Title of Invention

"POLYMER COMPOSITION"

Abstract Film formed from a polyethylene resin composition which obeys a dynamic rheological relationship at 190°C between melt storage modulus G', measured in Pa and at a dynamic frequency where the loss modulus G" = 3000Pa, and dynamic complex viscosity *100, measured in Pa.s at 100 rad/s, such that (a) G'(G" = 3000) > -0.86*100 + z where z = 3800, and at the same time (b) G'(G" = 3000) > 0.875*100 - y where y = 650, and having an impact strength (DDT) of at least 250 g, measured on 15µm thick film (blown under conditions with BUR = 5:1 and Neck Height = 8 x D) conditioned for 48 hours at 20° - 25°C, according to ASTMD1709.
Full Text POLYMER COMPOSITION
The present invention relates to films made from ethylene polymer compositions
particularly to films made from multimodal polymers comprising a homopolymer and acopolymer of ethylene, and also to processes for making such polymers and films.Patent-application EP 897934A describes a compound comprising an ethylene
polymer with high melt index (Mk from 5 to 1000 g/10 min) and an ethylene and
hexene polymer with low melt index (MI5 from 0.01 to 2 g/10 min), the ratio by weightof these polymers being equal of (30 to 70):(70 to 30). These polymers are made usingZiegler-Natta catalysts such as are described in US 3901863, 4929200 and 4617360(Solvay). They are said to be suitable for making into films.
In order to obtain an industrial resin based on high molecular weight (HMW)
ethylene homopolymers and copolymers which has improved strength and mechanicalproperties, the rheological and structural properties of the resin must be tailoredappropriately, so as to achieve a balance of good processability (e.g., bubble stability,extrudability, etc.) and good mechanical properties. Improved mechanical properties ofHMW resins are associated with enhanced tie molecule density in the high molecularweight chains, and also with appropriate comonomer content/distribution. Theappropriate rheological properties for such HMW resins can be achieved by adjustingstructural parameters such as molecular weight (Mw), molecular weight distribution
(MWD) and long chain branching (LCB) to achieve the desired melt elasticity and meltstrength needed for good bubble stability in film blowing processes, and the desiredviscosity for improved extrudability. Post-reactor modifications by appropriatecompounding with reticulation agents (eg. oxygen and peroxides) can also be employedto achieve the desired rheological properties without detrimental effects on the tie-molecule populations in the high molecular chains; this permits the retention of thedesired balance of film processability, extrudability and mechanical properties, Theblending of non-reticulated, or lightly reticulated resins with highly reticulated resinscan also be employed to improve the desired balanced processability and mechanical
properties.We have now found a range of polymer compositions which is capable of makingfilms with improved rheology and film properties.
In its broadest aspect, the present invention provides a film formed from a
polyethylene resin, composition which obeys a dynamic rheological relationship at
190°C between melt storage modulus G', measured in Pa and at a dynamic frequencywhere the loss modulus G" = SOOOPa, and dynamic complex viscosity i]*ioo, measuredin Pa.s at 100 rad/s, such that (a) G'(G" = 3000) > -0.86ti*l0o + z where z = 3800, and atthe same time (b) G'(G" = 3000) > 0.875ri*ioo - y where y = 650, and having an impactstrength (DDT) of at least 250 g, measured on 15 um thick film (blown under conditions
with BUR = 5:1 and Neck Height = 8 x D) conditioned for 48 hours at 20° - 25°C, .
according to ASTM D1709.In a preferred embodiment the polyethylene resin composition is a multimodalcomposition comprising from 30 to 70 wt% of an ethylene polymer (A) having a meltindex MI2 of 5 - 1000 g/lOmin and a density of at least 965 kg/m3, and from 30 to70
wt% of an ethylene polymer (B) having a melt index Mis of 0.001 — 2 g/lOmin and adensity of 910 to 945 kg/m3.It is particularly preferred that ethylene polymer (A) is a homopolymer, and theethylene polymer (B) is a copolymer of ethylene and a C4-Cs alpha-olefm.By "multimodal" polyethylene is meant polyethylene haying at least twocomponents of different molecular weights and compositions (ie comonomer content).Preferably the resin composition is bimodal, that is to say it has just two suchcomponents, although each component may itself be multimodal.An alternative aspect of the invention provides a film formed from a multimodal
polyethylene resin composition which comprises from 30 to 70 wt% of an ethylenehomopolymer (A) having a melt index Ml2 of 5 - 1000 g/lOmin and a density of at least965 kg/m3, and from 30 to70 wt% of a copolymer of ethylene and a C^Cg alpka-olefm(B) having a melt index MI5 of 0.001 - 2 g/lOmin and a density of 910 to 945 kg/m3,
wherein the composition wherein the composition obeys a dynamic rheological
relationship at 190PC between melt storage modulus G', measured in Pa and at a
dynamic frequency where the loss modulus G" = SOOOPa, and dynamic complex
viscosity T|*IOO, measured hi Pa.s at 100 rad/s, such that 0.23-n*10o + 2050 > G1 (G" =
3000) > 0.23ri*ioo + q, where q is 680, preferably 1020, more preferably 1350 and most
preferably 1600, and also G'(G" = 3000) > -0.43t|* 100 + 2900, but preferably subject to
the proviso that G'(G" = 3000) Preferably the composition has a melt storage modulus G', measured in Pa and at
a dynamic frequency where the loss modulus G" — 3000Pa, of no more than 2650 Pa.Whilst the films of the invention are usually comprised entirely of the abovedefinedcompositions, the invention includes within its scope films comprising a blendof compositions, of which one is as defined above. Preferably at least 50wt% of the filmcomprises one of the above-defined resins.
Storage modulus G' (at a loss modulus G" of 3000Pa), also referred as G'(G" =
3000), which is linked to the molecular weight distribution of the resin, affects the meltelasticity and melt strength of a molten film during blown film extrusion; a high G'
correspods to a high melt strength. This is desirable for film blowing, as a high melt
strength gives improved bubble stability. The magnitude of the dynamic complex
viscosity at an applied oscillating frequency, co, of 100 rad/s, n*ioo, which is linked tothe molecular weight of the polymer, is the viscosity at shear rates of the order typically
experienced during extrusion processes, and affects extruder motor power consumption,
melt pressure generation at the die etc; a low T|*IOO is desirable. Thus is can be seen that
G' and r|*ioo are important for the performance of a resin in blown film production. In
particular, a higher value of G' at a given r|*ioo provides improved bubble stability
during blowing of the film, and consequently leads to improved film properties. For this
reason the films of the invention have improved properties compared with similar prior
art compositions. The measurement of G' and G"is described below in connection with
the Examples.
For the purposes of the present invention, the term "homopolymer", as in ethylene
homopolymer (A) of the preferred embodiment of the invention, is understood to denote
an ethylene polymer composed essentially of monomer units derived from ethylene and
substantially devoid of monomer units derived from other olefins. The term "copolymer
of ethylene and a C^Cg alpha-olefin" is understood to denote a copolymer comprising
monomer units derived from ethylene and monomer units derived from a C4-Cs alphaolefin
and, optionally, from at least one other .alpha.-olefm. The C4-Cg alpha-olefin can
be selected from olefinically unsaturated monomers comprising from 4 to 8 carbon
atoms, such as, for example, 1-butene, 1-pentene, 3-methyl-l-butene, 3- and 4-rnethyl-
1-pentenes and 1-octene. Preferred alpha-olefins are 1-butene, 1-hexene and 1-octene
and more particularly 1-hexene. The other .alpha-olefrn which may also be present
additional to the C^Cs alpha-olefin is preferably selected from olefinically unsaturated
monomers comprising from 3 to 8 carbon atoms, such as, for example, propylene,
butene, 1-pentene, 3-methyl- 1-butene, 3- and 4-methyl-l-pentenes, 1-hexene and
octene.
The content in copolymer (B) of monomer units derived from Ct-Cz alpha-olefin,
hereinafter called comonomer content, is generally at least 0.2 mole %, in particular at
least 0.4 mole %. The comonomer content of copolymer (B) is usually at most 1.8 mole
%, preferably at most 1.5 mole %. Particularly preferred is a comonomer content that is
between 0.5 and 1.1 mole %. When the comonomer is 1-hexene, the content measured
in mole % is approximately one third that measured in weight %.
For the purposes of the present invention, the C/rCg alpha-olefin content of the
copolymer (B) is measured by 13C NMR according to the method described in J.
Randall, JMS-Rev. Macromol. Chem. Phys., C29(2&3), p. 201-317 (1989), that is to
say that the content of units derived from C4-Cg alpha-olefin is calculated from the
measurements of the integrals of the lines characteristic of that particular C^Cg alphaolefin
in comparison with the integral of the line characteristic of the units derived from
ethylene (30 ppm). A copolymer (B) composed essentially of monomer units derived
. from ethylene and a single C/t-Cs alpha-olefin is particularly preferred.
For the purposes of the present invention, melt flow index Mk, respectively Mis,
is understood to denote the melt flow indices measured according to ISO Standard 1133
at a temperature of 190°C under a load of 2.16 kg, respectively 5 kg. Furthermore, melt
flow index HLMI is understood to denote the melt flow index measured according to
ISO Standard 1133 at a temperature of 190°C under a load of 21.6 kg.
hi the preferred aspect of the invention, homopolymer (A) preferably exhibits an
MIi of at least 50 g/lOmin, more preferably at least 90 g/10 min. The Mia of the •
homopolymer (A) preferably does not exceed 700 g/10 min.
The melt flow index Mis of the copolymer (B) is preferably at least 0.001 g/10
min. It preferably does not exceed 1.0 g/10 min. The copolymer (B) advantageously
exhibits an HLMI of at least 0.05 g/10 min which, furthermore, does not exceed 20 g/10min.hi the most preferred aspect of the invention, the fihn is formed from a
composition capable of being obtained by a process hi which:
in a first reactor, ethylene is polymerized in suspension in a first mixture
comprising a diluent, hydrogen, a catalyst based on a transition metal and a cocatalyst,so as to form from 30 to 70% by weight with respect to the total weight of the
composition of an ethylene homopolymer (A);
said first mixture is withdrawn from said reactor and is subjected to a reduction in
pressure, so as to degas at least a portion of the hydrogen to form an at least partially
degassed mixture, and said at least partially degassed mixture, together with ethylene
and a C4-C8 alpha-olefin and, optionally, at least one other alpha.-olefin, are introduced
into a subsequent reactor and the suspension polymerization is carried out therein in
order to form from 30 to 70% by weight, with respect to the total weight of the
composition, of a copolymer of ethylene and of C/t-Cg alpha-olefin.
The invention also provides a process for obtaining a polyethylene resin
composition as defined in any preceding claim, comprising the steps of polymerising
ethylene and optionally comonomer, and then compounding the polyethylene
composition to form it into pellets. The catalyst employed hi the polymerisation process
may be any catalyst(s) suitable for preparing the low and high density fractions.
Preferably, the same catalyst produces both the high and low molecular weight
fractions. For example, the catalyst may be a chromium catalyst, a Ziegler-Natta
catalyst, or a rnetallocene catalyst. Preferably the catalyst is a Ziegler-Natta catalyst.
The preferred multimodal polyethylene resin composition which comprises from
30 to 70 wt% of an ethylene homopolymer (A) having a melt index Mk of 5 -1000
g/lOmin and a density of at least 965 kg/m3, and from 30 to70 wt% of a copolymer of
ethylene and a C4-C8 alpha-olefin (B) having a melt index Mis of 0.001 — 2 g/lOmin and
a density of 910-945 kg/m3, is preferably obtained by a process in which:
in a first reactor, ethylene is polymerised in suspension in a first mixture
comprising a diluent, hydrogen, a polymerisation catalyst and a cocatalyst, so as to form
from 30 to 70% by weight with respect to the total weight of the composition of
ethylene homopolymer (A),
said mixture is withdrawn from said reactor and is subjected to a reduction in pressure,
so as to degas at least a portion of the hydrogen to form an at least partially degassed
• mixture, then
said at least partially degassed mixture, together with ethylene and a C^Cs alpha-olefin
and, optionally, at least one other alpha-olefin, are introduced into a subsequent reactorand the suspension polymerization is carried out therein in order to form from 30 to70% by weight, with respect to the total weight of the composition, .of a copolymer of
ethylene and of C4-Cs alpha-olefin (B).
Preferably the polymerisation catalyst is a mixed alcoholate catalyst containing 5
to 30% by weight of transition metal, 0.5 to 20% by weight of magnesium, 20 to 60%by weight of chlorine and 0.1 to 10% by weight of aluminium, and having a residualorganic radical content in the precipitated catalyst of less than 35wt%.
Preferably the process of the invention comprises the further step of compounding
the resin formed into pellets. It is also preferred that the process of the invention
comprises the further step of forming the resin created by the process into film.
"Residual organic radical content" is defined as 100 less the amount in wt% of
transition metal, magnesium, aluminium and chlorine as determined by X-ray
fluorescence. This is a convenient measure of the effective chlorination ratio in the
catalyst: we have found that this has a significant influence on the molecular weightdistribution of the polymer made using the catalyst, which is believed to affect the of films made from the polymer.
Suspension polymerization is understood to denote the polymerization in a diluent
which is' in the liquid state under the polymerization conditions (temperature, pressure) polymerization conditions or the diluent being such that at least 50% by
weight (preferably at least 70%) of the polymer formed is insoluble in the said diluent.
The diluent used in the polymerization process according to the invention is
usually a hydrocarbon-comprising diluent which is inert with respect to the catalyst, thecocatalyst and the polymer formed, such as, for example, a linear or branched alkane ora cycloalkane having from 3 to 8 carbon atomsj such as hexane or isobutane. Theamount of ethylene introduced into the first polymerization reactor and into thesubsequent polymerization reactor is generally adjusted so as to obtain a concentrationof ethylene in the diluent of 5 to 50 g of ethylene per kg of diluent.The amount of hydrogen introduced into the first reactor is generally adjusted soas to obtain, in the diluent, a molar ratio of hydrogen to ethylene of 0.05 to 1. In the first
reactor, this molar ratio is preferably at least 0.1. A hydrogen/ethylene molar ratio
which does not exceed 0.6 is particularly preferred.
The mixture withdrawn from the first reactor, additionally comprising the
homopolymer (A), is subjected to a reduction in. pressure so as to remove (degas) at
least a portion of the hydrogen. The reduction hi pressure is advantageously carried outat a temperature of less than or equal to the polymerization temperature in the first
reactor. The temperature at which the reduction in pressure is carried out is usually
greater than 20°C; it is preferably at least 40°C. The pressure at which the reduction inpressure is carried out is less than the pressure in the first reactor. The pressurereductionpressure is preferably less than 1.5 MPa. The pressure-reduction pressure is
usually at least 0.1 MPa. The amount of hydrogen still present in the at least partiallydegassed mixture is generally less than 1% by weight of the amount of hydrogen
initially present in the mixture withdrawn from the first polymerization reactor; this is preferably less than 0.5%. The amount of hydrogen present in the partiallydegassed mixture introduced into the subsequent polymerization reactor is consequentlylow, or even zero. The subsequent reactor is preferably also fed with hydrogen. Theamount of hydrogen introduced into the subsequent reactor is generally adjusted so as toobtain, in the diluent, a molar ratio of hydrogen to ethylene of 0.001 to 0.1. This molarratio is preferably at least 0.004 in this subsequent reactor. It preferably does not exceed
0.05. In the process according to the invention, the ratio of the concentration of
hydrogen in the diluent in the first reactor to the concentration in the subsequent
. polymerization reactor is usually at least 20, preferably at least 30. A ratio of
concentrations of at least 40 is particularly preferred. This ratio usually does not exceed300, preferbly not 200.
The amount of C^Cg alpha-olefin introduced into the subsequent polymerization
reactor is such that, in this reactor, the C/t-Cg alpha-olefin /ethylene molar ratio in thediluent is at least 0.05, preferably at least 0.1, but preferably does not exceed 3, andmore preferably no higher than 2.8. In the preferred process according to the invention,the first reactor is not fed with Ct-C% alpha-olefin, such that the first reactor isessentially devoid of C/i-Cg alpha-olefin. In this case, the diluent introduced into the firstreactor, which can be recycled diluent, must be highly depleted in C^Cg alpha-olefin.The diluent introduced into the first reactor preferably contains less than 1000 ppm of
C4-Cg alpha-olefin, and most preferably is essentially free of C^Cg alpha-olefin.
The preferred catalyst used to make the compositions of the invention comprises
at least one transition metal. Transition metal is understood to denote a metal from
Groups 4, 5 or 6 of the Periodic Table of the Elements (CRC Handbook of Chemistryand Physics, 75th edition, 1994-95). The transition metal is preferably titanium and/orzirconium. Titanium is particularly preferred. In the process according to the invention,
use is preferably made of a catalyst comprising, in addition to the transition metal,
magnesium.These catalysts are preferably obtained by coprecipitation of at least one transition
metal compound and of a magnesium compound by means of a halogenated
organoaluminium compound. Such catalysts are known; they have been disclosed
particularly in patents U.S. Pat. Nos. 3,901,863,4,929,200 and 4,617,360 (Solvay). In'
the process according to the invention, the catalyst is preferably introduced solely intothe first polymerization reactor, that is to say that fresh catalyst is not introduced into
the subsequent polymerization reactor. The amount of catalyst introduced into the first
reactor is generally adjusted so as to obtain an amount of at least 0.5 mg of transition
metal per litre of diluent. The amount of catalyst usually does not exceed 100 mg of
transition metal per litre of diluent.
These catalysts typically contain 5 to 30% by weight of transition metal, 0.5 to
20% by weight of magnesium, 20 to 60% by weight of chlorine and 0.1 to 10% by
weight of aluminium, and have a residual organic radical content in the precipitated
catalyst of less than 35wt%. These catalysts are also obtained by coprecipitation of atleast one transition metal compound and a magnesium compound by means of a
halogenated organoaluminium compound, but with a ratio of transition metal to
magnesium of no more than about 1:1. They are described in more detail in our own EP703247B. Most preferred catalysts have the following composition:
Transition metal from 8 to 16 % by weight
Magnesium content from 5 to 15 % by weight
Chlorine content from 40 to 60 % by weight
Aluminum content less than 5 % by weight
Residual organic content less than 35 % by weight
Total alkyl benzoate content less than 20 % by weight.
The cocatalyst employed is preferably an organoaluminium compound. Nonhalogenatedorganoaluminium compounds of formula AIRs in which R represents analkyl group having from 1 to 8 carbon atoms are preferred. Triethylaluminium and
rriisobutylaluminium are particularly preferred. The cocatalyst is introduced into thefirst polymerization reactor. It is also possible to introduce fresh cocatalyst into the
subsequent reactor. .The amount of cocatalyst introduced into the first reactor is
generally at least 0.1 x 10"3 mol per litre of diluent. It usually does not exceed 5 x 10"3mol per litre of diluent. If appropriate, the amount of fresh cocatalyst introduced into thesubsequent reactor usually does not exceed 5 x 10~3 mol per litre of diluent.hi the preferred process of the invention, the polymerization temperature isgenerally from 20 to 130°C. It is preferably at least 60°C. It preferably does not exceed
115°C. The total pressure at which the process according to the invention is carried outis generally from 0.1 MPa to 10 MPa. In the first polymerization reactor, the totalpressure is preferably at least 2.5 MPa. It preferably does not exceed 5 MPasubsequent polymerization reactor, the total pressure is preferably at least 1.3 MPa. It.
preferably does not exceed 4.3 MPa.
The duration of polymerization in the first reactor and in the subsequent reactor is
generally at least 20 minutes, preferably at least 30 minutes. The duration of
polymerization usually does not exceed 5 hours, preferably not 3 hours.
In order to carry out the preferred process of the invention, it is possible to make
use of a plant comprising more than two polymerization reactors connected in series. It
is preferable to restrict the system to two polymerization.reactors connected in series,
separated by a device which makes it possible to carry out the reduction in pressure.In
the preferred process., a suspension comprising a composition comprising from 30 to
70% by weight of the homopolymer (A) and from 30 to 70% by weight of the
copolymer (B) is collected at the outlet of the subsequent polymerization reactor. The
composition comprising ethylene polymers can be separated from the suspension by any
known means. The suspension is usually subjected to a reduction in pressure (final
reduction in pressure), so as to remove the diluent, the ethylene, the C^Cg alpha-olefin
and, optionally, the hydrogen from the composition. According to an alternative form of
the process and more particularly when the diluent is isobutane, the gases exiting from
the first reduction in pressure (intermediate reduction in pressure between the two
polymerization reactors) and from the final reduction in pressure are mixed, compressed
and conveyed to a distillation unit. This distillation unit is advantageously composed of
one or of two distillation columns in series. Ethylene and hydrogen are withdrawn at thecolumn top, a mixture of isobutane and C^Cg alpha-olefin is withdrawn at the column
bottom and isobutane devoid of the C/j-Cg alpha-olefin is withdrawn from an
intermediate plate. The isobutane-alpha-olefin mixture is then recycled in the
subsequent polymerization reactor, whereas the isobutane devoid of C/rCg alpha-olefin
is recycled in the first reactor.
Typically the compositions of the invention are compounded into pellets prior to
their use in the manufacture of articles such as films. Compounding conditions are well
known to those skilled in the art. The conditions may be selected to control the amount
of reticulation taking place in the composition; reticulation has been found to increase
the value of the storage modulus G', which has the effect of increasing the value of z
and decreasing the value of y in the relationships G'(G" = 3000) > - 0.86 T|*IOO
G'(G" = 3000) > 0.875 h.*ioo - y, which define the scope of the invention. Thus
reticulation may be used in order to ensure that the compositions made are within thescope of the present invention, and accordingly it is preferred that the compositions are
subjected to reticulation during compounding.
As a general rule, the pelletisation of the bimodal film resins disclosed herein
requires the optimisation of extrusion conditions. The correct balance between bimodal
film properties such as film appearance, i.e. gels free quality, impact resistance and tear
resistance, is obtained by adjustment of specific energy, residence time in the extruder
and reticulation rate applied to the ethylene polymer. Such techniques are well known in
the art. The compounding tool can be of twin screw extruder type optionally equipped
with a melt pump to pressurize the molten product and ensure the flow through filter
and dieplate; it can also be of continuous mixer type equipped with a gear pump .
Specific energy applied to the polymer is generally higher than 180 kWh/t, preferably
higher than 200 kWh/t and most preferably higher than 220 kWh/t. Specific energy is
generally not be higher than 270 kWh/t, preferably not higher than 250 kWh/t and most
preferably not higher than 230 kWh/t Length of the extruder or mixer, number of
mixing stages and gate aperture between stages are adjusted hi such a way that the
residence time of the molten bimodal is generally longer than 10 seconds, preferably
longer than 20 seconds and most preferably longer than 30 seconds.
Reticulation of the ethylene polymer is typically accomplished using either
oxygen or peroxide, as is well known in the art. Cross-linking under oxygen is
controlled either by injection of oxygen at the powder feeding section, for example
the feeding throat of the extruder or mixer or by nitrogen blanketing flow adjustment at
the same feeding throat. In both cases, oxygen concentration is typically controlled at
lower than 15 wt%, preferably lower than 1-1 wt%. Cross-linking under peroxide is
controlled by addition of peroxide in powder or liquid form in the pre-mix of additives
fed in the extruder, simultaneously with polyethylene powder. The type of peroxide is
selected according to its hah0 time life curve versus temperature. It is desired that the
peroxide should start to react in the second or the third mixing stage, by which time it is
akeady intimately dispersed in the ethylene polymer. Desirably the peroxide action
should stop at the exit of the extruder or mixer, so that its cross-linking action is not
longer than the polymer extrusion residence time. Both means of reticulation, by oxygen
and by peroxide, enable attainment of the melt storage modulus G' target; the higher the
specific energy and the longer the residence time, the more efficient the reticulation
under oxygen or peroxide. On the other hand, deterioration of bimodai film mechanical
properties can occur at high values of G', equating to a substantial degree of
reticulation; consequently specific energy, residence time., type and concentration ofperoxide and oxygen concentration have to be closely optimized and controlled toensure the optimum bimodai film performance.
Althoughihe relationships between G'(G" = 3000) and dynamic complex viscosity
r|*ioo defined by the present invention may be achieved without reticulation, typicallythe compounding conditions are selected to introduce a degree of reticulation such aftercompounding the value of z is greater than before compounding, and the value of y is
less than befoe compounding. Preferably, the compounding step increases the value ofz by at least 100, preferably by 400 - 1200, and decreases the value of y by at least 100,preferably 400 -1200. The compounding conditions which achieve such an, increase in
the storage modulus G' are those which are conventionally used to achieve reticulation,
and are well known to those skilled in the art. The level of reticulation agents including
oxygen and peroxides, and the presence of additives such as phosphites, can all be
adjusted so as to control the degree of reticulation and hence the increase in G'.
However, whilst an increased G' is desirable in order to improve the melt
elasticity and melt strength and balanced orientation of the resin, as previously
mentioned increasing G' too much during compounding can adversely affect
mechanical properties such as impact performance. Hence it is preferred to maximise
the G' of the resin before compounding.
Alternatively, the compositions forming the films of the invention can comprise
blends of resins with a high degree of reticulation and resins with little or no
reticulation. In a still further aspect of the invention, the films of the invention can.'comprise a blend of 20-80 wt% of a first composition as defined in any preceding claim,
and 80-20 wt% of a second composition as defined in claim 1 but where z ' 650. In such a blend the composition with the higher value of z and lower value of yis typically reticulated whereas the other composition is not.
The amount of homopolymer (A) in the composition of the invention is preferably
at least 35%, more particularly at least 40%, by weight with respect to the total weightof the composition. The amount of homopolymer (A) preferably does not exceed 60%by weight. Good results have been obtained with an amount of homopolymer (A) whichdoes not exceed 55% by weight with respect to the total weight of the composition.The amount of copolymer (B) is preferably at least 45%, more particularly at least
50%, by weight with respect to the total weight of the composition. The amount of
copolymer (B) preferably does not exceed 65% by weight. Good results have been
obtained with an amount of copolymer (B) not exceeding 60% by weight with respect to
the total weight of the composition.
The composition according to the invention generally comprises at least 95%,
preferably at least 99%, by weight of the combination of the homopolymer (A) and ofthe copolymer (B). A composition comprised solely of the homopolymer (A) and of thecopolymer (B) is very particularly preferred.
The composition according to the invention generally exhibits a melt flow index
MIS of at least 0.07 g/10 min, preferably of at least 0.1 g/10 min. The MIS of the
composition usually does not exceed 10 g/10 min, preferably not 7 g/10 min.
Compositions for which the MI5 does not exceed 1 g/10 min are particularly preferred.The composition according to the invention advantageously exhibits an HLMI of atleast 2 g/10 mn which, furthermore, does not exceed 100 g/10 min, and preferably no, more than 25 g/lOmin.
The compositions according to the invention generally exhibit a standard density
SD, measured according to ISO Standard 1183-1 (on a sample prepared according toISO Standard 293) of at least 930 kg/m3. The compositions preferably exhibit an SD of
greater than 935 kg/m3. Compositions which have given good results are those for
which the SD is at least equal to 940 kg/m3. The SD generally does not exceed 965
kg/m3; it preferably does not exceed 960 kg/m3. Compositions for which the SD is less
than 955 kg/m3 are particularly preferred. The SD of the homopolymer (A) present in
the compositions according to the invention is generally at least 960 kg/m , preferably at
least 965 kg/m3. A homopolymer (A) having an SD of at least 968 kg/m3 is very
particularly preferred. The SD of the copolymer (B) is generally from 910 to 945 kg/m3.The SD of the copolymer (B) is preferably at least 915 kg/m3. The SD of the copolymer
(B) preferably does not exceed 940 kg/m3, and more particularly it does not exceed 938
kg/m3.As well as the manufacture of films, the compositions of the invention may beused, inter alia, in extrusion processes such as extrusion coating, blow-moulding,injection-molding or thermoforming. They may be used for the manufacture of articles
such as sheets, containers and bags.
The compositions made according to the invention can be mixed with the usual
processing additives for polyolefins, such as stabilizers (antioxidizing agents and/oranti-UV agents), antistatic agents and processing aids, as well as pigments. Theinvention consequently also relates to a mixture comprising a composition according tothe invention and at least one of the additives described above. The mixtures comprisingat least 95%, preferably at least 97%, by weight of a composition according to theinvention and at least one of the additives'described above are particularly preferred.
The Examples which follow are intended to illustrate the invention, together
with Figure 1 of the drawings, which shows the relationship of the Examples to the
equations relating G'(G" = 3000) and T|*IOO as specified in the invention
EXAMPLES
The meanings of the symbols used in these examples and. the units expressing the
properties mentioned and the methods for measuring these properties are explainedbelow.Elmendorf Tear Resistance = resistance to tearing measured according to ASTMStandard D 1922-67; MD denotes the measurement in the longitudinal (machine)direction of the film, TD denotes the measurement in the transverse direction of the
film.DDT = Dart Drop Test, impact strength or resistance to perforation measured
according to ASTM D1709. The values have been expressed in g per each thickness of
the film in urn tested (i.e., either 15 um thick films in Table 4 or 25 um thick films inTable 5).Dynamic Rheological Analysis
Rheological measurements were carried out on an oscillatory rheometer (e.g.,
Rheometrics RDS-2, ARES) with 25mm diameter parallel plates in a dynamic mode,under an inert atmosphere (nitrogen).. For all experiments, the rheometer was thermallystable at 190°C for at least 30 minutes before inserting the appropriately stabilised (withanti-oxidant additives), compression-moulded sample of resin onto the parallel plates.
The plates were then closed with a positive normal force registered on the meter to
ensure good contact. After about 5 minutes at 190°C, the plates were lightly
compressed and the surplus polymer at the circumference of the plates trimmed. A
further 10 minutes was allowed for thermal stability and for the normal force to
decrease back to zero.Two strain sweep (SS) experiments were initially carried out at 190°C undernitrogen to determine the linear viscoelastic strain that would generate a torque signalwhich is gj-eater than 10% of the lower scale of the transducer, over the full frequency
(e.g. 0.01 to 100 rad/s) range. The first SS experiment was carried out with a low
applied frequency of 0.1 rad/s so as to determine the sensitivity of the torque at lowfrequency. The second SS experiment was carried out with a high applied frequency of
100 rad/s to ensure that the selected applied strain is well within the linear viscoelasticregion of the polymer so that the oscillatory rheological measurements do not induce
structural changes to the polymer during testing. In addition, a time sweep (TS)
experiment was carried out with a low applied frequency of 0.1 rad/s at the selected
strain (as determined by the SS experiments) to check the stability of the sample during
testing.
Measurement of Melt Elastic Modulus G!(G^=3000 Pa) and Complex
Dynamic shear viscosity, T|*(100), at 190°C
The frequency sweep (FS) experiment was then carried out. at 190°C using the
above appropriately selected strain level between dynamic frequencies range of 10"2 to
100 rad/s, under nitrogen. The dynamic rheological data thus measured were then
analysed using the rheometer software (viz., Rheometrics RHIOS V4.4 or Orchestrator
Software) to determine the melt elastic modulus G'(G' -3000 Pa) at a reference melt
viscous modulus (G") value of G"=3000 Pa. If necessary, the values were obtained by
interpolation between the available data points using the Rheometrics software.
The complex dynamic shear viscosity, T|*(100) in units of Pa.s, at dynamic
frequency of 100 rad/s, was determined directly from the TJ* data of the frequency
sweep (FS) experiment measured at 190°C.
The term "Storage modulus", G'(co), also known as "elastic modulus", which is a
function of the applied oscillating frequency, co, is defined as the stress hi phase with the
strain in a sinusoidal deformation divided by the strain; while the term "Viscous
modulus", G"( oscillating frequency, co, is defined as the stress 90 degrees out of phase with the strain
divided by the strain. Both these moduli, and the others linear viscoelastic, dynamic
Theological parameters, are well known within the skill hi the art, for example, as
discussed by G. Marin in '.'Oscillatory Rheorhetry", Chapter 10 of the book on
Rheological Measurement, edited by A.A. Collyer and D.W. Clegg, Elsevier, 1988.
CATALYST
Catalyst (D
Magnesium diethoxide was reacted with titanium tetrabutoxide for 7 hours at
140±5 °C in an amount such that the molar ratio of titanium to magnesium was equal to
1 . The reaction product thus obtained (mixed alcoholate) was subsequently contacted
with ethylbenzoate (EB) at ambient temperature for at least 6 hours. The mixture of
mixed alcoholate and ethyl benzoate was then reacted with aluminium isobutyl
dichloride (IBADIC), in two steps. The first step was performed at 45°C, the second
step at 45°C. The amount of IBADIC introduced at the end of the first step
corresponded to a IBADIC /Mg ratio of 4.5 mole/mole. A partial elimination of the
chlorination by-products was effected by decantation of the solid and removal of the
supernatant liquid. The amount of IBADIC introduced at the end of the second
chlorination step corresponded to a IBADIC /Mg ratio of 2,5 mole/mole. After the
second chlorination step, the slurry was aged at 60° C for 45 minutes, and subsequently
cooled at ambient temperature (less than 35°C). The reaction by-products were then
removed from the slurry by washing the solid with polymerisation grade hexane. The
catalyst thus obtained, collected from the suspension, comprised (% by weight):
.15about 10wt%.Catalyst (H)Magnesium diethoxide was reacted with titanium tetrabutoxide for 4 hours at140°C in an amount such that the molar ratio of titanium to magnesium was equal to 1.
The reaction product thus obtained was subsequently chlorinated and precipitated by
bringing the latter into contact with an ethylalumuiium dichloride solution (EADC) for
90 minutes at 45°C. The EADC/Mg ratio was 6.5 mole/mole. The obtained slurry was
subsequently aged at 60°C for 45 minutes, and then cooled at ambient temperature
( by washing the solid with polymerisation grade hexane at ambient temperature. The
catalyst thus obtained, collected from the suspension, comprised (% by weight):
B) COMPOSITION
The manufacture of a" composition comprising ethylene polymers was carried out
in suspension in isobutane in two loop reactors connected in series and separated by a
device which makes it possible continuously to carry out the reduction in pressure.
Isobutane, ethylene, hydrogen, triethylaluminium and one of the catalysts (I) or
(II) above were continuously introduced into the first loop reactor and the
polymerization of ethylene was carried out in this mixture in order to form the
homopolymer (A). This mixture, additionally comprising the homopolymer (A), was
continuously withdrawn from the said reactor and was subjected to a reduction in
pressure (~50°C., 0.6 MPa), so as to remove at least a portion of the hydrogen. The
resulting mixture, at least partially degassed of hydrogen, was then continuously
introduced into a second polymerization reactor, at the same time as ethylene, hexene,
isobutane and hydrogen, and the polymerization of the ethylene and of the hexene was
carried out therein in order to form the ethylene/1-hexene copolymer (B). The
suspension comprising the composition comprising ethylene polymers was continuously
withdrawn from the second reactor and this suspension was subjected to a final
reduction in pressure, so as to evaporate the isobutane and the reactants present
(ethylene, hexene and hydrogen) and to recover the composition in the form of a
powder, which was subjected to drying in order to complete the degassing of the
isobutane.
The other polymerisation conditions are specified in Table 1. The properties of the
compositions are presented in Table 2.
The properties of the compositions are presented in Table 2. Compositions A, B
and 2-7 were made into pellet form using a pilot plant scale extrusion line capable of
making a homogeneous blend of the ethylene polymers (A) and (B). The extruder used
was a Kobe LCM50G twin rotor, counter-rotating extruder equiped with a 37 kW
motor, KN-001 gear pump and underwater pelletizer. Powder and additive concentrate
were fed with two separate loss in weight twin screw feeders. The extruder was
operated at an output between 50 and 80 kg/h, 800 rpm screw speed, 0.8 bar gear pump
suction pressure, 180-230 kWh/t specific energy and 240-270°C melt temperature.
During this process stabilisers were added and a flow of nitrogen gas or a mixture of
oxygen diluted in nitrogen was introduced at the feeders and me extruder inlet hopper in
so as to control the amount of air carried forward with the composition into the extruder
itself. The oxygen level measured in the extruder hopper was maintained at 9-llwt%,
thus causing reticulation to take place.
The composition of Example C in powder form was made into pellet form using a
Kobe LCM100H extruder with gear pump under the following conditions; 500 kg/h
throughput, 470 rpm screw speed, closed gate @ 1.25 mm, 0.8 bar gear pump suction
pressure, 220-225 kWh/t, 255-260°C melt temperature. During this process stabilisers
were added and a flow of nitrogen gas was introduced at various points of the extruder
(mainly at the feed hopper) in order to minimise the amount of air carried forward with
i
the composition into the extruder itself. The oxygen level measured in the extruder
hopper was kept below 0.1 wt%, thereby ensuring that essentially no reticulation took
place. The properties of unreticulated Example C are shown in Table 5.
A further sample of the composition of Example C in powder form was also made
into pellet form using a Kobe LCM100H extruder under the following conditions; 500
kg/h throughput, 470 rpm screw speed, closed gate @ 1.25 mm, 0.8 bar gear pump
suction pressure, 220-225 kWh/t specific energy, 255-260°C melt temperature. During
this process stabilisers were added and a flow of nitrogen gas was introduced at various
points of the extruder (mainly at the feed hopper) in such a manner to control the
amount of air carried forward with the composition into the extruder itself. The oxygen
17
level measured in the extruder hopper was maintained at 9-11 wt%, thus causing
reticulation to take place. The properties of reticulated Example Cl are shown hi Table
5.
A new Example C2 (also shown in Table 5) was made by making a physical blend
of 50 wt% of the unreticulated Example C and 50. wt% of the reticulated Example Cl
using a tumble mixing device.
Dynamic rheology analyses were performed on all these compositions in pellet
form to determine their melt elastic modulus G'(G"=3000 Pa) and their complex
dynamic shear viscosity, t|*(100), at 190°C. These results are shown in Tables 3,4 and
5. From this data it can be seen that Comparative Examples A, B, C and C2 fall outside
the scope of the invention as defined by the two equations G'(G" = 3000) > -
invention, as is Example Cl (a reticulated version of Example C). This is shown in
Figure 1.
Q FILM
The compositions of the above Examples were blown into films where possible.
Film Extrusion/blowing
Films were blown on a Kiefel Rotex 40 S A line of the following description:
Extruder:
• Manufacturer: KIEFEL Extrusion GmbH, Germany
• Type: Rotex 40SA
• Power: 25 kW
Screw:
• Manufacturer: KIEFEL Extrusion GmbH, Germany
• Type: 24D Standard
• Diameter (D): 40 mm
• Length (L) to diameter (D): 24/1
• Speed: • Maximum = 275 min"1
« Standard = 100 min'1
» Output at Standard speed = 30 kg h"1.
Die:
• Manufacturer: KIEFEL Extrusion GmbH, Germany
• Diameter: 100mm
• Gap: 1.2 mm
The extrusion conditions were as follows:
Extruder Temperatures Profile (°C):
• Screw Zone 1:190°
• Output: 30 kg h'1
„ Five types of films, i — v, were made using the above conditions (same extruder
temperature profile, output and film thickness) each having different blown up ratio
(BUR) and neck height:
Film
Thickness (um)
Blown up Ratio (BUR)
Neck Height
The number of amps required for the extruder, its pressure and temperatures were
recorded, together with the winding (take-off speed) for each film extrusion, if desired.
Determination of bubble stability
The stability of the bubble during each film extrusion process was rated, on a
scale of 1 (worst) to 5 (best), for helical instability, bubble diameter oscillation and
vertical bubble instability. Helical instability involves decreases in diameter in a helical
pattern around the bubble (Bubble is "snaking" from side to side) while bubble diameter
(or BUR) oscillation involves alternating larger and smaller diameters. Vertical bubble
instability involves the cyclic variation of neck heights ("bouncing").
Bubble Stability Rating
5 - Good bubble stability.
4 - Bubble moves lightly from side to side (chatter), but no effects on the film
thickness
3 - Bubble moves from side to side (chatter) with some effects on the film
thickness
2 - Bubble is "snaking" from side to side (helical instability) with a significant
effect on the film thickness
1 - BUR and Neck height ("bouncing") varies cyclically (Bubble diameter and
vertical instabilities).
Samples of the films made from above examples were conditioned for 48 hours at
20 - 25°C and their Dart Drop, Impacting Testing (DDT), according to ASTM D 1709, .
and Elmendorf Tear Resistance, according to ASTM D1922, were measured.
19
Film properties for the Examples, except Examples C, Cl and C2, are shown in
Table 4, together with the properties of two commercial films (Comparative Examples 1
and 2). Comparative Examples 1 and 2 are resins which are currently commercially
available.
Properties of the films made from Examples C, Cl and C2 are shown in Table 5.
It should be noted that the DDT test in Table 5 is on samples of 25p.m. thick (film type
v) rather than 15p.m. thick (as in Table 4 for film types i - iv), and is measured also in g.
TABLE 1 — polymerisation conditions
Examples A-C are comparative
TABLE 3 — Compounding conditions and properties of compounded pellets
* DHBP 7.5 1C 5 = 2,5-Dimethyl-2,5-di (terLbutylperoxy) hexane, a trade designation
of commercially available product from Degussa Peroxygen Chemicals.
Comparative Examples A and B as shown in Tables. 1 — 3 do not exhibit the
appropriate rheological and structural properties to enable films to be blown under the
conditions described in Section C above. However, by the use of appropriate additives
and conditions during compounding, the rheological properties of Examples A and B
can be adjusted so as to enable them to be blown into films. Thus Examples 2 and 5 are
reticulated versions of Examples A and B, and have excellent processability and
mechanical properties (Table 4).
Similar tailoring of the rheological properties can also be achieved with the use of
peroxide, rather than oxygen, during compounding, as illustrated by Example 6.
TABLE 5 — Compounded pellet and film properties. Examples C, Cl, C2
EXAMPLE C
Comparative
Cl C2
Comparative
Composition after pelletisation on an LCM 100H Extruder
A high DDT value combined with a high Elmendorf Tear Resistance in the MD
direction combined with a ratio of (Elmendorf Tear Resistance in the TD direction) to
(Elmendorf Tear Resistance in the MD direction) approaching unity (a balanced
orientation film is achieved when this tear resistance ratio along both MD and TD
directions = 1) are known to be desirable characteristics of blown HOPE films. Example
C2 displays these desirable characteristics to a greater degree than Examples C and Cl.
This demonstrates that an optimum increase in G'(G"—3000) during compounding is
required to give the best film performance on products made from the composition;
whilst an increased G' (G"=3000) is desirable in order to improve polymer
processability (e.g., the melt strength and bubble stability of the resin). Increasing
G'(G"—3000) too much during compounding can adversely affect mechanical
properties such as impact performance to an unacceptable degree.
24
Although Example C2 has a relatively low value of G'(G"=3QOO) such that it is
outside the scope of the present invention, it can be seen from Figure 1 that it has a
higher G'(G"=3000) than Example C, and appropriate choice-of blend ratios (e.g.
between Example C and Example Cl in this particular blend) can result in a resin
having a relationship of G'(G"=3000) and dynamic viscosity T|*IOO inside the present
invention, whilst at the same time presenting excellent mechanical properties.
It should also be noted that blending Examples C (DDT impact = 336 g) and Cl
(DDT impact — 250 g) in a 50:50 weight ratio resulted in a composition C2 having a
DDT impact of 503 g.




We claim:
1. Film formed from a polyethylene resin composition which obeys a dynamic rheological relationship at 190°C between melt storage modulus G', measured in Pa and at a dynamic frequency where the loss modulus G" = 3000Pa, and dynamic complex viscosity *100, measured in Pa.s at 100 rad/s, such that (a) G'(G" = 3000) > -0.86*100 + z where z 3800, and at the same time (b) G'(G" = 3000) > 0.875*100 - y where y = 650, and having an impact strength (DDT) of at least 250 g, measured on 15um thick film (blown under conditions with BUR = 5:1 and Neck Height = 8 x D) conditioned for 48 hours at 20° - 25°C, according to ASTMD1709.
2. Film as claimed in claim 1, wherein the polyethylene resin composition is a multimodal composition comprising from 30 to 70 wt% of an ethylene polymer (A) having a melt index MI2 of 5 - 1000 g/10min and a density of at least 965 kg/m3, and from 30 to70 wt% of an ethylene polymer (B) having a melt index MI5 of 0.001 - 2 g/10min and a density of 910 to 945 kg/m3.

3. Film as claimed in claim 2, wherein the ethylene polymer (A) is a homopolymer, and the ethylene polymer (B) is a copolymer of ethylene and a C4-C8 alpha-olefin.
4. Film as claimed in any preceding claim, wherein in dynamic rheological relationship (a), z = 3850, preferably 3900.
5. Film as claimed in any preceding claim, wherein in dynamic rheological relationship (b), y = 550, preferably 450, most preferably 350.
6 Film as claimed in any preceding claim, wherein G'(G" = 3000) is less than 2650,
preferably less than 2550.
7. Film as claimed in any preceding claim, which is formed from a composition capable of
being obtained by a process in which:
in a first reactor, ethylene is polymerized in suspension in a first mixture comprising a
diluent, hydrogen, a catalyst based on a transition metal and a cocatalyst, so as to form from
30 to 70% by weight with respect to the total weight of the composition of an ethylene
homopolymer (A);
said first mixture is withdrawn from said reactor and is subjected to a reduction in pressure,
so as to degas at least a portion of the hydrogen to form an at least partially degassed mixture,
and said at least partially degassed mixture, together with ethylene and a G4-C8 alpha-olefin
and, optionally, at least one other alpha.-olefin, are introduced into a subsequent reactor and
the suspension polymerization is carried out therein in order to form from 30 to 70% by
weight, with respect to the total weight of the composition.
8. Film as claimed in any preceding claim, wherein the composition has been subjected to reticulation during a compounding step which has increased the value of z and decreased the value of y.
9. Film comprising a blend of 20-80wt% of a first composition as defined in any preceding claim, and 80-20wt% of a second composition as defined in claim 1 but where z 650.
10. Process for obtaining a polyethylene resin composition as defined in any preceding claim, comprising the steps of:
in a first reactor, polymerising ethylene in suspension at a temperature of from 20 to 130°C and a pressure of 2.5 - 5 MPa in a first mixture comprising a diluent, hydrogen, a polymerisation catalyst and a cocatalyst, so as to form from 30 to 70% by weight with respect to the total weight of the composition of ethylene homopolymer (A), withdrawing said mixture from said reactor and subjecting it to a reduction in pressure, so as to degas at least a portion of the hydrogen to form an at least partially degassed mixture, then introducing said at least partially degassed mixture, together with ethylene and a C4-C8 alpha-olefin and, optionally, at least one other alpha-olefin, into a subsequent reactor in which a suspension polymerization is carried out at a temperature of from 20 to 130°C and a pressure of 1.3 - 4.3 MPa in order to form from 30 to 70% by weight, with respect to the total weight of the composition, of a copolymer of ethylene and of C4-C8 alpha-olefin (B), and then compounding the resulting polyethylene composition to form it into pellets.
11. Process as claimed in claim 10, wherein the polymerisation catalyst is a mixed alcoholate catalyst containing 5 to 30% by weight of transition metal, 0.5 to 20% by weight of magnesium, 20 to 60% by weight of chlorine and 0.1 to 10% by weight of aluminium, and having a residual organic radical content in the precipitated catalyst of less than 35wt%.
12. Process as claimed in claim 11, wherein the catalyst contains 8 to 16% by weight of transition metal, 5 to 15% by weight of magnesium, 40 to 60% by weight of chlorine and 0.1 to 5% by weight of aluminium, and has a residual organic radical content in the precipitated catalyst of less than 35wt%, with less than 20wt% total alkyl benzoate.
13. Process according to claim 11 or 12, which comprises a further step of compounding the polyethylene composition to form it into pellets.
14. Process as claimed in claim 10 or 13, wherein the compounding conditions are selected so as to reticulate the composition such that after compounding the value of z is greater than before compounding, and the value of y is less than before compounding.
15. Process as claimed in claim 14, wherein the compounding step increases the value of z
by at least 100, preferably by 400 - 1200, and decreases the value of y by at least 100. preferably 400 - 1200.
16. Process for making a film, comprising making a composition by a process as claimed in
any of claims 10 to 15, and then forming the composition into a film.
17. Process as claimed in claim 16. wherein the film comprises a blend of 20-80vvt% of a
first composition made by a process as defined in claim 16, and 80-20wl% of a second
composition made by a process as defined in claim 16 but where / 650.
18. Process as claimed in claim 16 or 17, wherein the film is a blown film.

Documents:

1353-delnp-2007-Abstract-(23-12-2011).pdf

1353-delnp-2007-abstract.pdf

1353-delnp-2007-Assignment-(23-12-2011).pdf

1353-delnp-2007-Claims-(23-12-2011).pdf

1353-delnp-2007-claims.pdf

1353-delnp-2007-Correspondence Others-(01-07-2014).pdf

1353-DELNP-2007-Correspondence Others-(07-12-2011).pdf

1353-delnp-2007-Correspondence Others-(07-12-2012).pdf

1353-delnp-2007-Correspondence Others-(10-07-2014).pdf

1353-delnp-2007-Correspondence Others-(23-12-2011).pdf

1353-delnp-2007-Correspondence Others-(24-04-2014).pdf

1353-delnp-2007-Correspondence Others-(28-01-2014).pdf

1353-delnp-2007-correspondence-others 1.pdf

1353-DELNP-2007-Correspondence-Others-(16-12-2011).pdf

1353-delnp-2007-Correspondence-Others-(26-02-2013).pdf

1353-DELNP-2007-Correspondence-Others.pdf

1353-DELNP-2007-Corresponence-Others-(01-07-2009).pdf

1353-delnp-2007-description (complete).pdf

1353-delnp-2007-Drawings-(23-12-2011).pdf

1353-delnp-2007-drawings.pdf

1353-delnp-2007-Form-1-(23-12-2011).pdf

1353-delnp-2007-form-1.pdf

1353-delnp-2007-form-13-(01-07-2009).pdf

1353-delnp-2007-form-18.pdf

1353-delnp-2007-form-2.pdf

1353-DELNP-2007-Form-3-(07-12-2011).pdf

1353-DELNP-2007-Form-3.pdf

1353-delnp-2007-form-5.pdf

1353-DELNP-2007-GPA-(01-07-2009).pdf

1353-delnp-2007-GPA-(23-12-2011).pdf

1353-delnp-2007-gpa.pdf

1353-delnp-2007-pct-101.pdf

1353-delnp-2007-pct-210.pdf

1353-delnp-2007-pct-220.pdf

1353-DELNP-2007-PCT-237.pdf

1353-delnp-2007-pct-304.pdf

1353-delnp-2007-pct-306.pdf

1353-delnp-2007-pct-311.pdf

1353-delnp-2007-pct-326.pdf

1353-delnp-2007-pct-373.pdf


Patent Number 263428
Indian Patent Application Number 1353/DELNP/2007
PG Journal Number 44/2014
Publication Date 31-Oct-2014
Grant Date 28-Oct-2014
Date of Filing 20-Feb-2007
Name of Patentee INEOS MANUFACTURING BELGIUM NV
Applicant Address SCHELDELAAN 482, B-2040 ANTWERPEN, BELGIUM
Inventors:
# Inventor's Name Inventor's Address
1 JOHN AMOS SCHUITENLAAN 34, B-3080 TERVUREN, BELGIUM
2 CHOON KOOI CHAI KASTEELSTRAAT 34, B-3090 OVERIJSE, BELGIUM
3 LUC MARIE GHISLAIN DHEUR RUE DU FECHEUX 5, B-7911 MONTROEUL-AU-BOIS, BELGIUM
PCT International Classification Number C08J 5/18
PCT International Application Number PCT/EP2005/008798
PCT International Filing date 2005-08-12
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0418581.5 2004-08-20 U.K.