Title of Invention

MULTI-SPEED TRANSMISSION WITH COUNTERSHAFT GEARING

Abstract A transmission is provided having a dual clutch, to achieve torque flow through a countershaft gearing arrangement. The countershaft gearing arrangement includes a plurality of co-planar gear sets having gears that are selectively connectable to a plurality of countershafts. At least one transfer gear set transfers torque from the counter shafts to an output shaft. The output shaft is connected to a final drive unit that has a final drive unit output shaft that is transverse to an input member connected at one end to a torque converter and at the other end to the dual clutch.
Full Text 1
P000054
A MULTI-SPEED TRANSMISSION WITH
A COUNTERSHAFT GEARING
TECHNICAL FIELD
[0001] The invention relates to a multi-speed transmission having a
countershaft gearing arrangement.
BACKGROUND
[0002] A typical multi-speed, dual clutch transmission uses a combination
of two friction clutches and several dog clutch/synchronizers to achieve "power-
on" or dynamic shifts by alternating between one friction clutch and the other,
with the synchronizers being "pre-selected" for the oncoming ratio prior to
actually making the dynamic shift. "Power-on" shifting means that torque flow
from the engine need not be interrupted prior to making the shift. This concept
typically uses countershaft gears with a different, dedicated gear pair or set to
achieve each forward speed ratio. Accordingly, the total number of gears required
in this typical design is two times the number of forward speeds, plus three for
reverse. This necessitates a large number of required gear pairs, especially in
transmissions that have a relatively large number of forward speed ratios.
SUMMARY
[0003] In an aspect of the present invention a powertrain having a
transmission input member, a power source for generating a torque in the input
member, a first intermediate shaft, a second intermediate shaft concentric with the
first intermediate shaft, a clutch, countershaft, a first and second set of gears, an
output shaft and a first transfer gear is provided. The clutch is selectively
engagable to couple the transmission input member with one of the first and
second intermediate shafts. The first set of gears are connected for common

2
P000054
rotation with the first intermediate shaft and intermesh with a first selectable set of
gears to form a first plurality of co-planar gear sets, wherein each of the gears of
the first selectable set of gears is connectable for common rotation with one of the
countershaft and the output shaft for selectively transferring the torque when the
clutch is engaged. The second set of gears is connected for common rotation with
the second intermediate shaft and intermesh with a second selectable set of gears to
form a second plurality of co-planar gear sets, wherein each of the gears of the
second selectable set of gears is connectable for common rotation with one of
countershaft and the output shaft for selectively transferring the torque when the
clutch is engaged. The output shaft is disposed radially outward of the second
intermediate shaft. The first transfer gear is coupled to one of the first and second
countershafts for transferring torque from the countershaft to the output shaft.
[0004] In another aspect of the present invention, the first set of gears
further includes two gears.
[0005] In another aspect of the present invention, the second set of gears
further comprises three gears.
[0006] In another aspect of the present invention, the powertrain further
includes a first idler gear rotatable about a first idler axis and intermeshing with at
least one of the selectable sets of gears of the first set of gears.
[0007] In another aspect of the present invention, the powertrain further
includes a second idler gear rotatable about the idler axis and intermeshing with at
least one of the selectable sets of gears of the first set of gears.
[0008] In another aspect of the present invention, the powertrain further
includes a second transfer gear connected for common rotation with one of the first
and second countershafts and intermeshing with an output gear connected for
common rotation with the output shaft for transferring torque from the countershaft
to the output shaft.

3
P000054
[0009] In another aspect of the present invention, the powertrain further
includes a plurality of synchronizers for selectively connecting the first and second
set of selectable sets of gears to at least one of the countershafts.
[0010] In another aspect of the present invention, the powertrain further
includes a final drive unit wherein the final drive unit has an output shaft that is
perpendicular to the input member.
[0011] In another aspect of the present invention, the clutch is a dual clutch
having a first hub connected to the first intermediate shaft and a second hub
connected to the second intermediate shaft.
[0012] In another aspect of the present invention, the clutch is disposed
between the first and second plurality of co-planar gear sets.
[0013] In another aspect of the present invention, the powertrain further
includes a second clutch for selectively connecting at least one of the first and
second selectable set of gears to at least one of the countershafts.
[0014] In another aspect of the present invention, the powertrain further
includes a third clutch for selectively connecting at least one of the first and second
selectable set of gears to at least one of the countershafts.
[0015] In another aspect of the present invention, the one of the second
plurality of co-planar gear sets that transfers the torque to achieve the first forward
gear ratio is disposed adjacent a structural wall of the housing of the powertrain.
[0016] In another aspect of the present invention, the one of the second
plurality of co-planar gear sets that transfers the torque to achieve the seventh
forward gear ratio is disposed adjacent a structural wall of the housing of the
powertrain.
[0017] The above features and advantages and other features and advantages
of the present invention are readily apparent from the following detailed description
of the best modes for carrying out the invention when taken in connection with the
accompanying drawings.

4
P000054
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] FIGURE 1 is a schematic representation of a first embodiment of a
transmission in accordance with the invention;
[0019] FIGURE 2 is a schematic representation of a second embodiment of a
transmission in accordance with the invention;
[0020] FIGURE 3 is a schematic representation of a third embodiment of a
transmission in accordance with the invention;
[0021] FIGURE 4 is a schematic representation of a fourth embodiment of a
transmission in accordance with the invention;
[0022] FIGURE 5 is a schematic representation of a fifth embodiment of a
transmission in accordance with the invention;
[0023] FIGURE 6 is a schematic representation of a sixth embodiment of a
transmission in accordance with the invention; and
[0024] FIGURE 7 is a schematic representation of a seventh embodiment of
a transmission in accordance with the invention.
DESCRIPTION
[0025] Referring to the drawings, wherein like reference numbers refer to
like components, in Figure 1 a multi-speed transmission 10 is depicted. The
transmission 10 includes an input member 12 and output member 14. In the present
embodiment, the input member 12 and the output member 14 are shafts, and will be
referred to as such. Those skilled in the art will appreciate that the input and output
members 12, 14 may be components other than shafts. The input shaft 12 is
continuously connected with a torque converter 16 or other starting device. An
engine (not shown) is connected to and provides a driving torque to the torque
converter 16. The output shaft 14 is continuously connected with a final drive unit
18. The transmission 10 includes a countershaft gearing arrangement 20 that

5
P000054
includes intermediate shafts, a countershaft, co-planar intermeshing gear sets and
selectively engagable synchronizers as will be described herein. For instance, the
countershaft gearing arrangement 20 includes a first intermediate shaft 22 and a
second intermediate shaft 24, which is a sleeve shaft concentric with the first
intermediate shaft 22. The countershaft gearing arrangement 20 further includes a
countershaft 26. The countershaft 26 is both spaced from and parallel with the input
shaft 12, the output shaft 14 and the intermediate shafts 22, 24. Further still
countershaft gearing arrangement 20 includes a transfer gear shaft 28 for rotatably
supporting a plurality of transfer gears, as will be described in further detail below.
Transfer gear shaft 28 is coaxial with first intermediate shaft 22.
[0026] The first and second intermediate shafts 22, 24, countershaft 26
transfer gear shaft 28, and output shaft 14 are supported by a first, second and third
support structure or wall 23, 25, 27 formed in the housing of transmission 10. As
conventionally known, the walls 23, 25, 27 are fitted with bearings 29 for rotatably
supporting the first and second intermediate shafts 22, 24, countershafts 26 and
output shaft 14. Wall 23 is disposed closest to the torque converter 16 and the final
drive unit 18. Wall 25 is disposed adjacent wall 23 and wall 27 is disposed adjacent
wall 25. Wall 27 is for example a rear wall of the transmission 10.
[0027] A dual clutch 30 is connected between input shaft 12 and first and
second intermediate shafts 22, 24. The dual clutch 30 includes a clutch housing 32
connected for common rotation with input shaft 12. Clutch housing 32 has a first
clutch portion 32a and a second clutch portion 32b connected by a housing shaft 33.
Housing shaft 33, for example, is a sleeve shaft that is concentric with first
intermediate shaft 22 and may be welded or otherwise connected to first and second
clutch portions 32a, 32b or integrally formed therewith. Housing shaft 33 allows
first and second clutch portions 32a, 32b to be positioned remote from each other to
provide packaging clearance for transverse extending shafts, drivelines and like
members 35 coupled to final drive unit 18. Further, clutch 30 has a first and a
second clutch element or hubs 34 and 36. Clutch elements 34 and 36 together with
housing 32 are configured to form a friction clutch, as well known in the art as a

6
P000054
dual clutch. More specifically, clutch elements 34, 36 and clutch housing 32 have
friction plates mounted thereon that interact to form a friction clutch. Further, clutch
element 34 is connected for common rotation with first intermediate shaft 22 and
clutch element 36 is connected for common rotation with second intermediate shaft
24. Thus, selective engagement of clutch element 34 with clutch housing 32,
connects the input shaft 12 for common rotation with first intermediate shaft 22 and
selective engagement of clutch element 36 with clutch housing 32, connects the
input shaft 12 for common rotation with second intermediate shaft 24.
[0028] The countershaft gearing arrangement 20 also includes co-planar,
intermeshing gear sets 40, 50, 60, 70, 80, 90 and 100. Gear set 40 includes co-
planar, intermeshing gears 42 and 44. Gear 42 is connected for common rotation
with second intermediate shaft 24. Gear 42 intermeshes with gear 44. Gear 44 is
selectively connectable for common rotation with countershaft 26. As shown in Fig.
1, gear set 40 is disposed adjacent wall 23 and provides a seventh gear ratio.
[0029] Gear set 50 includes co-planar, intermeshing gears 52 and 54. Gear
52 is connected for common rotation with second intermediate shaft 24. Gear 52
intermeshes with gear 54. Gear 54 is selectively connectable for common rotation
with the output shaft 14. As shown in Fig. 1, gear set 50 is disposed adjacent gear
set 40 and provides a first gear ratio.
[0030] Gear set 60 includes co-planar, intermeshing gears 62, 64 and 66.
Gear 62 is connected for common rotation with second intermediate shaft 24. Gear
62 intermeshes with gear 64, which is selectively connectable for common rotation
with output shaft 14. Gear 62 also intermeshes with gear 66, which is selectively
connectable for common rotation with countershaft 26. As shown in Fig. 1, gear set
60 is disposed adjacent gear set 50 and provides third and fifth gear ratios.
[0031] Gear set 70 includes co-planar, intermeshing gears 72, 74 and 76.
Gear 72 is connected for common rotation with first intermediate shaft 22. Gear 72
intermeshes with both gear 74 and gear 76. Gear 74 is selectively connectable for
common rotation with the output shaft 14. Gear 76 is selectively connectable for

7
P000054
common rotation with the countershaft 26. As shown in Fig. 1, gear set 70 is
disposed adjacent gear set 0 and provides fourth and sixth gear ratios.
[0032] Gear set 80 includes co-planar intermeshing gears 82, 84, 86 and 88.
Gear 82 is connected for common rotation with first intermediate shaft 22 and
intermeshes with idler gear 86 and gear 88. Idler gear 86 is rotatable about idler axis
/. Gear 86 also intermeshes with gear 84. Gear 84 is selectively connectable with
output shaft 14. Gear 88 is selectively connectable with countershaft 26. As shown
in Fig. 1, gear set 80 is disposed adjacent gear set 70 and wall 25 and provides a
second and reverse gear ratios.
[0033] Gear set 90 is a transfer gear set that includes transfer gears 92 and
94. Transfer gear 92 is connected for common rotation with a transfer gear shaft 28
and intermeshes with gear 94. Transfer gear 94 is connected for common rotation
with output shaft 14. As shown in Fig. 1, gear set 90 is disposed between walls 25
and 27 and transfers torque from transfer gear shaft 28 to output shaft 14.
[0034] Co-planar gear set 100 is a transfer gear set that includes transfer gears
102 and gear 104. Transfer gear 102 is connected for common rotation with transfer
gear shaft 28 and intermeshes with gear 104. Transfer gear 104 is connected for
common rotation with output shaft 14. As shown in Fig. 1, gear set 100 is disposed
adjacent gear set 90 and transfers torque from transfer gear shaft 28 to output shaft
14.
[0035] The transmission 10 further includes a plurality of selectively
engagable synchronizers 110, 112, 114, 116, 118, 120, 122 and 124. Synchronizers
110/112, 114/116, 118/120 and 122/124 are a left and right side of synchronizer
assemblies, sharing a common synchronizer hub and sleeve. Synchronizer 110 is
selectively engagable to connect gear 54 with output shaft 14 for common rotation
therewith. Synchronizer 112 is selectively engagable to connect gear 64 with output
shaft 14 for common rotation therewith. Synchronizer 114 is selectively engagable
to connect gear 66 with countershaft 26 for common rotation therewith.
Synchronizer 116 is selectively engagable to connect gear 44 with countershaft 26
for common rotation therewith. Synchronizer 118 is selectively engagable to

8
P000054
connect gear 74 with output shaft 14 for common rotation therewith. Synchronizer
120 is selectively engagable to connect gear 84 with output shaft 14 for common
rotation therewith. Synchronizer 122 is selectively engagable to connect gear 76
with countershaft 26 for common rotation therewith. Synchronizer 124 is
selectively engagable to connect gear 88 with countershaft 26 for common rotation
therewith.
[0036] The transmission 10 is capable of transmitting torque from the input
shaft 12 to the output shaft 14 in at least seven forward torque ratios and one reverse
torque ratio. Each of the forward torque ratios and the reverse torque ratio is
attained by engagement of dual clutch 30 and one of the clutch elements 34, 36 and
one or more of the synchronizers 110, 112, 114, 116, 118, 120, 122 and 124. Those
skilled in the art will readily understand that a different speed ratio is associated with
each torque ratio.
[0037] To establish the reverse torque ratio clutch element 34 of the dual
clutch 30 and synchronizer 120 are engaged. By the engagement of clutch element
34 of the dual clutch 30, torque is transferred from the input shaft 12 through clutch
housing 32 to the first intermediate shaft 22. Further, torque is transferred from the
first intermediate shaft 22 through gear 82 to idler gear 86. Idler gear 86 transfers
the torque to gear 84. Upon engagement of synchronizer 120, gear 84 transfers
torque to output shaft 14. Output shaft 14 transfers the torque to the final drive unit
18.
[0038] A first forward torque ratio (1st gear) is achieved by engaging clutch
element 36 of the dual clutch 30 and synchronizer 110. By the engagement of clutch
element 36 of the dual clutch 30, torque is transferred from input shaft 12 through
clutch housing 32 to the second intermediate shaft 24. Further, torque is transferred
from the second intermediate shaft 24 to gear 52. Gear 52 transfers the torque to
gear 54. Upon engagement of synchronizer 110, gear 54 transfers torque to output
shaft 14. Output shaft 14 transfers the torque to the final drive unit 18.
[0039] A subsequent forward torque ratio (2nd gear) is established by
engagement of clutch element 34 of the dual clutch 30 and synchronizer 124. By the

9
P000054
engagement of clutch element 34 of the dual clutch 30, torque is transferred from
input shaft 12 through clutch housing 32 to the first intermediate shaft 22. Further,
torque is transferred from the first intermediate shaft 22 to gear 82. Gear 82
transfers the torque to gear 88. Upon engagement of synchronizer 124, gear 88
transfers torque to countershaft 26. Countershaft 26 transfers the torque to transfer
gear 104. Gear 104 transfers torque to transfer gear 102, which in turn transfers the
torque to transfer gear shaft 28. Transfer gear shaft 28 transfers the torque to
transfer gear 92. Transfer gear 92 transfers the torque to transfer gear 94. Transfer
gear 94 transfers the torque to output shaft 14. Output shaft 14 transfers the torque
to the final drive unit 18.
[0040] The subsequent torque ratio (3rd gear) is established by engagement
of clutch element 36 of the dual clutch 30 and synchronizer 112. By the engagement
of clutch element 36 of the dual clutch 30, torque is transferred from input shaft 12
through clutch housing 32 to the second intermediate shaft 24. Further, torque is
transferred from the second intermediate shaft 24 to gear 62. Gear 62 transfers the
torque to gear 64. Upon engagement of synchronizer 112, gear 64 transfers torque
to output shaft 14 Output shaft 14 transfers the torque to the final drive unit 18.
[0041] The next subsequent forward torque ratio (4th gear) is established by
engagement of clutch element 34 of the dual clutch 30 and synchronizer 118. By the
engagement of clutch element 34 of the dual clutch 30, torque is transferred from
input shaft 12 through clutch housing 32 to the first intermediate shaft 22. Further,
torque is transferred from the first intermediate shaft 22 to gear 72. Gear 72
transfers the torque to gear 74. Upon engagement of synchronizer 118, gear 74
transfers torque to output shaft 14. Output shaft 14 transfers the torque to the final
drive unit 18.
[0042] The subsequent torque ratio (5th gear) is established by engagement
of clutch element 36 of the dual clutch 30 and synchronizer 114. By the engagement
of clutch element 36 of the dual clutch 30, torque is transferred from input shaft 12
through clutch housing 32 to the second intermediate shaft 24. Further, torque is
transferred from the second intermediate shaft 24 to gear 62. Gear 62 transfers the

10
P000054
torque to gear 66. Upon engagement of synchronizer 114, gear 66 transfers torque
to countershaft 26. Countershaft 26 transfers the torque to transfer gear 104. Gear
104 transfers torque to transfer gear 102, which in turn transfers the torque to
transfer gear shaft 28. Transfer gear shaft 28 transfers the torque to transfer gear 92.
Transfer gear 92 transfers the torque to transfer gear 94. Transfer gear 94 transfers
the torque to output shaft 14. Output shaft 14 transfers the torque to the final drive
unit 18.
[0043] A subsequent forward torque ratio (6th gear) is established by
engagement of clutch element 34 of the dual clutch 30 and synchronizer 122. By the
engagement of clutch element 34 of the dual clutch 30, torque is transferred from
input shaft 12 through clutch housing 32 to the first intermediate shaft 22. Further,
torque is transferred from the first intermediate shaft 22 to gear 72. Gear 72
transfers the torque to gear 76. Upon engagement of synchronizer 122, gear 76
transfers torque to countershaft 26. Countershaft 26 transfers the torque to transfer
gear 104. Gear 104 transfers torque to transfer gear 102, which in turn transfers the
torque to transfer gear shaft 28. Transfer gear shaft 28 transfers the torque to
transfer gear 92. Transfer gear 92 transfers the torque to transfer gear 94. Transfer
gear 94 transfers the torque to output shaft 14. Output shaft 14 transfers the torque
to the final drive unit 18.
[0044] The subsequent torque ratio (7th gear) is established by engagement
of clutch element 36 of the dual clutch 30 and synchronizer 116. By the engagement
of clutch element 36 of the dual clutch 30, torque is transferred from input shaft 12
through clutch housing 32 to the second intermediate shaft 24. Further, torque is
transferred from the second intermediate shaft 24 to gear 42. Gear 42 transfers the
torque to gear 44. Upon engagement of synchronizer 116, gear 44 transfers torque
to countershaft 26. Countershaft 26 transfers the torque to transfer gear 104. Gear
104 transfers torque to transfer gear 102, which in turn transfers the torque to
transfer gear shaft 28. Transfer gear shaft 28 transfers the torque to transfer gear 92.
Transfer gear 92 transfers the torque to transfer gear 94. Transfer gear 94 transfers

11
P000054
the torque to output shaft 14. Output shaft 14 transfers the torque to the final drive
unit 18.
[0045] The present invention contemplates that a variety of torque ratios
(i.e., the ratio of torque of the output shaft 14 to the input shaft 12) are achievable
through the selection of tooth counts of the gears of the transmission 10. Moreover,
the present invention advantageously provides the transfer gears 92, 94 in one plane
and transfer gears 102, 104 in another plane. This arrangement provides the
opportunity to achieve the desired gear ratios. Further, flexibility is provided in the
selection of gear ratios with respect to 1st gear and 7th gear, as the gears (42, 44, 52
and 54) that provide these ratios are disposed in two separate planes. An overall
transmission length reduction is achieved through the use of idler gear 86.
Second Embodiment
[0046] Referring to Figure 2 a multi-speed transmission 200 is depicted. The
transmission 200 includes input member 12 and output member 14 as described in
the first embodiment. The input shaft 12 is continuously connected with the torque
converter 16 or other starting device. An engine (not shown) is connected to and
provides the driving torque to the torque converter 16. The output shaft 14 is
continuously connected with the final drive unit 18, as described previously with
respect to the first embodiment.
[0047] Moreover, transmission 200 includes a countershaft gearing
arrangement 20' that includes the same intermediate shafts, countershaft, transfer
gear shaft, co-planar intermeshing gear sets and selectively engagable synchronizers
as described above with respect to countershaft gearing arrangement 20 with the
exception of the attachment of transfer gear 104 to countershaft 26 and the addition
of an engagable synchronizer 126. More specifically, synchronizer 126 provides
selective engagement of transfer gear 104 to countershaft 26
[0048] As in the previous embodiment, the first and second intermediate
shafts 22, 24, countershaft 26, transfer shaft 28 and output shaft 14 are supported by
first, second and third support structures or walls 23, 25, 27 formed in the housing of
transmission 200. As conventionally known, the walls 23, 25, 27 are fitted with

12
P000054
bearings 29 for rotatably supporting the first and second intermediate shafts 22, 24,
countershafts 26, transfer gear shaft 28 and output shaft 14. Wall 23 is disposed
closest to the torque converter 16 and the final drive unit 18. Wall 25 is disposed
adjacent wall 23 and wall 27 is disposed adjacent wall 25.
[0049] A clutch 31 is connected between input shaft 12 and first and second
intermediate shafts 22, 24. Further, clutch 31 has a clutch elements or hubs 34' and
36'. Clutch element 34' and 36' are configured to form a friction clutch, as well
known in the art. More specifically, clutch elements 34', 36' have friction plates
mounted thereon that interact to form a friction clutch. Further, clutch element 34'
is connected for common rotation with first intermediate shaft 22 and input shaft 12
and clutch element 36' is connected for common rotation with second intermediate
shaft 24. Thus, selective engagement of clutch element 34' with clutch element 36',
connects the input shaft 12 for common rotation with second intermediate shaft 24.
[0050] The transmission 200 is capable of transmitting torque from the input
shaft 12 to the output shaft 14 in at least seven forward torque ratios and one reverse
torque ratio, as indicated in Figure 2. Each of the forward torque ratios and the
reverse torque ratio is attained by engagement of clutch 31 and one of the clutch
elements 34', 36' and one or more of the synchronizers 110, 112, 114, 116, 118,
120, 122, 124 and 126. Those skilled in the art will readily understand that a
different speed ratio is associated with each torque ratio and how these torque ratios
are achieved, based on the description of transmission 10.
Third Embodiment
[0051] Referring to Figure 3 a multi-speed transmission 300 is depicted. The
transmission 300 includes input member 12 and output member 14 as described in
the first embodiment. The input shaft 12 is continuously connected with the torque
converter 16 or other starting device. An engine (not shown) is connected to and
provides the driving torque to the torque converter 16. The output shaft 14 is
continuously connected with the final drive unit 18, as described previously with
respect to the first embodiment.

13
P000054
[0052] Moreover, transmission 300 includes a countershaft gearing
arrangement 20" that includes the same intermediate shafts 22, 24, countershaft 26,
transfer gear shaft 28, co-planar intermeshing gear sets 40, 50, 60, 70, 80, 90 and
100 and selectively engagable synchronizers as described above with respect to
countershaft gearing arrangement 20 with the following exception. Transfer gear
104 is selectively engagable to countershaft 26 through a friction clutch 302. More
specifically, friction clutch 302 is disposed between wall 25 and gear set 100.
Further, clutch 302 has clutch elements or hubs 304 and 306. Clutch element 304
and 306 are configured to form a friction clutch, as well known in the art. More
specifically, clutch elements 304, 306 have friction plates mounted thereon that
interact to form a friction clutch. Further, clutch element 304 is connected for
common rotation with countershaft 26 and clutch element 306 is connected for
common rotation with transfer gear 104. Thus, selective engagement of clutch
element 304 with clutch element 306 connects transfer gear 104 with countershaft
26 for common rotation therewith.
[0053] As in the previous embodiment, the first and second intermediate
shafts 22, 24, countershaft 26, transfer shaft 28 and output shaft 14 are supported by
first, second and third support structures or walls 23, 25, 27 formed in the housing of
transmission 200. As conventionally known, the walls 23, 25, 27 are fitted with
bearings 29 for rotatably supporting the first and second intermediate shafts 22, 24,
countershafts 26, transfer gear shaft 28 and output shaft 14. Wall 23 is disposed
closest to the torque converter 16 and the final drive unit 18. Wall 25 is disposed
adjacent wall 23 and wall 27 is disposed adjacent wall 25.
[0054] In the present embodiment, transmission 300 has clutch 31 as
described in the second embodiment connected between input shaft 12 and first and
second intermediate shafts 22, 24. Further, clutch 31 has a clutch elements or hubs
34' and 36'. Further, clutch element 34' is connected for common rotation with first
intermediate shaft 22 and input shaft 12 and clutch element 36' is connected for
common rotation with second intermediate shaft 24. Thus, selective engagement of

14
P000054
clutch element 34' with clutch element 36', connects the input shaft 12 for common
rotation with second intermediate shaft 24.
[0055] The transmission 300 is capable of transmitting torque from the input
shaft 12 to the output shaft 14 in at least seven forward torque ratios and one reverse
torque ratio, as indicated in Fig. 3. Each of the forward torque ratios and the reverse
torque ratio is attained by engagement of clutches 31 and 302 and one or more of the
clutch elements 34', 36' and 304, 306 and one or more of the synchronizers 110,
112, 114, 116, 118, 120, 122 and 124. Those skilled in the art will readily
understand that a different speed ratio is associated with each torque ratio and how
these torque ratios are achieved, based on the description of transmission 10.
Fourth Embodiment
[0056] Referring to Figure 4, a multi-speed transmission 400 is depicted.
The transmission 400 includes an input member 12 and output member 14. The
input shaft 12 is continuously connected with an engine (not shown). The output
shaft 14 is continuously connected with the final drive unit 18. The transmission
400 includes the countershaft gearing arrangement 20 that includes intermediate
shafts 22 and 24, countershaft 26, transfer gear shaft 28, co-planar intermeshing gear
sets 40, 50, 60, 70, 80, 90 and 100 and selectively engagable synchronizers, as
described above with respect to the previous embodiment.
[0057] For instance, the countershaft gearing arrangement 20 includes a first
intermediate shaft 22 and a second intermediate shaft 24. However, in the present
embodiment second intermediate shaft 24 is a sleeve shaft that is concentric with
input shaft 12. Further, in the present embodiment a dual clutch 30' is positioned
between co-planar gear sets. For example dual clutch 33 is positioned between gear
set 70 and gear set 80. Dual clutch 30' is connected between input shaft 12 and first
and second intermediate shafts 22, 24. The dual clutch 30' includes a clutch housing
32 connected for common rotation with input shaft 12. Further, clutch 30' has first
and second clutch elements or hubs 34 and 36. Clutch elements 34 and 36 together
with housing 32 are configured to form a friction clutch, as well known in the art as

15
P000054
a dual clutch. More specifically, clutch elements 34, 36 and clutch housing 32 have
friction plates mounted thereon that interact to form a friction clutch. Further, clutch
element 34 is connected for common rotation with first intermediate shaft 22 and
clutch element 36 is connected for common rotation with second intermediate shaft
24. Thus, selective engagement of clutch element 34 with clutch housing 32,
connects the input shaft 12 for common rotation with first intermediate shaft 22 and
selective engagement of clutch element 36 with clutch housing 32, connects the
input shaft 12 for common rotation with second intermediate shaft 24.
[0058] As in the previous embodiments, first and second intermediate shafts
22, 24, countershafts 26, transfer gear shaft 28 and output shaft 14 are supported by
first, second and third support structures or walls 23, 25, 27 formed in the housing of
transmission 400. As conventionally known, the walls 23, 25, 27 are fitted with
bearings 29 for rotatably supporting the first and second intermediate shafts 22, 24,
countershafts 26, transfer gear shaft 28 and output shaft 14. Wall 23 is disposed
closest to the torque converter 16 and the final drive unit 18. Wall 25 is disposed
adjacent wall 23 and wall 27 is disposed adjacent wall 25.
[0059] The transmission 400 is capable of transmitting torque from the input
shaft 12 to the output shaft 14 in at least seven forward torque ratios and one reverse
torque ratio, as indicated in Figure 4. Each of the forward torque ratios and the
reverse torque ratio is attained by engagement of clutch 30' and one of the clutch
elements 34, 36 and one or more of the synchronizers 110, 112, 114, 116, 118, 120,
122 and 124. Those skilled in the art will readily understand that a different speed
ratio is associated with each torque ratio and how these torque ratios are achieved,
based on the description of transmission 10.
Fifth Embodiment
[0060] Referring to Figure 5 a multi-speed transmission 500 is depicted. The
transmission 500 includes input member 12 and output member 14 as described in
the first embodiment. The input shaft 12 is continuously connected with the torque
converter 16 or other starting device. An engine (not shown) is connected to and

16
P000054
provides the driving torque to the torque converter 16. The output shaft 14 is
continuously connected with the final drive unit 18, as described previously with
respect to the first embodiment.
[0061] Moreover, transmission 500 includes a countershaft gearing
arrangement 502 that includes the same intermediate shafts 22, 24, countershaft 26,
co-planar intermeshing gear sets 40, 50, 60, 70, and 80 and selectively engagable
synchronizers as described above with respect to countershaft gearing arrangement
20. However, in the present embodiment transfer gear shaft 28 and transfer gear sets
90 and 100 have been eliminated and replaced with a drive sprocket 504 and a
driven sprocket 506 and transfer chain or belt 508. More specifically, drive sprocket
504 transfers torque from the countershaft 26 to transfer chain 508. Transfer chain
508 transfers the torque to the driven sprocket 506. The driven sprocket 506
transfers the torque to the output shaft 14.
[0062] As in the previous embodiment, the first and second intermediate
shafts 22, 24, countershaft 26 and output shaft 14 are supported by first, second and
third support structures or walls 23, 25, 27 formed in the housing of transmission
500. Wall 23 is disposed closest to the torque converter 16 and the final drive unit
18. Wall 25 is disposed adjacent wall 23 and wall 27 is disposed adjacent wall 25.
Drive sprocket 504, driven sprocket 506 and transfer chain 508 are disposed
between walls 25 and 27.
[0063] The dual clutch 30 as described with respect to the first embodiment
shown Fig. 1 is also provided in the present embodiment. Moreover, the
connections with respect to the input shaft 12 and intermediate shafts 22, 24 and the
hubs 34 and 36 of dual clutch 30 are the same as described in the first embodiment.
[0064] Accordingly, transmission 500 is capable of transmitting torque from
the input shaft 12 to the output shaft 14 in at least seven forward torque ratios and
one reverse torque ratio, as indicated in Figure 5. Each of the forward torque ratios
and the reverse torque ratio is attained by engagement of clutch 30 and one of the
clutch elements 34, 36 and one or more of the synchronizers 110, 112, 114, 116,
118, 120, 122, and 124. Those skilled in the art will readily understand that a

17
P000054
different speed ratio is associated with each torque ratio and how these torque ratios
are achieved, based on the description of transmission 10.
Sixth Embodiment
[0065] Referring to Figure 6 a multi-speed transmission 600 is depicted.
The transmission 600 includes an input member 12 and an output member 14. In
this embodiment, the input member 12 and the output member 14 are shafts, and
will be referred to as such. Those skilled in the art will appreciate that the input and
output members 12, 14 may be components other than shafts. The input shaft 12 is
continuously connected with a torque converter 16 or other starting device. An
engine (not shown) is connected to and provides a driving torque to the torque
converter 16. The output shaft 14 is continuously connected with a final drive unit
18. The transmission 600 includes the dual clutch 30 having clutch elements 34 and
36, as described in the first embodiment and illustrated in Fig. 1.
[0066] Further, a countershaft gearing arrangement 602 is provided that
includes the first and second intermediate shafts 22, 24, countershaft 26 and output
shaft 14, as described with respect to the first embodiment. Still further,
countershaft gearing arrangement 602 includes co-planar, intermeshing gear sets 40,
50, 60, 70, 80 and 140. Gear set 40 includes co-planar, intermeshing gears 42 and
44. Gear 42 is connected for common rotation with first intermediate shaft 22. Gear
42 intermeshes with gear 44. Gear 44 is selectively connectable for common
rotation with countershaft 26. As shown in Fig. 6, gear set 40 is disposed adjacent
wall 27 and provides a second gear ratio.
[0067] Gear set 50 includes co-planar, intermeshing gears 52 and 54. Gear
52 is connected for common rotation with first intermediate shaft 22. Gear 52
intermeshes with gear 54. Gear 54 is selectively connectable for common rotation
with the output shaft 14. As shown in Fig. 6, gear set 50 is disposed adjacent gear
set 40 and provides a first gear ratio.
[0068] Gear set 60 includes co-planar, intermeshing gears 62, 64 and 66.
Gear 62 is connected for common rotation with second intermediate shaft 24. Gear

18
P000054
62 intermeshes with gear 64, which is selectively connectable for common rotation
with output shaft 14. Gear 62 also intermeshes with gear 66, which is selectively
connectable for common rotation with countershaft 26. As shown in Fig. 6, gear set
60 is disposed adjacent gear set 50 and wall 25 and provides a third and fifth gear
ratio.
[0069] Gear set 70 includes co-planar, intermeshing gears 72, 74 and 76.
Gear 72 is connected for common rotation with second intermediate shaft 24. Gear
72 intermeshes with both gear 74 and gear 76. Gear 74 is selectively connectable
for common rotation with the output shaft 14. Gear 76 is selectively connectable for
common rotation with the countershaft 26. As shown in Fig. 6, gear set 70 is
disposed adjacent wall 25 and provides the fourth and sixth gear ratios.
[0070] Gear set 80 includes co-planar intermeshing gears 82, 84, 86 and 88.
Gear 82 is connected for common rotation with second intermediate shaft 24 and
intermeshes with idler gear 86 and gear 88. Idler gear 86 is rotatable about idler axis
/. Gear 86 also intermeshes with gear 84. Gear 84 is selectively connectable with
output shaft 14. Gear 88 is selectively connectable with countershaft 26. As shown
in Fig. 6, gear set 80 is disposed adjacent gear set 70 and wall 23 and provides a
seventh and reverse gear ratios.
[0071] Gear set 140 is a transfer gear set that includes transfer gears 142,
144 and 146 disposed between wall 27 and a wall 606 of the transmission housing.
Transfer gear 142 is connected for common rotation with a transfer gear shaft 148
and intermeshes with both gears 144 and 146. Transfer gear shaft 148 is both
parallel to and spaced from first intermediate shaft 22. Transfer gear shaft 148 is
rotatably supported by wall 27 and wall 606 of the transmission housing. Transfer
gear 144 is connected for common rotation with output shaft 14. connected for
common rotation with output shaft 14. Transfer gear 146 is connected for common
rotation with countershaft 26. As shown in Fig. 6, gear set 140 is configured to
transfer torque from countershaft 26 to output shaft 14.
[0072] The transmission 10 further includes a plurality of selectively
engagable synchronizers 110, 112, 114, 116, 118, 120, 122 and 124. Synchronizers

19
P000054
110/112, 114/116, 118/120 and 122/124 are a left and right side of synchronizer
assemblies, sharing a common synchronizer hub and sleeve. Synchronizer 110 is
selectively engagable to connect gear 54 with output shaft 14 for common rotation
therewith. Synchronizer 112 is selectively engagable to connect gear 64 with output
shaft 14 for common rotation therewith. Synchronizer 114 is selectively engagable
to connect gear 66 with countershaft 26 for common rotation therewith.
Synchronizer 116 is selectively engagable to connect gear 44 with countershaft 26
for common rotation therewith. Synchronizer 118 is selectively engagable to
connect gear 74 with output shaft 14 for common rotation therewith. Synchronizer
120 is selectively engagable to connect gear 84 with output shaft 14 for common
rotation therewith. Synchronizer 122 is selectively engagable to connect gear 76
with countershaft 26 for common rotation therewith. Synchronizer 124 is
selectively engagable to connect gear 88 with countershaft 26 for common rotation
therewith.
[0073] The transmission 600 is capable of transmitting torque from the input
shaft 12 to the output shaft 14 in at least seven forward torque ratios and one reverse
torque ratio, as indicated in Figure 6. Each of the forward torque ratios and the
reverse torque ratio is attained by engagement of clutch 30 and one of the clutch
elements 34, 36 and one or more of the synchronizers 110, 112, 114, 116, 118. 120,
122 and 124. Those skilled in the art will readily understand that a different speed
ratio is associated with each torque ratio and how these torque ratios are achieved,
based on the description of transmission 10.
Seventh Embodiment
[0074] Referring to Figure 7 a multi-speed transmission 700 is depicted.
The transmission 700 includes an input member 12 and an output member 14. In
this embodiment, the input member 12 and the output member 14 are shafts, and
will be referred to as such. Those skilled in the art will appreciate that the input and
output members 12, 14 may be components other than shafts. The input shaft 12 is
continuously connected with a torque converter 16 or other starting device. An

20
P000054
engine (not shown) is connected to and provides a driving torque to the torque
converter 16. The output shaft 14 is continuously connected with a final drive unit
18. Moreover the present embodiment includes the supporting walls 23, 25, and 27
as described with respect to the previous embodiments.
[0075] The transmission 700 includes a countershaft gearing arrangement
702 that includes the same intermediate shafts 22, 24, countershaft 26, transfer gear
shaft 28 and selectively engagable synchronizers 110 through 122 and dual clutch
30, as described above with respect to the first embodiment shown in Fig. 1.
Further, countershaft gearing arrangement 702 includes the same co-planar
intermeshing gear sets (i.e. 40, 60, 70, 90 and 100) as the first embodiment with the
exception of gear sets 50, and 80 A and 80B. The location of the co-planar gear set
relative to the supporting walls 23, 25 and 27 are as follows: gear set 50 is adjacent
wall 23, gear set 80A is adjacent gear set 50, gear set 40 is adjacent gear set 80A,
gear set 60 is adjacent gear set 40, gear set 70 is adjacent gear set 60, gear set 80B is
adjacent gear set 70 and wall 25. The connections of the other co-planar gear sets 40,
60, 70, 90, and 100 to the intermediate shafts 22, 24, transfer gear shaft 28,
countershaft 26 and synchronizers 110, 112, 114, 116, 118, 120, and 122 are the
same as described above with respect to the first embodiment.
[0076] More specifically, gear set 50 including gears 52 and 54 are arranged
as follows: gear 52 is connected for common rotation with second intermediate shaft
24 and intermeshes with gear 54. Gear 54 is selectively connectable for common
rotation with countershaft shaft 26 by synchronizer 110. Gear set 80A includes
gears 82, 84 and 86. Gear 82 is connected for common rotation with second
intermediate shaft 24 and intermeshes with gears 84 and 86. Gear 84 is selectively
connectable for common rotation with output shaft 14 by synchronizer 120 and
intermeshes with gear 86. Gear 86 is rotatably supported by idler shaft I and
intermeshes with gear 86. Gear set 80A provides a reverse gear ratio. Further, an
additional gear set 80B is provided that includes gears 88 and 89. Gear 88 is
connected for common rotation with first intermediate shaft 22 and intermeshes with
gear 89. Gear 89 is selectively connectable for common rotation with output shaft 14

21
P000054
by synchronizer 126. Gear set 80B is disposed adjacent wall 25 and provides a
second gear ratio.
[0077] Additionally, the present embodiment provides a transfer shaft and
pinion gear 704 supported by wall 25 for rotation about countershaft 26. Transfer
shaft and pinion gear 704 is selectively connectable to to counter shaft 26 through
the engagement of a synchronizer 128. Transfer shaft and pinion gear 704
intermeshes with gear 92 of gear set 90 to selectively transfer torque from
countershaft 26 to output shaft 14.
[0078] The transmission 700 is capable of transmitting torque from the input
shaft 12 to the output shaft 14 in at least seven forward torque ratios and one reverse
torque ratio, as indicated in Figure 7. Each of the forward torque ratios and the
reverse torque ratio is attained by engagement of clutch 30 and one of the clutch
elements 34, 36 and one or more of the synchronizers 110, 112, 114, 116, 118, 120,
122, 124, 126 and 128. Those skilled in the art will readily understand that a
different speed ratio is associated with each torque ratio and how these torque ratios
are achieved, based on the description of transmission 10.
[0079] While the best modes for carrying out the invention have been
described in detail, those familiar with the art to which this invention relates will
recognize various alternative designs and embodiments for practicing the invention
within the scope of the appended claims.

22
P000054
CLAIMS
1. A powertrain comprising:
a transmission input member;
a power source for generating a torque in the input member;
a first intermediate shaft;
a second intermediate shaft concentric with the first intermediate
shaft;
a clutch selectively engagable to couple the transmission input
member with one of the first and second intermediate shafts,
a first and a second countershaft;
a first set of gears connected for common rotation with the first
intermediate shaft and intermeshing with a first selectable set of gears to form a first
plurality of co-planar gear sets, wherein each of the gears of the first selectable set of
gears is connectable for common rotation with one of the first and second
countershafts for selectively transferring the torque to the countershafts when the
clutch is engaged;
a second set of gears connected for common rotation with the second
intermediate shaft and intermeshing with a second selectable set of gears to form a
second plurality of co-planar gear sets, wherein each of the gears of the second
selectable set of gears is connectable for common rotation with one of the first and
second countershafts for selectively transferring the torque to one of the
countershafts when the clutch is engaged;
an output shaft disposed radially outward of the second intermediate
shaft; and
a first transfer gear coupled to one of the first and second
countershafts for transferring torque from the countershaft to the output shaft.

23
P000054
2. The powertrain of claim 1, wherein the first set of gears further
comprises two gears.
3. The powertrain of claim 1, wherein the second set of gears further
comprises three gears.
4. The powertrain of claim 1, further comprising a first idler gear
rotatable about a first idler axis and intermeshing with at least one of the selectable sets of
gears of the first set of gears.
5. The powertrain of claim 4, further comprising a second idler gear
rotatable about the idler axis and intermeshing with at least one of the selectable sets of
gears of the first set of gears.
6. The powertrain of claim 1, further comprising a second transfer
gear connected for common rotation with one of the first and second countershafts and
intermeshing with an output gear connected for common rotation with the output shaft for
transferring torque from the countershaft to the output shaft.
7. The powertrain of claim 1, further comprising a plurality of
synchronizers for selectively connecting the first and second set of selectable sets of
gears to at least one of the countershafts.
8. The powertrain of claim 1, further comprising a eight
synchronizers for selectively connecting the first and second set of selectable sets of
gears to at least one of the countershafts.
9. The powertrain of claim 1, further comprising a final drive unit
wherein the final drive unit has an output shaft that is perpendicular to the input member.

24
P000054
10. The powertrain of claim 1, wherein the clutch is a dual clutch
having a first hub connected to the first intermediate shaft and a second hub connected to
the second intermediate shaft.
11. The powertrain of claim 8, wherein the first hub is remote from the
second hub and wherein an output shaft of the final drive unit that is perpendicular to the
input member is disposed between the first and second hub.
12. The powertrain of claim 1, wherein the clutch is disposed between
the first and second plurality of co-planar gear sets.
13. The powertrain of claim 1, further comprising a second clutch for
selectively connecting at least one of the first and second selectable set of gears to at least
one of the countershafts.
14. The powertrain of claim 12, further comprising a third clutch for
selectively connecting at least one of the first and second selectable set of gears to at least
one of the countershafts.
15. The powertrain of claim 14, wherein the first, second and third
clutches are friction clutches.
16. The powertrain of claim 1, wherein a first plurality of co-planar
gear sets further comprises two co-planar gear sets.
17. The powertrain of claim 1, wherein a second plurality of co-planar
gear sets further comprises three co-planar gear sets.
18. The powertrain of claim 1, wherein one of the second plurality of
co-planar gear sets transfers the torque to achieve a first forward gear ratio.

25
P000054
19. The powertrain of claim 18, wherein the one of the second
plurality of co-planar gear sets that transfers the torque to achieve the first forward gear
ratio is disposed adjacent a structural wall of the housing of the powertrain.
20. The powertrain of claim 1, wherein one of the second plurality of
co-planar gear sets transfers the torque to achieve a seventh forward gear ratio.
21. The powertrain of claim 20, wherein the one of the second
plurality of co-planar gear sets that transfers the torque to achieve the seventh forward
gear ratio is disposed adjacent a structural wall of the housing of the powertrain.

A transmission is provided having a dual clutch, to achieve torque flow
through a countershaft gearing arrangement. The countershaft gearing arrangement
includes a plurality of co-planar gear sets having gears that are selectively connectable
to a plurality of countershafts. At least one transfer gear set transfers torque from the
counter shafts to an output shaft. The output shaft is connected to a final drive unit that
has a final drive unit output shaft that is transverse to an input member connected at one
end to a torque converter and at the other end to the dual clutch.

Documents:

00237-kol-2008-abstract.pdf

00237-kol-2008-claims.pdf

00237-kol-2008-correspondence others.pdf

00237-kol-2008-description complete.pdf

00237-kol-2008-drawings.pdf

00237-kol-2008-form 1.pdf

00237-kol-2008-form 2.pdf

00237-kol-2008-form 3.pdf

00237-kol-2008-form 5.pdf

00237-kol-2008-priority document.pdf

237-KOL-2008-(26-03-2013)-ABSTRACT.pdf

237-KOL-2008-(26-03-2013)-CLAIMS.pdf

237-KOL-2008-(26-03-2013)-CORRESPONDENCE.pdf

237-KOL-2008-(26-03-2013)-DESCRIPTION (COMPLETE).pdf

237-KOL-2008-(26-03-2013)-DRAWINGS.pdf

237-KOL-2008-(26-03-2013)-FORM 1.pdf

237-KOL-2008-(26-03-2013)-FORM 2.pdf

237-KOL-2008-(26-03-2013)-FORM 3.pdf

237-KOL-2008-(26-03-2013)-OTHERS.pdf

237-KOL-2008-(26-03-2013)-PA.pdf

237-KOL-2008-(26-03-2013)-PETITION UNDER RULE 137.pdf

237-KOL-2008-ASSIGNMENT.pdf

237-KOL-2008-CORRESPONDENCE OTHERS 1.1.pdf

237-KOL-2008-CORRESPONDENCE OTHERS 1.2.pdf

237-kol-2008-form 18.pdf

237-KOL-2008-OTHERS.pdf

abstract-00237-kol-2008.jpg


Patent Number 262762
Indian Patent Application Number 237/KOL/2008
PG Journal Number 37/2014
Publication Date 12-Sep-2014
Grant Date 11-Sep-2014
Date of Filing 12-Feb-2008
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Applicant Address 300 GM RENAISSANCE CENTER DETROIT, MICHIGAN
Inventors:
# Inventor's Name Inventor's Address
1 CLINTON E. CAREY 215 RIVERVIEW AVENUE MONROE, MICHIGAN 48162
2 BORIS I. BURGMAN 25970 STRATFORD PLACE OAK PARK, MICHIGAN 48237
3 HENRYK SOWUL 491 HARWOOD COURT. OXFORD, MICHIGAN 48371
4 MICHAEL B. SOLT 31615 WALTHAM DRIVE BEVERLY HILLS, MICHIGAN 48025-5120
PCT International Classification Number F16H3/08; F16H3/087; F16H3/10
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/678,188 2007-02-23 U.S.A.