the suture after the needle is retracted;
[0039] FIG. 9 is a front end view of a second preferred embodiment of a
suture apparatus comprising a suture retrieving device;
[0040] FIG. 10A is an operative view of the preferred suturing retrieving
device of FIG. 9;
[0041] FIG. 10B is an operative view of the preferred suturing retrieving
device showing a retrieving needle engaging a suture;
[0042] FIG. 10C is an operative view of the preferred suturing retrieving
device showing the needle retrieving the suture;
[0043] FIG. 11 is a front end view of a third preferred suturing apparatus
wherein a bendable needle is carried by an upper jaw;
[0044] FIG. 12 is a front end view of a fourth preferred suture retrieving
apparatus wherein a bendable needle is carried by an upper jaw;
[0045] FIG. 13 is a perspective view of a fifth preferred suturing apparatus
including a securing mechanism;
[0046] FIG. 14 is a front end view of the fifth suturing apparatus;
[0047] FIG. 15 is a side elevation view of the fifth suturing apparatus;


[0048] FIG. 16 is a close-up, perspective view of a suturing jaw incorporating
the securing mechanism;
[0049] FIG. 17 is a top plan view of a tip of the suturing jaw of FIG. 16;
[0050] FIG. 18 is a perspective view of a suturing jaw incorporating an
alternative securing mechanism;
[0051] FIG. 19 is a close-up perspective of a suturing jaw incorporating a
further alternative securing mechanism;
[0052] FIG. 20 is a perspective view of the suturing jaw of FIG. 19;
[0053] FIG. 21 is a partially removed side elevation view of a sixth preferred
suturing apparatus;
[0054] FIG. 22 is a top plan view of a needle carrying jaw of the sixth
preferred suturing apparatus;
[0055] FIG. 23 is a perspective view of the needle carrying jaw of FIG. 22
with a bendable needle shown overlaid for clarity;
[0056] FIG. 24 is a perspective view of the needle carrying jaw with the
bendable needle shown overlaid in an aligned position;
[0057] FIG. 25 is a perspective view of a handle assembly for the sixth
preferred suturing apparatus including a preferred needle actuator; and


[0058] FIG. 26 is a perspective view of the sixth preferred suturing
apparatus being loaded with a suture;
[0059] FIG. 27 is perspective view of the sixth preferred suturing apparatus
with the suture loaded;
[0060] FIG. 28 is an elevation view of a preferred bendable needle according
to the invention;
[0061] FIG. 29 is a partially exploded, perspective view of a preferred suture
receiving mechanism;
[0062] FIG. 30 is a perspective view of the preferred suture receiving
mechanism of FIG. 29;
[0063] FIG. 31 is a perspective view of a jaw comprising a single barb; and
[0064] FIG. 32 is a perspective view of a jaw comprising a pair of barbs;
[0065] FIG. 33 is a left side view of a suture passing apparatus according to
a seventh and presently preferred embodiment;
[0066] FIG. 34 is a perspective view of a bendable needle for use with the
suture passing apparatus of FIG. 33;
[0067] FIG. 35 is a top plan view of the bendable needle of FIG. 34;
[0068] FIG. 36 is a left side view of the bendable needle of FIG. 34;


[0069] FIG. 37 is a perspective view of the suture passing apparatus of FIG.
33 showing how the bendable needle of Figure 34 is loaded therein;
[0070] FIG. 38 is an exploded perspective view of the suture passing
apparatus of FIG. 33 and the bendable needle of Figure 34;
[0071] FIG. 39 is a cross-section side view of the suture passing apparatus
of FIG. 33 with the bendable needle of Figure 34 loaded therein;
[0072] FIG. 40 is a simplified cross-section side view that emphasizes the
structure and operation of the jaw movement mechanism;
[0073] FIG. 41 is a simplified cross-section side view that emphasizes the
structure and operation of the needle deployment mechanism;
[0074] FIG. 42 is an exploded perspective view of the fixed jaw at the distal
end of the shaft of suture passing apparatus;
[0075] FIG. 43 is an enlarged close-up at the distal tip of FIG. 42;
[0076] FIG. 44 is an enlarged close-up corresponding to FIG. 43, but as
assembled;
[0077] FIG. 45 is a top plan view of the fixed jaw at the distal end of the
shaft of suture passing apparatus;
[007S] FIG. 46 is an enlarged close-up at the distal tip of FIG. 45;


[0079] FIG. 47 is side view of the fixed jaw at the distal end of the shaft of
suture passing apparatus;
[0080] FIG. 48 is an enlarged close-up at the distal tip of FIG. 47; and
[0081] FIGS. 49a and 49b to 56a and 56b are successive pairs of a
perspective and top plan view of the distal end of the preferred embodiment,
respectively, illustrating the overall operation from the loading of the suture through
the end slot, the forward translation and momentary sideways movement of the needle
as it engages the suture, the creation of a suture loop, and the retraction of the needle
to the resting position.
[0082] The invention and its various embodiments can now be better
understood by turning to the following detailed description wherein illustrated
embodiments are described. It is to be expressly understood that the illustrated
embodiments are set forth as examples and not by way of limitations on the invention
as ultimately defined in the claims.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
AND BEST MODE OF INVENTION
[0083] A first preferred embodiment of a suturing apparatus is illustrated in
Figure 1 and designated generally by the reference numeral 10. The apparatus 10 is
illustrated to have an elongate configuration with a proximal end 12 and a distal end 14.
A handle assembly 16 is disposed at the proximal end 12 and includes scissor handles
18 and 21 as well as an actuator 23. A pair of opposing jaws 25 and 27 are disposed at
the distal end and are coupled to the handle assembly 16 through an elongate shaft or
tube 29. In one embodiment, the upper jaw 25 is pivotal with respect to the lower jaw
27 as illustrated in Figure 2.
[0084] In the illustrated embodiment the lower jaw 27 includes a needle 32
of particular interest to the present invention. In this case, the needle 32 includes a
body having a generally flat, narrow and elongate configuration. As shown in Figures 1-
3, the needle 32 is formed from a bendable material so that it can be moved generally
with an axial force provided, for example, by a user's thumb, and can be bent on a
curve, for example, to 90°, to move generally perpendicular to the axis and toward the
opposing upper jaw 25. It is to be expressly understood that the needle 32 can be
substantially straight, as shown in Figure 1, and then be bent at any angle and
advanced in any direction away from the axis. The actuator 23, which preferably
comprises a thumb rocker or slide, is coupled to the needle 32. The actuator 23
enables a user to advance the needle 32 distally to a protruding, operative position and
proximally to a retracted, inoperative position.


[0085] Threading this needle 32 with a suture 34 enables the needle to be
deployed through the tissue and to carry with it the suture 34 to be threaded. The
opposing jaw 25 may include an optional receiver which is adapted to remove the
suture from the needle 32 as the needle 32 is withdrawn back into the lower jaw 27.
At this point, the suture extends through the tissue and into the upper jaw. Removal of
the jaws from the tissue, as illustrated in Figure 4 permits withdrawal of the apparatus
10 leaving the suture in place for tying or further manipulation. A suture receiver is
optional since the tissue itself may frequently serve as a receiver for the suture once
the needle is retracted.
[0086] In this embodiment, the lower jaw is illustrated in Figure 5A to
include an elongate configuration and a channel 36 adapted to receive the needle 32.
The needle is bent at the distal end of this jaw 27 and up through a transition block 38
which aides in curving the needle 32 and directing it toward a suture receiver. Though
the illustrated embodiment shows the transition block 38 curving the needle 32
perpendicularly with respect to the axis of the lower jaw 27, the transition block 38
may be configured to curve and direct the needle 32 at any particular angle or direction
that is generally unparallel to the axis of the fower jaw 27. Figure 5A shows the needle
retracted and Figure 5B shows the needle 32 deployed and provided with a slot 40 to
carry the suture 34 to the opposing jaw 25. This configuration is further illustrated in
the radial cross-section view of Figure 6.
[0087] In the upper jaw 25, a suture receiver 41 is provided to remove the
suture 34 from the needle 32. A metal or elastomeric flap, or paddle, 43 is provided to
engage the needle 32 and threaded suture 34 as illustrated in Figure 7A. This flap 43


forces the suture 34 from the needle slot 40 as the needle 32 is withdrawn as
illustrated in Figure 7.
[0088] In a similar embodiment, the needle 32 and threaded suture 34 is
forced through an elastomeric pad 45 which similar engages the suture 34 and
removes it from the needle slot 40 as the needle 32 is withdrawn as illustrated in
Figure 8B.
[0089] A second preferred embodiment of a suturing apparatus is
illustrated in Figure 9 which is a cross-section view similar to Figure 6, but showing a
needle 32 which functions as a retriever rather than a carrier. In this embodiment, the
suture 34 is initially carried by the upper jaw 25. A needle slot 42 in this case extends
distally from the side of the needle 32. When this needle 32 and slot 42 are extended,
as illustrated in Figure 10A, the slot 42 engages the suture 34 in the upper jaw 25. As
the needle 32 is withdrawn, the suture is retrieved in the needle slot 42 and carried
back through the tissue. The final step in this process is the same as previously
discussed with reference to Figure 4.
[0090] It will be apparent that this apparatus 10 could also operate with the
needle 32 carried by the upper jaw 25. Such a feature is shown in a third preferred
embodiment illustrated in the cross-sectional view of Figure 11 where the needle 32
functions as a suture carrier. In particular, a suture slot 40 defined in the needle 32
comprises an opening 50 that is located distally to an end 52 such that the slot 40
faces the receiver, or lower jaw 27. A suture 34 is thus carried by the needle 32
toward the opposing, lower jaw 27.


[0091] In Figure 12, a fourth preferred embodiment of a suturing apparatus
comprises a suture retrieving device wherein the needle 32 is carried by the upper jaw
25, In this case, the needle 32 functions as a retriever of the suture 34. The needle 32
defines a slot 42 with an opening 54 that is located proximally to an end 56 such that
the slot 42 faces away from the opposing, lower jaw 27. In the illustrated embodiment,
a distal portion of the needle 32 is thus preferably shaped as a hook.
[0092] A fifth preferred embodiment of a suturing apparatus is illustrated in
Figure 13 and designated generally by the reference numeral 110. In Figures 13-15, the
apparatus 110 includes an elongate configuration with a proximal end 112 and a distal
end 114. A handle assembly (not shown) is disposed at the proximal end 112 and may
include scissor handles which are operatively coupled to a pair of opposing suturing
jaws 116 and 118 at the distal end 114. An elongate shaft or tube 121 couples the jaws
116,118 to the handle assembly. In one embodiment, the upper jaw 116 is pivotal with
respect to the lower jaw 118 as illustrated in Figure 13-15.
[0093] In the illustrated embodiment, the lower jaw 118 includes a retaining
mechanism 123 of particular interest to the present invention. The apparatus 110 may
include a handle assembly, a bendable needle 125 housed in one of the jaws 116,118,
and a suture receiver included in the other of the jaws 116,118 as described above.
Since the retaining mechanism 123 serves to securely hold a suture 127 while easily
permitting its release when engaged by the needle 125, the mechanism 123 is
preferably included in the jaw that houses the needle 125. For example, if the needle
125 is housed in the upper jaw 116, then the retaining mechanism 123 would also be
included in the upper jaw 116.


[0094] A first preferred securing mechanism 123 comprises a spring 129
formed at a distal tip 132 of the jaw 118. The spring 129 includes a cantilever portion
134 bent back on itself. A wedge, or groove/136 is defined between the cantilever
portion 134 and an opposite wall 138 as shown more clearly in Figures 16 and 17. In the
illustrated embodiment of Figures 13-16, the securing mechanism 123 is formed
integrally with the jaw 118. To assemble the suture 127, a first end 141 is held beneath
the jaw 118 and the other end 143 above the jaw 118. The ends 141,143 may be pulled
in a proximal direction such that the suture 127 is wedged into the groove 136. When
disposed in the groove 136, the cantilever portion 134 biases the suture 127 against the
opposite wall 138, thus pinching the suture 127 securely in place for engagement by the
needle 125.
[0095] The biasing force of the spring 129 is configured such that the suture
127 is both held securely absent engagement by the needle 125, and yet is permitted to
be easily released upon engagement, it is to be expressly understood, therefore, that
the spring 129 may comprise a variety of mechanisms capable of abutting, or pinching,
the suture 127 against an opposing surface while permitting its release upon
engagement with a needle. The groove 136 is preferably aligned with or disposed
adjacent to a needle exit port 145 such that when the ends 141,143 are tugged
proximally, a portion 147 of the suture 127 lies along the path of the transversely
extending needle 125.
[0096] In Figure 18, a second preferred retaining mechanism 123a may
include a spring mechanism 129a formed separately from the jaw 118a. The spring


mechanism 129a includes an anchor 149 configured to fit within a slot 152 defined in
the jaw 118a.
[0097] In Figures 19 and 20, a third preferred retaining mechanism 123b
comprises a zigzag groove 154 that becomes increasingly narrow as it extends
proximally. The zigzag pattern in combination with the proximal tapering facilitates a
tight fit when the suture 127 is drawn proximally. In particular, the proximally tapered
configuration of the groove 154 pinches the suture in place as it drawn proximally
while the zigzag pattern prevents the suture 127 from being distally disengaged from
the jaw 118b.
[0098] A sixth embodiment of a suturing apparatus is shown in Figures 21-
27 and designated generally by the reference numeral 210. The apparatus 210
comprises a first jaw 220 and a second jaw 222 that are pivotal with respect to each
other. In Figures 21-23, the first jaw 220 is configured to house a bendable needle 224.
This needle carrying jaw 220 may comprise either the lower or upper jaw of the
apparatus 210. The bendable needle 224 is substantially disposed in a channel 226
within the first jaw 220 when the needle 224 is in a non-operative, or non-piercing,
position.
[0099] In Figure 22, the first jaw 220 defines an opening, or ingress 228,
that is in communication with an axial slot 231. The ingress 228 is preferably provided
with a relatively wide mouth 233 is open to one of the sides of the first jaw 220. This
preferably lateral ingress 228 tapers as it approaches the axial slot 231.

[0100] In Figure 23, the needle 224 of particular interest to the invention is
shown out of position, overlaying the first jaw 220 for clarity. When assembled, the
needle 224 would reside in the channel 226 as discussed above. The needle 224
comprises a lateral slot, or notch 235 (see Figure 28). An edge defining the notch 235
is preferably radiused, or smoothed, such it would not cut a suture. As best shown in
original Figure 28, the needle 224-comprises distal portions that define a sharp needle
tip 242, notch or slot portions that define the notch or slot 235 and its associated
opening, and first and second void portions that define a first distal crescent-shaped
void 237 and an adjacent second proximal crescent-shaped void 239. In the preferred
needle of original Figure 28, the distal portions that define the sharp needle tip 242 are
equally bifurcated by the needle's axis. As further shown in Figure 28, the slot portions
defining the slot 235 define a base and a channel extending laterally of the base, the
preferred base being configured as a circle with a diameter that is greater than a width
of the channel. The voids 237, 239 collectively provide flexibility that is spread out on
either side of the notch 235, over a greater length of the needle 224, such that all
stresses do not collect at the notch 235 when the needle 224 is bent. The notch 235 is
preferably disposed between the voids 237,239. As further shown in original Figure
28, the first void 237 is shaped like a crescent with a first radius and a first axial length
and the second void 239 is shaped like a crescent with a second radius greater than
the first radius and with a second axial length greater than the first axial length.
[0101] In a rest state, as shown in original Figure 23, the needle 224 is
generally straight and may be biased to any rest position with respect to the ingress
228. For example, the rest position may comprise the notch 235 being disposed


distally to the ingress 228, as shown in Figure 23, or proximally to the ingress 228. To
load a suture, the needle 224 is moved to a loading position whereby the notch 235 is
aligned with the ingress 228 as shown in Figure 24. If the needle 224 is biased such
that the notch 235 is distal to the ingress 228, alignment is reached by moving the
needle 224 in a proximal direction with respect to the first jaw 220. Accordingly, if the
needle 224 were biased such that the notch 235 is proximal to the ingress 228,
alignment is reached by moving the needle 224 in a distal direction with respect to the
first jaw 220. Figure 25 illustrates a preferred handle assembly 243 of the suturing
apparatus 210. In Figure 25, a manually operable actuator 244 is coupled to the needle
to enable movement, proximally and distally, thereof. In the illustrated embodiment,
the actuator 244 preferably comprises a thumb lever, or rocker, that may be cocked
backward by a user's thumb, thereby moving the needle proximally to align the notch
with the ingress, and moved forward, thereby advancing the needle distally.
[0102] Figure 26 illustrates a suture 246 being loaded onto the apparatus
210. The suture 246 is formed into a loop and threaded into the ingress 228. With the
suture 246 held slightly taut across the first jaw 220, the suture 246 has entered the
ingress 228 and is now disposed in the notch of the needle. The finger slide, shown in
Figure 25, may now be released, thereby distally biasing the needle with the captured
suture 246 to the resting position as shown in Figure 27. It will be appreciated that the
axial slot 231 of the first jaw 220 allows the captured suture 246 to travel freely as it is
carried by the needle 224.
[0103] A transition block 248 is provided at a distal portion of the first jaw
220 and may be integral with or separate from the jaw 220, The transition block 248


may be adapted to curve the needle and direct it at any desired angle, shown in the
illustrated embodiment as generally perpendicular to the axis of the first jaw 220.
[0104] In Figures 26 and 27, the second jaw 222 comprises a distal hook
251 that defines an aperture 253 with a side opening 255. When the jaws 220, 222 are
clamped on a piece of tissue, the aperture 253 is configured to enable the needle to
pass through after piercing the tissue. As the needle 224 is retracted the tissue acts as
a suture receiver by holding on to the suture 246 while the needle 224 is withdrawn.
This leaves a loop or free line of suture 246 on the side of the tissue in contact with the
jaw 222. The hook 251 can then be placed in the loop and pulled. Alternatively, the
two jaws 220,222 can be grasped on the free line of suture and pulled through the
tissue. In Figure 25, a stationary finger support 257 serves as a counterforce plate for
the actuator 244.
[0105] In Figure 28, the preferred bendable needle 224 comprises a distal
geometry that facilitates a smooth piercing of tissue by preventing the tissue from
being snagged or caught by any part of the needle 224. The needle 224 comprises a
notch side 259 and an opposite, void side 262. In particular, the needle 224 comprises
a straight, notch-side edge 264 located proximally to a notch edge defining the notch
235. The needle 224 also defines a needle axis "A" that extends generally parallel to
the notch-side edge 264.
[0106] As the needle 224 pierces a tissue, the tissue will travel along a
notch-side ramp 266 that leads to a distal ledge 268 disposed distally of the notch
edge defining the notch 235. As shown, a distal notch edge extends from the base and


laterally from the axis for a first distance and a proximal notch edge that extends
laterally from the base and laterally from the axis for a second distance that is less than
the first distance. It will be appreciated that the distal ledge 268 is spaced a transverse
distance "B" from the axis "A" while a proximal ledge 271 is spaced a transverse
distance "C" from the axis "A." In the preferred embodiment, distance "B" is greater
than distance "C" such that the distal ledge 268 pushes the pierced tissue outward to
help keep the tissue from getting caught in the notch 235. As the tissue travels over
the notch 235, a generally rounded bump that is associated with the proximal ledge
271 further prevents the tissue from getting snagged.
[0107] On the opposite, void side 262, first and second void edges define
the first and second voids 237, 239 that distribute the stresses more evenly across the
needle 224 and around the notch 235 when the needle 224 is bent, such that the
stresses are minimized near the notch 235. The opening to the notch 235 is directed
distally such that the suture is forced into the needle during deployment through the
tissue and so that the suture releases easily as the needle is retracted.
[0108] A further preferred embodiment of a suture receiver 280 is
illustrated in Figures 29 and 30. The receiver 280 may, for example, be carried by a
jaw opposite to the jaw housing a needle. The suture receiver 280 comprises a pair of
flaps, or paddles, 282 disposed in a receiver housing 284. The paddles 282 are
preferably configured to abut one another at a pinch point 286, as shown in Figure 30,
to permit a needle to travel therebetween while retaining a carried suture when the
needle is retracted. As discussed above, employment of a suture receiver is optional
as the pierced tissue itself may often time serve as a suture receiver. In particular,


after a needle carrying a suture has pierced the piece of tissue, the pierced tissue often
times sufficiently retains the suture in the form of a loop as the needle is retracted.
[0109] In Figure 31, a first preferred embodiment of a hook, or barb 291, is
formed at the distal end of a jaw, preferably the second jaw opposite to the first jaw
housing the bendable needle. The barb 291 is configured to hook a looped suture that
is retained, for example, by the tissue itself after the bendable has been retracted. In
Figure 32, a distal end of a jaw may alternatively be formed with a pair of barbs 293.
[0110] The above-described embodiments generally represent a significant
advance in the suture passing art because they permit suture to be retained in a device
for delivery to a surgical site and in particular via an arthroscopic cannula, permit the
tissue to be grasped and re-grasped if necessary, and permit the suture to be pushed
through the tissue with a reciprocating bendable needle. However, improvements are
still possible in terms of how the suture is loaded into the passer for capture by the
needle, the construction of the needle, and the overall simplification of needle
deployment.
[0111] FIGS 33-48 relate to a new, seventh, and presently preferred
embodiment that adds a number of significant advancements.
[0112] FIG. 33 is a side view of a novel suture passing apparatus 310 and
FIGS. 34-36 show an improved bendable needle 400 for use with the suture passing
apparatus 310. As shown in FIG. 33, the suture passing apparatus 310 generally
comprises a handle assembly 320 located at a proximal end 312, an elongate shaft 330
extending from the handle assembly 320, and a grasping mechanism formed by a pair


of jaws 340,350 supported at a distal end 314 of the elongate shaft 330 and a jaw
movement mechanism 360 and related ratchet latch assembly 370 (described more
fully below). The preferred handle assembly 320 is formed from two halves, a left half
321 and a right half 322 (not shown) held together by a plurality of screws 323, and the
elongate shaft 330 is held between the two halves with a handle-to-shaft pin 324 that
engages a notch (not shown) at a-proximal end of the shaft 330. The jaws include a
fixed jaw 340 and a moveable jaw 350. The moveable jaw 350, as shown, is pivotally
secured to a distal end of the shaft with a jaw-to-shaft pin 352.
[0113] As further shown in FIG. 33, and described more fully below, the
novel suture passing apparatus 310 includes two mechanisms, a jaw movement
mechanism 360 (and related ratchet latch assembly 370) for opening and closing the.
jaw assembly, and a needle movement mechanism 380 for translating the needle back
and forth.
[0114] The jaw movement mechanism 360 opens and closes the moveable
jaw 350 and is manipulated by way of a jaw trigger 361. The prior embodiments
required the surgeon to proactively move the jaw in both the open and closed
directions. For simplified use in this embodiment, the moveable jaw 350 is optionally
biased open and then moved toward the closed position relative to the fixed jaw 340
when the surgeon squeezes the jaw trigger 361. In addition, the jaw movement
mechanism 360 may optionally include a superelastic element that deforms under
load to limit jaw closing force.


[0115] As already noted, the ratchet latch assembly 370 relates to the jaw
movement mechanism 360. The preferred ratchet latch assembly 370 is transparent
in its operational nature in that it locks without positive action by the user, but can be
disabled with simple depression of a release button, and all without the operator
having to change his hand position. In particular, then the jaw trigger 361 is pulled, a
moving portion 373 of the ratchet latch assembly 370 travels freely into the handle
assembly 320, but through a mechanical interaction more fully described below,
prevents the jaw trigger 361 from returning to an open position until later released. For
that purpose, the preferred ratchet latch assembly 370 features a ratchet release or
finger pad 371 such that the ratchet latch assembly 370 acts like a ratchet when no
load is applied to the finger pad 371, while a simple depression of the finger pad 371
releases the ratchet latch assembly 370 and permits the surgeon to vary the position
of the jaw trigger 361 and moveable jaw 350 as desired (e.g. for repositioning the jaws
as necessary prior to placement of the suture), and if permitted, to return to their open
positions.
[0116] FIGS. 34-36 illustrate the bendable needle 400 that is intended for
use with the suture passing apparatus of FIG. 33. For referential purposes of, the
needle 400 has a proximal end 412 and a distal end 414. As shown, the needle 400 is
formed from a proximal needle body 401 that has a slotted distal end 402, and a flat
bendable extension 403 that within and is welded to the slotted distal end 402 of the
needle body 401. The distal end 414 of the bendable needle 400 is similar to the
previously preferred needle of FIG. 28 in that it has a needle tip 404, a needle notch
405 on its side, and a notch-side ramp 406 between the tip 404 and the notch 405.


However, the presently preferred needle 400 uniquely cooperates with the suture
passing apparatus for purposes of loading the suture in a novel way (as described
below), and it includes some novel construction features that make it easier to use and
safer.
[0117] Focusing on the differences that constitute the novel construction
for the moment, one can see that the previously disclosed needle body had a right-
angle bend at its proximal end that engaged an aperture in a thumb-operated actuator
(see e.g. FIG. 25), whereas the needle 400 may include a plastic tab 406 at its
proximal end 412 that functions as a proximal loading flag. The preferred plastic tab
406 is made of HDPE, polyethylene, and formed onto the needle body 401 in known
manners, but any suitable material and or assembly method may be used.
[0118] The plastic tab 406 offers some unique advantages. First, it
provides a convenient finger grip for loading the bendable needle 400 into the suture
passer 310. In addition, it optionally melts upon autoclaving, thereby enhancing
patient safety by effectively preventing reuse of the needle 400.
[0119] FIG. 37 is a partially-exploded perspective view of the preferred
suture passing apparatus 310 and the bendable needle 400 that is loaded into the
suture passing apparatus. In particular, the dashed line shows how the needle 400 is
loaded into the breech or proximal end of the elongate shaft 330 via a chamber 325
located on a top side of the handle assembly 320. As will be more fully described with
reference to further figures, after the needle 400 is fully inserted into the elongated
shaft 330, the loading flag 406 is pressed down into a needle receiver 390. The needle


receiver 390 is moved back and forth by the surgeon's manipulation of the needle
trigger 381.
[0120] FIG. 38 is a fully-exploded perspective view of the preferred suture
passing apparatus 310 and the bendable needle 400. Here, one can see the detailed
construction of the preferred device, including the components of the jaw movement
mechanism 360, ratchet latch assembly 370, and needle movement mechanism 380.
For ease of description, the foregoing mechanisms will be described with reference to
FIGS. 39-41, which can be reviewed in conjunction with the fully-exploded perspective
view of FIG 38.
[0121] FIGS. 39-41 are cross-section side views of the suturing apparatus
310 and bendable needle 400 loaded therein. FIG. 39 is a full cross-section, whereas
FIGS. 40 and 41 that selectively omit some of the other components, or only shown
them in broken line, in order to emphasize the construction and operation of the jaw
movement and needle movement mechanisms, 360, 380, respectively.
[0122] FIG. 40 focuses on the jaw movement mechanism 360 and related
ratchet latch assembly 370 by showing much of the overall apparatus 310 in broken
lines and by strategically eliminating the components associated with the needle
movement mechanism 380 (see Figure 42). As shown, the jaw movement
mechanism 360 comprises a jaw trigger 361, a jaw trigger pin 362, a jaw trigger push
rod 363, a jaw lever spring 364, a link 365, an actuator 368, and, lastly, the moveable
jaw 350 itself. In operation, when the jaw trigger 361 is squeezed, it pivots about the
jaw trigger pin 362 along arc J1, and the jaw trigger push rod 363 compresses the jaw


lever spring 364 which, as noted earlier, tends to bias the jaw trigger 361, moveable
jaw 350, and overall jaw motion mechanism 360 in the open position.
[0123] As the jaw trigger 361 is moved along arc J1, an upper portion of the
jaw trigger 362 is moved through a corresponding, but smaller radius arc J2. In this
vicinity, a trigger-to-link pin 366 connects the jaw trigger 361 to the link 365, and
further downstream, a link-to-actuator pin 367 connects the link 365 to the actuator
368. Through this series of connections, the arcuate motion of the jaw trigger 361
along arcs J1 and J2 is converted into translational movement of the actuator 368
along arrow J3. As best shown by FIGS. 38, 39 and 40, the elongate shaft 330 is
provided with a plurality of guide pins 331, two from each side, and an actuator channel
333 that runs along its length. The actuator 368 slides back and forth within shaft's
actuator channel 333.
[0124] The actuator 368 is, in turn, connected to a lower portion of the
moveable jaw 350 via an actuator-to-jaw pin 351 that is located slightly below the jaw-
to-shaft pin 352 about which the moveable jaw 350 rotates. As such, when the jaw
trigger 361 is squeezed along arc J1 the upper portion of the trigger 361 is moved along
arc J2, the actuator 368 is translated along arrow J3, the proximal end of the moveable
jaw 350 is rotated along arc J4, and the distal end of the moveable jaw 350 is rotated
along arc J5, i.e. moved toward a closed direction.
[0125] FIG. 40 also illustrates the preferred ratchet latch assembly 370 that
includes a finger pad 371, a moving portion 373 having sloped teeth 374, and a
separate fixed portion 377 that also has sloped teeth 378. The ratchet latch assembly


also includes a ratchet latch spring 375 that provides a light spring force to bias sloped
teeth 374 of the moving portion 373 against the sloped teeth 378 of the fixed portion
377. The ratchet latch assembly 370 prevents the jaw trigger 361, biased to the
opened position by the jaw lever push rod 363 and jaw lever spring 364, from moving
to the open position until desired. In particular, the sloping teeth 374 readily slide over
the sloping teeth 378 when the jaw trigger is squeezed along arc J1 in a
counterclockwise direction to close the moveable jaw 350, but the teeth 374,378 tend
to lock together to prevent the jaw trigger 361 from returning in the clockwise direction
and opening the moveable jaw 350. When the surgeon desires to open the moveable
jaw 350, he simply depresses the finger pad 371 which rocks the sloped teeth on the
moveable portion 373 away from the sloped teeth 378 on the fixed portion 377. At
that point, the jaw spring 365 tends to open the jaw movement mechanism 360, as
controlled by the surgeon's finger on the finger pad 371. A further beneficial aspect of
the novel handle mechanism is a "ratchet on demand" feature. In the preferred
embodiment, this feature is provided by the placement of the ratchet button or finger
pad 371 on an upper portion of the jaw trigger 361. This enables the surgeon to choose
whether or not to use the locking feature by varying how he grips the handle with his
fingers — squeezing the jaw trigger 361 without depressing the finger pad 371 permits
the ratchet latch assembly 370 to naturally engage, whereas moving the jaw trigger
361 with light but continuous finger pressure on the finger pad 371 enables a repeated
opening and closing of the jaw 350 without engaging the ratchet latch assembly 370.
In order to permit the surgeon to enable or disable the ratchet latch assembly as
desired by varying the pressure applied to the finger pad 371 through the motion of the
jaw trigger 361, the spring force of the ratchet latch spring 375 that affects the finger

pad 371 is much less than the spring force of the jaw lever spring 364 that affects the
overall jaw trigger 361.
[0126] FIG. 41 focuses on the needle movement mechanism 380 in the
context of the overall apparatus 310 shown in broken lines and, in this case, by
strategically eliminating the components associated with the jaw movement
mechanism 360 and ratchet latch assembly 370 (see Figure 41). As shown, the
needle movement mechanism 380 comprises a needle trigger 381, a trigger rack 384,
a needle spring 386, a gear 387, a needle rack 388 having a needle receiver 390, and
lastly, the needle 400. The needle trigger 381 is connected to the needle rack 384, as
shown, by a cap screw 382 and a pin 384. Each of the gear racks 384, 388 includes a
corresponding rack guide 385,389, which provides a low surface-area contact surface
for ease of movement.
[0127] The needle spring 386 biases the needle in the non-deployed or
resting state, as shown in FIG. 41. In operation, as the trigger rack 384 is translated
toward the proximal end 312 of the device 310 along arrow N1 (to the right), the gear
387 translates the needle rack 388 and needle toward the distal end 314 of the device
310 along arrow N2 (to the left). When the needle 400 is translated toward the distal
end 312, it moves through a needle channel 343 in the fixed jaw 340 and ultimately,
curves upward, where it temporarily extends from the lower, fixed jaw 340 along
arrow N3.
[0128] The needle spring 386 must provide sufficient spring force to
automatically retract the needle 400 when the needle trigger 381 is released. And, the


surgeon must overcome this spring force when he squeezes the needle trigger 381 to
deploy the needle 400. It is desirable, therefore, to reduce the required spring force to
minimize or even eliminate hand fatigue relating to repeated actuations. For this
purpose, the preferred needle 400 is coated with a lubricious coating that makes it
easier to slide the needle 400 back and forth in the device 310 and within the patient's
tissue. This lubricious coating reduces the needle's coefficient of friction and thereby
lowers the spring force needed to retract the needle 400. The use of a lubricious
coating makes the suturing device 310 easier to use by reducing the required spring
force by about 20%. The preferred coating is a cured polytetrafluoroethylene (PTFE)
coating, but any other fluoropolymer or ultra-low sheer solid would suffice. The needle
400 may be coated by simply dipping it into a container of PTFE particles that have
been suspended in a suitable solvent (the solvent flashing off after the needle is
removed from the suspension and leaving behind the PTFE coating). Preferably,
however, the needle 400 is heat cured after being coated in order to melt the PTFE to
itself and form a more abrasion resistant coating.
[0129] FIGS. 42-48 collectively focus on the unique construction of the
suture loading and deployment arrangement as embodied in the novel suturing
apparatus' lower jaw 340. As shown throughout FIGS. 42-48, the lower or fixed jaw
340 is located at a distal end of the elongated shaft 330. In this preferred
embodiment, the fixed jaw 340 is formed from a lower jaw body 341 that is integrally
formed from the same stock as the elongate shaft 330, in combination with a jaw
insert 342 that is generally shaped like a ski tip. During assembly, the jaw insert 342 is


dropped into and secured to the lower jaw body 341 in any suitable manner, e.g.
welding.
[0130] The jaw insert 342 helps define a needle channel 343 which guides
the needle 400 forward and then up and out during deployment. In particular, as best
understood by viewing FIG. 43, and then FIGS. 44 and 48, the jaw insert 342 ultimately
rests on and spans a pair of ledges 349 (only one is visible) that surrounds the floor
and side walls of the needle channel 343 already formed in the lower jaw body. In
essence, the bottom of the jaw insert 342 serves as the ceiling of the needle channel
343. As explained in more detail below, the needle 400 (not shown in FIGS. 42-48) is
translated horizontally through the needle channel 343 which includes a curve that
directs the needle upward toward and ultimately out of channel exit 344.
[0131] FIGS. 42-48 also illustrate a unique construction that relates to the
initial loading of the suture (not shown). In particular, the lower jaw 340 has a forked
distal end 345 that includes a suture loading ingress provided as an end slot 346 that
leads to a suture slot 347 contained in both the lower jaw body 341 and jaw insert 342.
The suture slot 347 proximally terminates at a proximal suture retention node or slot
end 348 where the suture resides, as further detailed below, prior to deployment when
the suture is picked up by the needle and a loop of the suture is passed through the
tissue held between the jaws..
[0132] In this embodiment, as best shown in FIGS. 44 and 46, the suture
slot 37 has varying dimensions along its length in order to provide friction within
portions of the slot relative to the suture to be deployed. As such, these dimensions


vary relative to the suture to be passed by the device 310. The presently preferred
device is intended for use with a range of suture, from #2 suture to #2-0 suture. The
thicker #2 suture has a nominal diameter of about .5mm, or about .0196", and the
thinner #2-0 suture has a nominal diameter of about .3mm, or about .0118". All further
dimensions will be in inches. While this embodiment can accommodate a particular
range of suture sizes, e.g., #2 to #2-0 suture, the dimensions can be adjusted as
needed to accommodate any conventional suture size or range of conventional suture
sizes.
[0133] Although this is an exemplary embodiment and the principals of the
underlying invention can be varied to accommodate different size suture, a detailed
review of this embodiment's dimensions may be helpful to the reader. At location "a"
near the suture loading ingress or end slot 346, the width is much larger than the
diameter of the suture so that the suture is easily pulled into the end slot 346 and
down into the suture slot 347. At location "b" which extends on either side of the
vertical portion of needle channel 343, the width is .024 + 001 such that the #2 suture
may continue to pass freely through this portion of the suture channel 347. At location
"c," the width of the suture channel 347 narrows to .020 + 001 such that the channel
begins to closely conform to the suture's nominal diameter. At locations labeled "d,"
the suture channel 347 narrows further to .019 + 001 such that there is a friction fit
between the channel 347 and the suture. And finally, when the suture is pulled allows
to the end of the suture channel 347 and into its proximal suture retention node 348,
the width expands to .026 + 001, thereby allowing the surgeon to make vertical
adjustments to the suture as desired prior to deployment to the surgical site.


Generally, the surgeon will leave a relatively short tag of suture extending below the
underside of the lower jaw 340 such that, after the device passes a loop of suture
through the tissue, only that amount of suture need be pulled through the tissue by
subsequently pulling on the loop before a single strand of suture remains. Moreover,
after the device 310 is retracted from the surgical site, it is immediately ready to be
reloaded with suture because the needle spring 386, shown in FIG. 41 and described
above, automatically retracts the needle to the non-deployed or resting state and
biases it in that position, whereby a new suture can be loaded.
[0134] FIGS. 49a and b to 56a and b are a succession of paired figures that
illustrate some structural nuances and overall operation of the preferred embodiment.
In particular, these figures show the overall operation - all the way from the loading of
the suture through the suture loading ingress or end slot, the forward translation and
momentary sideways movement of the needle as it engages the suture, the creation of
a suture loop passed through the target tissue (the tissue has been omitted for clarity),
and the retraction of the needle to the resting position.
[0135] Figures 49a and b show the position of the needle 400 relative to
the suture slot 347 and proximal suture retention node 348 when the needle 400 is in
the retracted or resting state.
[0136] FIGS. 50a and b show a length of suture 34 being initially pulled
through the end slot 346 and down into the suture slot 347. Normally, the moveable
jaw 350 would be closed prior to the loading of the suture 34, or at least prior to


introduction of the device 310 to the surgical site, but here the moveable jaw 350 is
consistently shown in the open position order to simplify the view.
[0137] FIGS. 51a and b show the suture 34 pulled a bit deeper into the
suture slot 347. At this junction, in this particular embodiment, the suture 34 is being
pulled into that part of the suture slot 347 that takes a non-linear path and that begins
to narrow (see FIGS. 44 and 46 and related description). This geometry, or equivalent,
provides sufficient friction to keep the suture in the suture slot 347 during deployment.
[0138] FIGS. 52a and b show the suture 34 at the point where it has been
fully loaded into the proximal suture retention node 348 at the end of the suture slot
347. In this embodiment, as can best be seen by looking back and forth between FIGS.
51b and 52b, the non-linear geometry of the suture slot 347 also causes the needle tip
404 to be laterally tucked off to the side of the suture slot 347 so that the suture 34
does not hang up on the tip 404 when being pulled toward the proximal end of the
suture slot 347. This arrangement beneficially prevents the suture 34 from being
nicked as it is loaded. Also, as best shown in FIG. 52b, after the suture 34 is safely
located proximally to the needle tip 404, the sideward or lateral deflection of the
needle provides a subtle spring force that is directed to the right (upward in the figure).
This squeezes the suture 34 between the needle's notch-side ramp 406 and the
opposite of the proximal suture retention node 348, thereby helping retain the suture
in place prior to placement without any further action by the surgeon. The foregoing
arrangement constitutes a means for retaining the suture 34 within the suture slot 347
prior to deployment. Other suitable structure may be used to accomplish this
retention function, of course, including, but not limited to squeezing or pinching


arrangements, friction based arrangements, a close relationship between the diameter
of the suture and the dimensions of the suture slot, etc..
[0139] Continuing with the remaining FIGS. 53-56, please note that tissue
would ordinarily be clamped between the lower jaw 340 and the moveable jaw 350
prior to and during deployment of the needle 400 and placement of the suture 34. In
other words, during needle deployment, the moveable jaw 350 would ordinarily be
partially closed, as opposed to fully open as shown. However, in order to keep FIGS.
53-56 similar to FIGS. 49-52 and clarify what is shown, the tissue is omitted and the
moveable jaw 350 in shown in the fully open position.
[0140] FIGS. 53a and b show the position of the needle 400 relative to the
lower jaw 340, suture slot 347, and suture 34, as the needle 400 is translated forward
to the distal end of the device with the needle trigger 381 (see FIG. 41). As shown in
FIG. 53b, the suture channel 343 (see also the side view in FIG. 48) includes a
deflection relief 349 that permits the needle 400 to deflect to the left as it slides
forward past the suture 34.
[0141] FIGS. 54a and b show the position of the various components after
the needle 400 has been moved forward to the point that its needle notch 405 is
aligned with the proximal suture retention node 348 and an intermediate portion of the
suture 34 contained therein. By this point, a notch-side ramp 406 of the needle has
cleared the suture 34 such that the needle 400 snaps back in line or springs back to
the right and the intermediate portion of the suture 34 is surrounded by or captured in
the needle notch 405.


[0142] FIGS. 55a and b shows the system after the needle 400 and needle
notch 405 has been bent around the curve of the lower jaw's needle channel 343,
thereby carrying a loop of the suture 34 out bf the needle exit 344 of the lower jaw
340. If tissue were held between the lower and upper jaws 340, 350, then this loop of
suture 343 would have been pushed or passed through that tissue.
[0143] FIGS. 56a and b, lastly, shows the needle 400 after it has
automatically returned to its internal resting state within the needle channel 343 of
the lower jaw 340. In this position, i.e. after passing the suture, the overall suture
passing device 310 can be simply pulled proximally away from the surgical site, the
loop of suture 340 sliding out of the end slot 346 at the distal end of the device 310.
The jaws 340, 350 of the suture passing device 310, or a separate set of forceps, can
then be used to pull the loop of suture 34 through the tissue. Note that the device 310,
if desired by the surgeon, is automatically ready to load another length of suture 34
into the end slot 346 for further suture passing activity.
[0144] In all embodiments, it is to be expressly understood that a
disposable needle may be employed. It will be appreciated, therefore, that a system or
kit is provided wherein the suturing apparatus (excluding the needle) may be re-used
while the disposable needles are replaced.
[0145] Many alterations and modifications may be made by those having
ordinary skill in the art without departing from the spirit and scope of the invention.
Therefore, it must be understood that the illustrated embodiments have been set forth
only for the purposes of examples and that they should not be taken as limiting the


invention as defined by the following claims. For example, notwithstanding the fact
that the elements of a claim are set forth below in a certain combination, it must be
expressly understood that the invention includes other combinations of fewer, more or
different ones of the disclosed elements.
[0146] The words used in this specification to describe the invention and its
various embodiments are to be understood not only in the sense of their commonly
defined meanings, but to include by special definition in this specification the generic
structure, material or acts of which they represent a single species.
[0147] The definitions of the words or elements of the following claims are,
therefore, defined in this specification to not only include the combination of elements
which are literally set forth. In this sense it is therefore contemplated that an
equivalent substitution of two or more elements may be made for any one of the
elements in the claims below or that a single element may be substituted for two or
more elements in a claim. Although elements may be described above as acting in
certain combinations and even initially claimed as such, it is to be expressly
understood that one or more elements from a claimed combination can in some cases
be excised from the combination and that the claimed combination may be directed to
a subcombination or variation of a subcombination.
[0148] Insubstantial changes from the claimed subject matter as viewed by
a person with ordinary skill in the art, now known or later devised, are expressly
contemplated as being equivalently within the scope of the claims. Therefore, obvious


substitutions now or later known to one with ordinary skill in the art are defined to be
within the scope of the defined elements.
[0149] The claims are thus to be understood to include what is specifically
illustrated and described above, what is conceptually equivalent, what can be
obviously substituted and also what incorporates the essential idea of the invention.


What is claimed is:
1. A suture passing instrument comprising:
a proximal handle and an elongated distal shaft having a distal end;
a grasping mechanism positioned adjacent to the distal end, the grasping
mechanism including a top jaw and a bottom jaw, at least one of the top jaw and the
bottom jaw hinged to the shaft at a position proximal to the distal end, the grasping
mechanism operationally coupled to the handle for opening and closing the top jaw
and the bottom jaw with respect to one another at the distal end;
a slot extending vertically through the top jaw and the bottom jaw and extending
proximally from the distal end to a slot end within at least one of the top jaw and the
bottom jaw, the slot having a slot width tapering proximally toward the slot end for
frictionally retaining an intermediate portion of a length of suture; and
a suture needle longitudinally positionable within and distally deployable from the
shaft, the needle having a open-sided notch engageable with the intermediate portion
of suture, for passing the suture when the needle is deployed from the shaft, the needle
operationally coupled to the handle for positioning and deployment.
2. The suture passing instrument of Claim 1 wherein the suture needle comprises a
proximal end and a distal end, with at least a distal portion of the needle formed from a
bendable material having a generally flat, narrow and elongate configuration, and with
a sharp needle tip located at a distal end of the distal portion.


3. The suture passing instrument of Claim 2 wherein the suture needle further
comprises a finger tab connected to the suture needle at or near a proximal end of the
suture needle for loading the suture needle into the surgical suturing device.
4, The suture passing instrument of Claim 3 wherein the finger tab is made from a
plastic that melts upon autoclaving to prevent reuse of the bendable needle.
5. The suture passing instrument of Claim wherein the plastic is HDPE.
6. The suture passing instrument of Claim 1 further comprising:
a needle movement mechanism that reciprocally moves the suture needle distally
and proximally between a proximal needle position and a distal needle position; and
a spring that automatically returns the suture needle to the proximal needle
position.
7. The suture passing instrument of Claim 1 wherein the grasping mechanism is
operatively coupled to the handle by a jaw movement mechanism that includes a
spring that biases grasping mechanism to an open position.
8. The suture passing instrument of Claim 7 further comprising a ratchet latch
assembly that prevents the jaw movement mechanism from moving toward the open
position unless positive action is taken to disable the ratchet latch assembly.
9. The suture passing instrument of Claim 8 wherein the jaw movement
mechanism include a jaw trigger that is squeezed to close the grasping mechanism and


wherein the ratchet latch assembly comprises a release button located on the jaw
trigger for disabling the ratchet latch assembly without need to change hand position.
10. A suture passing instrument comprising:
a proximal handle and an elongated distal shaft having a distal end,
a grasping mechanism positioned adjacent to the distal end, the grasping
mechanism including a top jaw and a bottom jaw, at least one of the top jaw and the
bottom jaw hinged to the shaft at a position proximal to the distal end for movement
between an open position and a closed position;
a jaw movement mechanism that operationally couples the grasping mechanism to
the handle for opening and closing the top jaw and the bottom jaw with respect to one
another at the distal end;
a spring that biases grasping mechanism to the open position; and
a ratchet latch assembly that prevents the jaw movement mechanism from moving
toward the open position unless positive action is taken to disable the ratchet latch
assembly.
11. The suture passing instrument of Claim 10 wherein the jaw movement
mechanism include a jaw trigger that is squeezed to close the grasping mechanism and
wherein the ratchet latch assembly comprises a release button located on the jaw
trigger for disabling the ratchet latch assembly without need to change hand position.


12. A suturing apparatus for passing suture through tissue, comprising:
a bendable needle having a generally flat, narrow and elongate configuration, and a
distal needle tip;
a first jaw defining an axis and a needle channel that guides the bendable needle
along the needle channel to a channel exit;
a second jaw movable with respect to the first jaw for holding tissue to be sutured
between the first and second jaws;
the bendable needle reciprocally movable between a proximal needle position
where the needle tip is resting inside the first jaw and a distal needle position where
the needle tip is protruding from the first jaw; and
a needle movement mechanism comprising a needle trigger that reciprocally
moves between a distal trigger position and a proximal trigger position, the needle
trigger operatively connected to the bendable needle to move the bendable needle
distally when the needle trigger is pulled proximally.
13. The suturing apparatus of Claim 12 wherein the needle movement mechanism
further comprises a spring that automatically returns the bendable needle to the
proximal needle position and the needle trigger to the distal trigger position when the
needle trigger is released.


14. The suturing apparatus of Claim 12 wherein the needle movement mechanism
further comprises:
a first gear rack operatively connected to the needle trigger;
a second gear rack operatively connected to the bendable needle; and
a gear located between the first and second gear racks such that translation of the
needle trigger and first gear rack in proximal or distal direction rotates the gear against
the second gear rack and translates the second gear rack and bendable needle in an
opposite direction.
15. The suturing apparatus of Claim 12 wherein the first jaw further comprises a
top, a bottom, and a forked distal end that defines an end slot extending through the
first jaw from the top to the bottom, the end slot leading to a suture-slot that extends
axially along the first jaw from the forked distal end, the suture slot extending through
the jaw from the top to the bottom in communication with and in substantial alignment
with the needle channel.
16. The suturing apparatus of Claim 14 further comprising means for retaining
suture slid proximally into the suture slot by a surgeon without any further action by
the surgeon.
17. The suturing apparatus of Claim 12 wherein the bendable needle further
comprises an open-sided notch located at or near the needle tip.


18. A suturing apparatus for passing suture through tissue, comprising:
a handle assembly;
an elongate shaft extending from a distal end of the handle assembly
a first jaw extending distally from the elongate shaft, the first jaw having an axis, a
needle channel, a channel exit, and a suture loading ingress;
a second jaw movable with respect to the first jaw for holding tissue to be sutured
between the first and second jaws;
a bendable needle having a generally flat, narrow and elongate configuration, a
distal needle tip, and an open-sided needle notch, the bendable needle reciprocally
movable between a proximal needle position where the needle tip and open-sided
needle notch are resting inside the first jaw and the suturing apparatus is ready for
suture to be loaded into the first jaw via the suture loading ingress and a distal needle
position where the needle tip and open-sided needle notch are protruding from the
first jaw with the suture loaded into the first jaw via the suture loading ingress located
on an opposite side of the tissue in the open-sided needle notch;
a needle movement mechanism that reciprocally moves the needle distally and
proximally between the proximal needle position and the distal needle position; and
a spring that automatically returns the bendable needle to the proximal needle
position and readies the suturing apparatus for suture to be loaded into the first jaw via
the suture loading ingress.



19. The suturing apparatus of Claim 18 wherein the needle movement mechanism
comprises a needle trigger that that is operatively connected to the bendable needle to
move the bendable needle distally when the needle trigger is pulled proximally.
20. The suturing apparatus of Claim 18 further comprising:
a first gear rack operatively connected to the needle trigger;
a second gear rack operatively connected to the bendable needle; and
a gear located between the first and second gear racks such that translation of the
needle trigger and first gear rack in proximal or distal direction rotates the gear against
the second gear rack and translates the second gear rack and bendable needle in an
opposite direction.
21. The suturing apparatus of Claim 18 wherein the first jaw further comprises a
top, a bottom, and a forked distal end and wherein the suture loading ingress
comprises an end slot extending through the first jaw from the top to the bottom, the
end slot leading to a suture-slot that extends axially along the first jaw from the forked
distal end, the suture slot extending through the jaw from the top to the bottom in
communication with and in substantial alignment with the needle channel.
22. The suturing apparatus of Claim 21 further comprising means for retaining
suture slid proximally into the suture slot by a surgeon without any further action by
the surgeon.


23. A suturing apparatus for passing suture through tissue comprising:
a handle assembly;
an elongate shaft extending distally from the handle assembly
a first jaw extending distally from the elongate shaft, the first jaw having an axis, a
top, a bottom, a needle channel that runs along the first jaw's axis and around a curve
to a channel exit, and a suture loading ingress that extends through the first jaw from
the top to the bottom and leads to a suture channel that also extends through the first
jaw from the top to the bottom, the suture channel being in communication with and
in substantial alignment with the needle channel;
a second jaw movable with respect to the first jaw for holding tissue to be sutured
between the first and second jaws;
a bendable needle having a generally flat, narrow and elongate configuration, a
distal needle tip, and an open-sided needle notch, the bendable needle reciprocally
movable between a proximal needle position where the needle tip and open-sided
needle notch are resting inside the first jaw and the suturing apparatus is ready for
suture to be loaded into the first jaw via the suture loading ingress and a distal needle
position where the needle tip and open-sided needle notch are protruding from the
first jaw with the suture loaded into the first jaw via the suture loading ingress located
on an opposite side of the tissue in the open-sided needle notch;
means for retaining suture loaded into the first jaw via the suture loading ingress
prior to deployment of the bendable needle, the suture being loaded into the first jaw


in a single step without regard to the position of the bendable needle and its open-
sided needle notch.
24. A method of loading and then passing suture with a suturing passing apparatus
having a handle assembly, an elongate shaft extending distally from the jaw assembly,
a first jaw that extends distally from the elongate shaft and that has a top, a bottom, a
needle channel that runs along an axis of the fixed jaw and curves to a channel exit that
opens at an angle relative to the axis, and a suture channel that extends through the
fixed jaw from top to the bottom, and a suture loading ingress that extends through the
first jaw from the top to the bottom and is in communication with the suture channel, a
bendable needle located in the needle channel, a second jaw that extends distally from
the elongate shaft and is moveable relative to the first jaw for gripping tissue to be
sutured therebetween, a needle movement mechanism for deploying the needle by
reciprocally moving the bendable needle within the needle channel and in and out of
the channel exit, the method comprising the steps of:
Loading the suture into the suture channel via the suture loading ingress such that
the protrudes from the top and bottom of the first jaw and extends across the needle
channel;
Retaining the suture in the suture channel prior to deployment; and
Capturing the retained suture with the bendable needle as the bendable needle is
moved distally during deployment.
25 The method of 24 further comprising the steps of


providing the needle with a needle tip, an open-sided needle notch, and a notch-
side ramp
positioning the needle within the first jaw such that the open-sided needle notch is
proximal to the position of suture loaded into the first jaw prior to deployment of the
bendable needle
capturing the suture with the open-sided needle notch as the bendable needle is
deployed
26 The method of Claim 25 further comprising the steps of:
positioning the bendable needle such that the needle tip is located distal to a
proximal-most end of the suture slot and off to the side, such that the notch-side ramp
is exposed to the suture slot, and such that the needle notch is proximal to the
proximal most end of the suture slot.
27 The method of claim 26 further comprising the steps of:
Laterally deflecting the bendable needle to the side as the bendable needle is
deployed distally and the notch-side ramp rides on the suture, the needle notch
capture the suture as the needle snaps back.
28. A needle adapted for use in a surgical suturing device, the needle comprising:
a needle with a proximal end and a distal end, with at least a distal portion of the
needle formed from a bendable material having a generally flat, narrow and elongate


configuration, and with a sharp needle tip located at a distal end of the distal portion;
and
a finger tab connected to the bendable needle at or near a proximal end of the
needle for loading the needle into the surgical suturing device.
29. The needle of Claim 28 wherein the finger tab is made from a plastic that melts
upon autoclaving to prevent reuse of the bendable needle.
30. The needle of Claim 29 wherein the plastic is HDPE.
31. The needle of Claim 29 wherein the finger tab is over-molded onto the
bendable needle.
32. The needle of Claim 28 further comprising an open-sided needle notch on a
side of the distal portion.
33. The needle of Claim 32 further comprising a lubricious coating applied to a
surface of the needle to reduce a force required to slide the needle back and forth
within the surgical suturing device or tissue to be sutured.
34. The needle of Claim 33 wherein the lubricious coating is
polytetrafluoroethylene.


35. A needle adapted for use in a surgical suturing device, the needle comprising:
a needle with a proximal end and a distal end, with at least a distal portion of the
needle formed from a bendable material having a generally flat, narrow and elongate
configuration, and with a sharp needle tip located at a distal end of the distal portion;
and
a lubricious coating applied to a surface of the needle to reduce a force required to
slide the needle back and forth within the surgical suturing device or tissue to be
sutured.
36. The needle of Claim 35 wherein the lubricious coating is a fluoropolymer.
37. The needle of Claim 36 wherein the fluoropolymer is polytetrafluoroethylene.
38. The needle of Claim 35 further comprising an open-sided needle notch on a
side of the distal portion.
39. A suturing apparatus for passing suture through tissue, comprising:
a bendable needle having a generally flat, narrow and elongate configuration, a
distal needle tip, and an open-sided needle notch located at or near the needle tip;
a first jaw defining an axis and having a top, a bottom, a needle channel that guides
the bendable needle along the first jaw's axis and around a curve to a channel exit, and
a forked distal end that defines an end slot extending through the first jaw from the top
to the bottom, the end slot leading to a suture-slot that extends axially along the first
jaw from the forked distal end, the suture slot extending through the jaw from the top


to the bottom in communication with and in substantial alignment with the needle
channel;
suture slid proximally into the suture slot via the end slot;
means for retaining the suture in the suture slot without any further action by the
surgeon prior to passing the suture;
the bendable needle reciprocally movable between a proximal position where the
bendable needle is in a first substantially straight configuration with the needle tip and
needle notch resting inside the first jaw, and a distal position where the bendable
needle is in a second curved configuration with the needle tip and needle notch
protruding from the first jaw,
the needle notch passing by the retained suture and temporarily capturing the
retained suture held in the suture slot when the bendable needle is moved from the
proximal position to the distal position;
a second jaw movable with respect to the first jaw for holding tissue to be sutured
between the first and second jaws; and
an actuator that reciprocally moves the bendable needle between the proximal
position and the distal position, the needle tip, needle notch, and temporarily captured
suture moving axially forward within the first jaw's axial through-slot and through the
tissue held between the first and second jaws when the bendable needle is moved to
the distal position where the needle tip, needle notch, and temporarily captured suture
are located beyond a distal side of the tissue with the suture in the needle notch


forming a suture loop, the suture loop being released from the needle notch and
remaining on the distal side of the tissue when the bendable needle is moved back to
the proximal position.
40. The suturing apparatus of Claim 39 further wherein the suture slot comprises a
proximal suture retention node at a proximal end of the suture slot and a relatively
narrow portion that leads to the proximal suture retention node.
41. The suturing apparatus of Claim 40 wherein the suture retaining means
comprises a friction fit between the suture and the relatively narrow portion of the
suture slot.
42. The suturing apparatus of Claim 40 wherein the bendable needle further
comprises a notch-side ramp between the distal needle tip and the needle notch,
wherein the notch-side ramp is located adjacent to the proximal suture retention node,
and wherein the suture retaining means comprises the notch-side ramp being biased
against the suture located in the proximal suture retention node by a sideways
deflection in the bendable needle.


43. The suturing apparatus of Claim 38 wherein the actuator comprises a needle
movement mechanism having a needle trigger that moves the bendable needle to the
distal direction to the distal position when the needle trigger is pulled in a proximal
direction.
44. The suturing apparatus, of Claim 38 wherein the needle movement mechanism
includes a spring that automatically returns the bendable needle to the proximal
position when the needle trigger is released.

A suturing apparatus comprises a pair of jaws. A bendable needle housed in one of the jaws is adapted to carry a suture. An optional suture receiver may be disposed adjacent to the opposite jaw. A transition block curves the needle and directs it in a direction generally unparallel to an axis of the carrying jaw. The needle may also be configured to retrieve a suture. A retaining mechanism holds a suture in place to be engaged by the needle. The jaw housing the needle may include a lateral opening
through which the suture may be inserted. The needle may also include a lateral notch
which may be aligned with lateral opening to receive the suture. An actuator coupled
to the needle enables the user to move the needle proximally to align the notch with
the lateral slot.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=1E4v9N3qFfYMRhm98dqlUQ==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 270223
Indian Patent Application Number 712/KOL/2008
PG Journal Number 49/2015
Publication Date 04-Dec-2015
Grant Date 02-Dec-2015
Date of Filing 11-Apr-2008
Name of Patentee DEPUY MITEK, INC.
Applicant Address ONE JOHNSON & JOHNSON PLAZA, NEW BRUNSWICK, NJ
Inventors:
# Inventor's Name Inventor's Address
1 DAVID ROBSON 336 SEA VIEW AVE., RIVERSIDE, RI 02915
2 CHRISTOPHER WEINERT 27 PADOCK DR. PLAINVILLE MA 02762
3 DAN NELSEN 18 IMPERIAL PLACE, #3F, PROVIDENCE, RI 02903
4 BRECK PETRILLO 71 REMINGTON ST., WARWICK, RI 02888
5 MICHAEL PEREIRA 11, ROGER WILLIAMS DRIVE RI 02828
6 THOMAS WEISEL 3063 GROVE ST., VENTURA, CA 93008
7 CHARLES JOHNSON 236 DAY ROAD, VENTURE, CA 93003
8 DAVID SKINLO 13250 SW RAPOR, TIGARD, OR 97223
9 RON FARKASH 27 PADDOCK DR. PLAINVILLE, MA 02762
PCT International Classification Number A61B17/062; A61B17/04
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/738,129 2007-04-20 U.S.A.